
HAL Id: hal-01465114
https://hal.science/hal-01465114

Submitted on 14 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation of Frequent Itemset Border by
Computing Approximate Minimal Hypergraph

Transversals
Nicolas Durand, Mohamed Quafafou

To cite this version:
Nicolas Durand, Mohamed Quafafou. Approximation of Frequent Itemset Border by Computing
Approximate Minimal Hypergraph Transversals. 16th International Conference on Data Warehousing
and Knowledge Discovery (DaWaK 2014), 2014, Munich, Germany. pp.357-368. �hal-01465114�

https://hal.science/hal-01465114
https://hal.archives-ouvertes.fr


Approximation of Frequent Itemset Border by
Computing Approximate Minimal Hypergraph

Transversals

Nicolas Durand and Mohamed Quafafou
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Abstract. In this paper, we present a new approach to approximate
the negative border and the positive border of frequent itemsets. This
approach is based on the transition from a border to the other one by
computing the minimal transversals of a hypergraph. We also propose a
new method to compute approximate minimal hypergraph transversals
based on hypergraph reduction. The experiments realized on different
data sets show that our propositions to approximate frequent itemset
borders produce good results.

Keywords: frequent itemsets, borders, hypergraph transversals, approx-
imation.

1 Introduction

The discovery of frequent itemsets has quickly become an important task of
data mining [1]. This corresponds to find the sets of items (i.e. attribute values)
which appear together in at least a certain number of transactions (i.e. objects)
recorded in a database. These sets of items are called frequent itemsets. The
main use of the frequent itemsets is the generation of association rules. Nev-
ertheless, the uses have been extended to other tasks of data mining such as
supervised classification and clustering [1]. Two points are important in the dis-
covery of frequent itemsets. The first point is the reduction of the search space
due to combinatorial explosion. The second point is the reduction of the number
of generated itemsets to make easier the exploitation. In this paper, we focus
on the second point. To reduce the number of itemsets, some condensed repre-
sentations of frequent itemsets, such as the frequent closed itemsets, have been
proposed [1]. The maximal frequent itemsets (w.r.t. set inclusion) also represent
a reduced collection of itemsets. They correspond to a subset of the set of the
frequent closed itemsets. The regeneration of all the frequent itemsets is possible
from the maximal frequent itemsets but they are not considered as a condensed
representation of frequent itemsets because the database must be read to com-
pute the frequencies. The maximal frequent itemsets and the minimal infrequent
itemsets correspond respectively to the positive border and the negative border



2 N. Durand and M. Quafafou

of the set of the frequent itemsets [2]. These two borders are linked together
by the computation of minimal hypergraph transversals (also called ”minimal
hitting sets”) [2, 3]. Thus, it is possible to switch to a border from the other one.
The number of itemsets of the borders can still be huge.

In this paper, we propose a new approach to approximate the positive border
of frequent itemsets in order to reduce the size of the border. This approach is
based on the transition from a border to the other one by computing minimal
hypergraph transversals. The approximation is obtained by the computation of
approximate minimal transversals. Through the approximation, we also want to
find new items which could be interesting for some applications like document
recommendation. Another contribution is the proposition of a new method to
approximate the minimal transversals of a hypergraph by reducing the hyper-
graph. To the best of our knowledge, this is the first time that such approaches
are proposed. Some experiments have been performed on different data sets in
order to evaluate the number of generated itemsets and the distance between the
computed approximate borders and the exact borders. We focus on the compar-
ison between our method and two other algorithms which compute approximate
minimal transversals, in considering our approach of border approximation.

The rest of this paper is organized as follows. Section 2 defines the nota-
tions and the notions necessary for understanding the paper. The proposed ap-
proach of border approximation is detailed in Section 3. In Section 4, we present
our method to compute approximate minimal hypergraph transversals. Related
works are discussed in Section 5. The experiments and the results are presented
in Section 6. We conclude in Section 7.

2 Preliminaries

Let D = (T , I,R) be a data mining context, T a set of transactions, I a set
of items (denoted by capital letters), and R ⊆ T × I is a binary relation be-
tween transactions and items. Each couple (t, i) ∈ R denotes the fact that the
transaction t is related to the item i. A transactional database is a finite and
nonempty multi-set of transactions. Table 1 provides an example of a transac-
tional database consisting of 6 transactions (each one identified by its ”Id”) and
8 items (denoted A . . .H).

Table 1. Example of transactional database

Id Items

t1 A C E G
t2 B C E G
t3 A C E H
t4 A D F H
t5 B C F H
t6 B C E F H
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An itemset is a subset of I (note that we use a string notation for sets,
e.g., AB for {A,B}). The complement of an itemset X (according to I) is noted
X. A transaction t supports an itemset X iff ∀i ∈ X, (t, i) ∈ R. An itemset X
is frequent if the number of transactions which support it, is greater than (or
is equal to) a minimum threshold value, noted minsup. The set of all-frequent
itemsets is noted S. Let us take the example of Table 1, if minsup=3 then the
itemset H is frequent because 4 transactions support it (t3, t4, t5 and t6). AE
is not frequent because only t1 and t3 support it.

The set of all maximal frequent itemsets (resp. minimal infrequent itemsets),
w.r.t. set inclusion, in D is the positive border (resp. negative border) [2] of
S and is noted Bd+(S) (resp. Bd−(S)): Bd+(S) = {X ∈ S | ∀Y ⊃ X, Y /∈ S}
and Bd−(S) = {X ∈ 2I \S | ∀Y ⊂ X, Y ∈ S}. Let us take the example of Table
1, if minsup=3, Bd+(S) = {A, BC, CE, CH, FH} and Bd−(S) = {D, G, AB,
AC, AE, AF, AH, BE, BF, BH, CF, EF, EH}.

Before the presentation of the relationship between the positive border and
the negative border of frequent itemsets, we need to introduce the notion of
minimal transversals of a hypergraph. A hypergraph H = (V , E) is composed
of a set V of vertices and a set E of hyperedges [4]. Each hyperedge e ∈ E
is a set of vertices included or equal to V . The degree of a vertex v in H,
denoted degH(v), is the number of hyperedges of H containing v. Let τ be a set
of vertices (τ ⊆ V ). τ is a transversal of H if it intersects all the hyperedges of
H. A transversal is also called a ”hitting set”. The set of all the transversals of
H is: Tr(H) = {τ ⊆ V | ∀ei ∈ E, τ ∩ei 6= ∅}. A transversal τ of H is minimal if
no proper subset is a transversal of H. The set of all minimal transversals of H is
noted MinTr(H). The relationship between the notion of borders and minimal
transversals has been presented in [2] and [3].

In [2], the following property has been showed:

Bd−(S) = MinTr(Bd+(S))
where Bd+(S) is the hypergraph formed by the items of I (i.e. the vertices) and
the complement of the itemsets of the positive border of S (i.e. the hyperedges).

In [3], the following property has been showed:

Bd+(S) = MinTr(Bd−(S))
where Bd−(S) is the hypergraph formed by the items of I (i.e. the vertices) and
the itemsets of the negative border of S (i.e. the hyperedges).

The term dualization refers to the use of the previous properties to compute
the negative border from the positive border, and vice versa. The size of the
borders can be huge according to minsup. In the two next sections, we propose
a new approach to approximate the borders and to reduce their size. In this way,
the exploitation of the itemsets of the borders will be easier.

3 Proposed approach of border approximation

The proposed approach of border approximation exploits the dualizations be-
tween the positive border and the negative border. Let f and g be the functions
that allow to compute respectively the negative border from the positive border
and the positive border from the negative border:
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f : 2I → 2I

x 7→MinTr(x)

g : 2I → 2I

x 7→MinTr(x)

The principle of the proposed approach is to replace the function f by a
function f̃ which performs an approximate computation of the negative border.
The new function f̃ uses an approximate minimal transversals computation,

noted M̃inTr:
f̃ : 2I → 2I

x 7→ M̃inTr(x)

From the positive border, the approach computes an approximate negative

border (noted B̃d−(S)): f̃(Bd+(S)) = M̃inTr(Bd+(S)) = B̃d−(S). The return
to a positive border (via the function g) allows to obtain an approximate posi-

tive border (noted B̃d+(S)): g(B̃d−(S)) = MinTr(B̃d−(S)) = B̃d+(S). Thus,

our approach produces the approximate negative border B̃d−(S) and the cor-

responding approximate positive border B̃d+(S). Let us take the example of

Table 1 and let us compute the approximate border: B̃d−(S) = f̃(Bd+(S)) =

M̃inTr(Bd+(S)) = M̃inTr({A, BC, CE, CH, FH} = M̃inTr({BCDEFGH,
ADEFGH, ABDFGH, ABDEFG, ABCDEG}). Let us assume that the ap-
proximate minimal transversals computation provides the following result:

B̃d−(S) = {D,E,G,AF,AH,BF,BH}. The approximate positive border is ob-

tained by dualization: B̃d+(S) = g(B̃d−(S)) = MinTr(B̃d−(S)) = {ABDEG,
DEFGH} = {CFH,ABC}. We can remark that A, B, C and BC are frequent
itemsets (according to minsup = 3) and here ABC is considered as a frequent
itemset. CFH is not frequent (its support is equal to 2) but it is almost frequent.
These two itemsets can be interesting for applications like document recommen-
dation. For instance, without our approach, FH is frequent and CFH is not
frequent. The item C is potentially interesting. If the items are documents, with
our approach, the item C can be recommended to a user.

4 Computation of approximate minimal transversals

In order to complete the approach presented in the previous section, we proposed
a method to compute the approximated minimal transversals of a hypergraph.
The method is based on the reduction of the initial hypergraph. The aim is to
compute the minimal transversals on the reduced hypergraph (smaller than the
initial hypergraph). The proposed algorithm of reduction is specially designed to
compute minimal transversals. It exploits the fact that the hyperedges formed
by the complements of the itemsets of the positive border, strongly intersect
(i.e. the average degree of a vertex is high). Indeed, in the example this hyper-
graph is: {BCDEFGH, ADEFGH, ABDFGH, ABDEFG, ABCDEG}. The
proposed method is composed of two steps: (1) Reduction of the hypergraph,
(2) Computation of the (exact) minimal transversals of the reduced hypergraph.
At the end, the minimal transversals obtained from the reduced hypergraph are
declared as the approximate minimal transversals of the initial hypergraph.
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4.1 Reduction of the hypergraph

The hypergraph reduction of the initial hypergraph is based on the intersections
of its hyperedges and on the degree of each vertex. The representative graph
[4] (also called ”line-graph”) of the hypergraph is thus generated. Let us recall
that the representative graph of the hypergraph H is a graph whose vertices
represent the hyperedges of H and two vertices are adjacent if and only if the
corresponding hyperedges in H intersect. In our algorithm, we add values to
the edges of the representative graph. Algorithm 1 presents the reduction of a
hypergraphH. The algorithm is composed of three steps: (1) Computation of the
degree of each vertex inH (lines 1-3), (2) Generation of the valued representative
graph of H (lines 4-9), (3) Generation of the reduced hypergraph from the valued
representative graph (lines 10-17). The complexity of the algorithm is in O(m2)
where m is the number of hyperedges of the initial hypergraph.

Algorithm 1 HR (Hypergraph Reduction)

Require: a hypergraph H=(V , E) where |V |=n and |E|=m
Ensure: the reduced hypergraph HR
1: for all v ∈ V do
2: Compute degH(v)
3: end for
4: V ′ ← {v′i} i = 1, . . . ,m; {each v′i ∈ V ′ represents ei ∈ E}
5: E′ ← {};
6: for all v′i ∩ v′j 6= ∅ do
7: E′ ← E′ ∪ {(v′i, v′j)};
8: w(v′i,v

′
j)
←

∑
v∈{ψ−1(v′i)∩ψ

−1(v′j)}
degH(v);

9: end for
10: VR ← {};
11: ER ← {};
12: while E′ 6= ∅ do
13: Select e′max = (v′maxi, v

′maxj) having the maximal weight value
14: VR ← VR ∪ {ψ−1(v′maxi) ∩ ψ−1(v′maxj)};
15: ER ← ER ∪ {{ψ−1(v′maxi) ∩ ψ−1(v′maxj)}};
16: Delete the edges e′ ∈ E′ where v′maxi or v′maxj is present
17: end while
18: return HR;

Valued representative graph generation (lines 1-9) Let be H = (V,E) a
hypergraph (|V | = n and |E| = m). The algorithm constructs a valued graph
G=(V ′, E′) where V ′ = {v′i} (i = 1, . . . ,m) and E′ = {e′k} (k = 1, . . . , l). A
vertex v′i represents a hyperedge ei from H. Let be ψ : E → V ′ the bijective
function who associates a hyperedge ei to a vertex v′i. A hyperedge between v′i
and v′j shows that the intersection between the hyperedges ψ−1(v′i) and ψ−1(v′j)
(ei and ej from H) is not empty. The weight of an edge is based on the degree
of each vertex in the corresponding intersection. To evaluate the weight of a
generated edge, we use the degree of each vertex from the initial hypergraph.
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The idea is that a vertex very present has a good chance to be in a minimal
transversal. This expresses a ”degree” of transversality. If the degree of a vertex
is equal to the number of hyperedges then this vertex is a minimal tranversal. Let
us note that this heuristic is used by several algorithms that compute transversals
[5, 6]. The weight of an edge e′k = (v′i, v

′
j), noted we′k , is the sum of the degree

of the vertices present in the intersection which has led to create this edge (see
(1)).

we′k =
∑

v∈{ψ−1(v′i)∩ψ−1(v′j)}

degH(v). (1)

Generation of the reduced hypergraph (lines 10-17) After the creation
of the valued representative graph, the algorithm performs a selection of edges
with a greedy approach. It selects the edge having the higher weight value while
there are edges left in G. Each selected edge is transformed to a hyperedge of the
reduced hypergraph. This hyperedge contains the vertices from H corresponding
to the intersection of the two vertices of the edge. We obtain, at the end, a set
of hyperedges corresponding to the reduced hypergraph HR=(VR,ER). Let us
remark that if several edges have the same weight, the first found edge is selected.

Let us consider the example of Table 1 as a hypergraph H (6 hyperedges, 8
vertices). The reduced hypergraph is HR = (VR, ER) where VR = {A, B, C, E,
F, H} and ER = {{A, C, E}, {B, C, F, H}}).

4.2 Minimal transversal computation

The last step is the computation of the (exact) minimal transversals of the
reduced hypergraph. These transversals correspond to the approximate minimal

transversals of the initial hypergraph: M̃inTr(H) = MinTr(HR).
Let us take our example, the minimal transversals of HR are: {C, AB, AF ,

AH, BE, EF , EH}. We consider them as the approximate minimal transversals
of H. Let us remark that the (exact) minimal transversals of H are: {AB, AC,
CD, CF , CH, EF , EH, GH, AFG, BDE}.

5 Related works

Numerous methods have been proposed to reduce the number of itemsets. In [7],
the authors have studied the problem of randomly sampling maximal itemsets
without explicit enumeration of the complete search space. They have employed
a simple random walk that only allows additions of singletons to the current
set untill a maximal set is found. In [8], the authors have used the Minimum
Description Length (MDL) principle: the best set of itemsets is that set that
compresses the database best. In [9], the approximation of a collection of frequent
itemsets by the k best covering sets has been studied. The proposed algorithm
takes in input the whole collection of the frequent itemsets or the positive border.
The authors have explained the difficulties to use a greedy algorithm to obtain,
from the positive border, k covering sets belonging to the initial collection. Our
approach computes an approximate border from a border given completely in
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input. In that respect, we are close to the works presented in [9]. The exact
positive border is the algorithm’s input. Nevertheless, we do not want to find
some covering sets and the itemsets of the approximate border do not necessarily
belong to the initial collection. Our approach is more controllable than MDL used
in [8]. We have the possibility to have several different methods to approximate

the negative border (f̃). Moreover, we have an understanding mapping between
the exact border and the approximation border.

The computation of minimal transversals is a central point in hypergraph the-
ory [4]. The algorithms to compute the minimal transversals come from different
domains: graph theory, logic and data mining [10]. This is a NP-hard prob-
lem. The algorithms of approximation of minimal transversals are rare. Some
works approximate the minimal transversals in order to obtain some ones or
only one [6]. Some works are based on an evolutionary computation [11] where
the transversality and the minimality are transcribed in a fitness function where
a parameter, noted ε, is the fraction of hyperedges needed to intersect by any
generated transversals. In [5], the Staccato algorithm computes low-cost ap-
proximate minimal transversals with a depth-first search strategy. It has been
designed for model-based diagnosis. We have adapted Staccato in order to com-
pute approximated minimal transversals in general. Staccato sorts the vertices
according to their degree in increasing order. At each step, only the first λ (%)
vertices of the remaining hypergraph are used. The more the λ value is high, the
more the result is close to the set of the minimal transversals. The algorithm
presented in [12], that we call δ-MTminer, produces minimal transversals which
can miss at most δ hyperedges. It uses a breadth-first search strategy and several
itemset discovery techniques. We have a different approach to compute approx-
imate minimal transversals. We propose to apply a hypergraph reduction and
then to compute the minimal transversals of the reduced hypergraph. These
transversals are considered as the approximate minimal transversals of the ini-
tial hypergraph. Moreover, we don’t need to set any parameters.

6 Experiments

6.1 Data and Protocol

Four data sets have been used: Mushroom, Chess, Connect and Kosarak. They
have been downloaded from the FIMI web site1. Mushroom contains data on 23
species of gilled mushrooms. Chess contains some strategies for chess sets. Con-
nect contains strategies for the game of connect-4. Kosarak contains anonymized
click-stream data of a hungarian on-line news portal. The data sets (see Table
2) have been chosen to cover the different types of existing data sets according
to the classification proposed by Gouda & Zaki [13].

The protocol of the experiments is as follows: For each data set and for some
minimum support threshold values, (1) Compute the positive border according
the minimum support threshold value, with IBE [14], (2) Compute the (exact)

1 Frequent Itemset Mining Implementations, http://fimi.ua.ac.be/data/
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Table 2. Data sets used in the experiments.

Dataset #transactions #items Avg. size of a trans. Gouda & Zaki

Mushroom 8124 119 23 type 4
Chess 3196 75 37 type 1

Connect 67557 129 43 type 2
Kosarak 990002 41270 8,1 type 3

negative border with Border-Diff [15], the approximate negative border with
1-MTminer [12], the approximate negative border with Staccato [5], and the
approximate negative border with our method (noted AMTHR - Approximate
Minimal Transversals by Hypergraph Reduction), (3) Dualize to the positive bor-
ders (1 exact border and 3 approximate borders) with the Border-Diff algo-
rithm which computes minimal transversals. For δ-MTminer (cf. Section 5), we
have set δ to 1 because this value has produced the best results for δ-MTminer.
For Staccato (cf. Section 5), we have chosen the highest values of λ before be-
ing impraticable: λ=0.8 for Mushroom, λ=0.65 for Chess, λ=0.7 for Connect,
and λ=0.95 for Kosarak. In Steps 2 and 3, some statistics are computed: the
number of itemsets of the computed border, the average size of the itemsets of
the computed border, and the distance between the set of the itemsets of the
computed border and the set of itemsets of the exact border. To evaluate the
distance between two borders, we have used the distance of Karonski & Palka
based on the Hausdorff distance. The cosine distance (see (2)) have been chosen
to compute the distance between two elements (i.e. two itemsets). The distance
D between two set of itemsets X and Y is defined in (3).

d(X,Y ) = 1− |X ∩ Y |√
|X| × |Y |

. (2)

D(X ,Y) =
1

2
{h(X ,Y), h(Y,X )} where h(X ,Y) = max

X∈X
{min
Y ∈Y

d(X,Y )}. (3)

6.2 Results and Discussion

Due to space constraints, Figures about the average size of an itemset of the
computed borders, are not presented in the paper. All the figures are available
online2. Moreover, we do not present the execution times because this is not our

main objective. For information, the computation of B̃d−(S) with AMTHR is

longer than with the other algorithms. The computation of B̃d+(S) is the fastest
with AMTHR.

Fig. 1, 2, 3 and 4 present, for each data sets, the number of itemsets of the
computed negative borders and the distance between the computed negative
borders and the exact negative borders. We can observe that the cardinality of

B̃d−(S) is lower than the cardinality of Bd−(S) for each data sets. For infor-

mation, the itemsets of B̃d−(S) are shorter than the itemsets of Bd−(S). They

2 http://nicolas.durand.perso.luminy.univ-amu.fr/amthr/
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Fig. 1. Negative borders computed on Mushroom (according to minsup).
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Fig. 2. Negative borders computed on Chess (according to minsup).

are the shortest with Staccato for each data sets. On Mushroom and Kosarak,

the number of itemsets of B̃d−(S) produced by AMTHR is very close to the
number of itemsets of Bd−(S). The generated itemsets with AMTHR are a lit-
tle shorter than for the exact borders on Mushroom and Kosarak. Nevertheless,

the itemsets of B̃d−(S) are different in view of the observed distances. This is
an interesting remark. Some itemsets have been changed and they can be poten-
tially interesting items. On Chess and Connect, AMTHR and 1-MTminer have
produced a similar number of itemsets. These itemsets have a very close aver-

age size. Regarding the distance (between B̃d−(S) and Bd−(S)), Staccato has
obtained the closest borders on Mushroom and Kosarak. 1-MTminer has pro-
duced the closest borders on Chess and Connect. Nevertheless, we can observe
that AMTHR is close to the best algorithm for each data sets.

Fig. 5, 6, 7 and 8 present, for each data sets, the number of itemsets of
the computed positive borders and the distance between the computed positive

borders and the exact positive borders. For information, the itemsets of B̃d+(S)
are longer than the itemsets of Bd+(S). They are the longest with Staccato or

AMTHR on each data sets. The number of itemsets of B̃d+(S) with AMTHR
is the lowest on Mushroom. On the other data sets, Staccato has generated
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Fig. 3. Negative borders computed on Connect (according to minsup).
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Fig. 4. Negative borders computed on Kosarak (according to minsup).
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Fig. 5. Positive borders computed on Mushroom (according to minsup).

the lowest number of itemsets. 1-MTminer have produced more itemsets than

AMTHR, except for Kosarak. AMTHR has obtained the closest B̃d+(S) to
Bd+(S) on Mushroom, Chess and Kosarak. On Connect, 1-MTminer has also
obtained good results. On Kosarak, Staccato and δ-MTminer have produced
bad results.
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Fig. 6. Positive borders computed on Chess (according to minsup).
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Fig. 7. Positive borders computed on Connect (according to minsup).
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Fig. 8. Positive borders computed on Kosarak (according to minsup).

To resume, we can note that the proposed method, AMTHR, has reduced the
number of itemsets of the generated positive borders, while keeping a reasonable
distance to the exact positive borders. Moreover, our method seems to be robust
according to the different types of data sets.
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7 Conclusion

We have proposed a new approach of approximation of frequent itemset bor-
ders based on the computation of approximate minimal hypergraph transver-
sals. From the exact positive border, an approximate negative border is com-
puted and then the corresponding approximate positive border is generated by
dualization. The proposed computation of approximate minimal transversals is
based on hypergraph reduction. There is no need to set any parameters. In the
experiments, we have showed that our method produces an approximate positive
border smaller than the exact positive border, while keeping a reasonable dis-
tance with the exact border. These results confirm that the proposed method is
interesting to find potentially interesting new items. In the future, we will thus
develop a recommendation system using the approximate positive borders. In
that way, we will able to evaluate the quality of the approximation.
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