Skip to main content

Clustering Based on Sequential Multi-Objective Games

  • Conference paper
Data Warehousing and Knowledge Discovery (DaWaK 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8646))

Included in the following conference series:

  • 1903 Accesses

Abstract

We propose a novel approach for data clustering based on sequential multi-objective multi-act games (ClusSMOG). It automatically determines the number of clusters and optimises simultaneously the inertia and the connectivity objectives. The approach consists of three structured steps. The first step identifies initial clusters and calculates a set of conflict-clusters. In the second step, for each conflict-cluster, we construct a sequence of multi-objective multi-act sequential two-player games. In the third step, we develop a sequential two-player game between each cluster representative and its nearest neighbour. For each game, payoff functions corresponding to the objectives were defined. We use a backward induction method to calculate Nash equilibrium for each game. Experimental results confirm the effectiveness of the proposed approach over state-of-the-art clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Law, M.H.C., Topchy, A.P., Jain, A.K.: Multiobjective Data Clustering. In: Computer Society Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  2. Strehl, A., Ghosh, J.: Cluster Ensembles: A Knowledge Reuse Framework for Combining Multiple Partitions. Machine Learning Research 3, 93–98 (2003)

    MathSciNet  Google Scholar 

  3. Dempster, A., Laird, N., Rubin, D.: Maximum Liklihood From Incomplete Data via the EM Algorithm. Journal of The Royal Statistical Society, Series B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  4. Handl, J., Knowles, J.: MultiObjective Clustering Around Medoids. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 632–639 (2005)

    Google Scholar 

  5. Handl, J., Knowles, J.: An Evolutionary Approach to Multiobjective Clustering. IEEE Transaction on Evolutionary Computation 11, 56–76 (2007)

    Article  Google Scholar 

  6. Von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100, 295–320 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gupta, U., Ranganathan, N.: A game theoretic approach for simultaneous compaction and equipartitioning of spatial data sets. IEEE Transcation on Knowledge and Data Engineering 22, 465–478 (2010)

    Google Scholar 

  8. Badami, M., Hamzeh, A., Hashemi, S.: An enriched game-theoretic framework for multi-objective clustering. Applied Soft Computing 13, 1853–1868 (2013)

    Article  Google Scholar 

  9. Garg, V.K., Narahari, Y., Murty, M.N.: Novel Biobjective Clustering (BiGC) based on Cooperative Game Theory. IEEE Transactions on Knowledge and Data Engineering (2013)

    Google Scholar 

  10. Bulo, S.R., Pelillo, M.: A game-theoretic approach to hypergraph clustering. Advances in Neural Information Processing Systems (2009)

    Google Scholar 

  11. Goutte, C., Toft, P., Rostrup, E., Nielsen, F.Å., Hansen, L.K.: On Clustering fMRI Time Series. NeuroImage 9, 298–310 (1999)

    Article  Google Scholar 

  12. Handl, J., Knowles, J.D.: Evolutionary Multiobjective Clustering. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 1081–1091. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Tufféry, S.: Data Mining et Statistique Décisionnelle: L’intelligence des données (2010)

    Google Scholar 

  14. http://personalpages.manchester.ac.uk/mbs/Julia.Handl/mock.html

  15. Bandyopadhyay, S., Saha, S.: GAPS: A Clustering Method Using a New Point Symmetry-Based Distance Measure. Pattern Recognition 40, 3430–3451 (2007)

    Article  MATH  Google Scholar 

  16. http://www.isical.ac.in/~sanghami/data.html

  17. http://archive.ics.uci.edu/ml/datasets.html

  18. RapidMiner website, http://www.rapidminer.com

  19. Rand, W.: Objective Criteria for the Evaluation of Clustering Methods. J. Amer. Statist. Assoc. 66, 846–850 (1971)

    Article  Google Scholar 

  20. Hubert, A.: Comparing partitions. J. Classification 2, 193–198 (1985)

    Article  Google Scholar 

  21. van Rijsbergen, C.: Information Retrieval, 2nd edn. Butterworths (1979)

    Google Scholar 

  22. Rousseeuw, P.J.: Silhouettes: A Graphical Aid to the Interpretation and Validation of Clus-ter Analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Heloulou, I., Radjef, M.S., Kechadi, M.T. (2014). Clustering Based on Sequential Multi-Objective Games. In: Bellatreche, L., Mohania, M.K. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2014. Lecture Notes in Computer Science, vol 8646. Springer, Cham. https://doi.org/10.1007/978-3-319-10160-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10160-6_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10159-0

  • Online ISBN: 978-3-319-10160-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics