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Abstract. Process mining is a domain where computers undoubtedly
outperform humans. It is a mathematically complex and computationally
demanding problem, and event logs are at too low a level of abstraction
to be intelligible in large scale to humans. We demonstrate that if instead
the data to mine from are models (not logs), datasets are small (in the
order of dozens rather than thousands or millions), and the knowledge to
be discovered is complez (reusable model patterns), humans outperform
computers. We design, implement, run, and test a crowd-based pattern
mining approach and demonstrate its viability compared to automated
mining. We specifically mine mashup model patterns (we use them to
provide interactive recommendations inside a mashup tool) and explain
the analogies with mining business process models. The problem is rel-
evant in that reusable model patterns encode valuable modeling and
domain knowledge, such as best practices or organizational conventions,
from which modelers can learn and benefit when designing own models.

Keywords: Model patterns, Pattern mining, Crowdsourcing, Mashups.

1 Introduction

Designing good business processes, i.e., modeling processes, is a non-trivial task.
It typically requires not only fluency in the chosen modeling language, but also
intimate knowledge of the target domain and of the common practices, conven-
tions and procedures followed by the various actors operating in the given domain.
These requirements do not apply to business processes only. We find them over and
over again in all those contexts that leverage on model-driven formalisms for the
implementation of process-oriented systems. This is, for instance, the case of data
mashups, which are commonly based on graphical data flow paradigms, such as the
one proposed by Yahoo! Pipes (http://pipes.yahoo.com).

In order to ease the modeling of this kind of data mashups (so-called pipes),
in a previous work, we developed an extension of Pipes that interactively rec-
ommends mashup model patterns while the developer is modeling a pipe. A
click on a recommended pattern automatically weaves the pattern into the par-
tial pipe in the modeling canvas. Patterns are mined from a repository of freely
accessible pipes models [11]. We mined patterns from a dataset of 997 pipes
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taken from the “most popular” category, assuming that popular pipes are more
likely to be functioning and useful. Before their use, patterns were checked by
a mashup expert assuring their meaningfulness and reusability (e.g., see Figure
1 for an example of a good pattern). The extension is called Baya [13], and our
user studies demonstrate that recommending model patterns has the potential
to significantly lower development times in model-driven environments [12].

The approach however suffers from problems that are common to pattern
mining algorithms: identifying support threshold values, managing large num-
bers of produced patterns, coping with noise (useless patterns), giving meaning
to patterns, and the cold start problem. Inspired by the recent advent of crowd-
sourcing [6], the intuition emerged that it might be possible to attack these
problems with the help of the crowd, that is, by involving humans in the mining
process. The intuition stems from the observation that pure statistical support
does not always imply interestingness [2], and that human experts are anyway
the ultimate responsibles for deciding about the suitability or not of patterns.

In this paper, we report on the results of this investigation and demonstrate
that crowd-based pattern mining can indeed be successfully used to identify
meaningful model patterns. We describe our crowd-based mining algorithm, the
adopted software/crowd stack, and demonstrate the effectiveness of the approach
by comparing its performance with that of the algorithm adopted in Baya. We
also show how our results and lessons learned are applicable to and impact the
mining of model patterns from business process models.

2 Background and Problem Statement

2.1 Reference Process Models: Data Mashups

Mashups are composite web applications that are developed by integrating
data, application logic, and pieces of user interfaces [1]. Data mashups are a
special type of mashups that specifically focuses on the integration and process-
ing of data sources available on the Web. Typical data sources are RSS or Atom
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feeds, plain XML- or JSON-encoded static resources, or more complex SOAP or
RESTful web services. Data mashup tools are IDEs for data mashup develop-
ment. They provide a set of data processing operators, e.g., filters or split and
join operators, and the possibility to interactively configure data sources and
operators (we collectively call them components).

In this paper, we specifically focus on the data mashup tool Yahoo! Pipes and
our pattern recommender Baya [13]. The components and mashups supported
by these tools can be modeled as follows: Let C'L be a library of components
of the form ¢ = (name, I P, I F, OP, emb), where name identifies the component
(e.g., RSS feed or Filter), IP is the set of input ports for data flow connectors,
IF is the set of input fields for the configuration of the component, OP is the set
of output ports, and emb € {yes, no} tells whether the component allows for the
embedding of other components or not (e.g., to model loops). We distinguish
three classes of components: Source components fetch data from the Web or
collect user inputs at runtime. They don’t have input ports: IP = (). Data
processing components consume data in input and produce processed data in
output: IP, OP # (. A sink component (the Pipe Output component) indicates
the end of the data processing logic and publishes the output of the mashup, e.g.,
using JSON. The sink has neither input fields nor output ports: IF, OP = ().

A data mashup (a pipe) can thus be modeled as m = (name, C, E, DF,V A),
where name uniquely identifies the mashup, C' is the set of integrated compo-
nents, E C C x C represents component embeddings, DF C (U;OF;) x (U;IP;)
is the set of data flow connectors propagating data from output to input ports,
and VA C (Ul Fy) x STRING assigns character string values to input fields.
Generic strings are interpreted as constants, strings starting with “item.” are
used to map input data attributes to input fields (see Figure 1).

A pipe is considered correct, if it (i) contains at least one source component,
(ii) contains a set of data processing components (the set may be empty), (iii)
contains exactly one sink component, (iv) is connected (in the sense of graph
connectivity), and (v) has value assignments for each mandatory input field.

A mashup model pattern can thus be seen as a tuple mp = (name, desc, tag,
C,E,DF,V A), with name, desc and tag naming, describing and tagging the
pattern, and C, E, DF,V A being as defined above, however with relaxed cor-
rectness criteria: a pattern is correct if it (i) contains at least two components,
(ii) is connected, and (iii) has value assignments for each mandatory input field.

2.2 Crowdsourcing

Crowdsourcing (CS) is the outsourcing of a unit of work to a crowd of people
via an open call for contributions [6]. A worker is a member of the crowd (a
human) that performs work, and a crowdsourcer is the organization, company
or individual that crowdsources work. The crowdsourced work typically comes in
the form of a crowd task, i.e., a unit of work that requires human intelligence
and that a machine cannot solve in useful time or not solve at all. Examples
of crowd tasks are annotating images with tags or descriptions, translating text
from one language into another, or designing a logo.
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A crowdsourcing platform is an online software infrastructure that pro-
vides access to a crowd of workers and can be used by crowdsourcers to
crowdsource work. Multiple CS platforms exist, which all implement a spe-
cific CS model: The marketplace model caters for crowd tasks with fixed
rewards for workers and clear acceptance criteria by the crowdsourcer. The
model particularly suits micro-tasks like annotating images and is, for ex-
ample, adopted by Amazon Mechanical Turk (https://www.mturk.com) and
CrowdFlower (http://crowdflower.com). The contest model caters for tasks
with fixed rewards but unclear acceptance criteria; workers compete with
their solutions for the reward, and the crowdsourcer decides who wins. The
model suits creative tasks like designing a logo and is, e.g., adopted by
99designs (http://99designs.com). The auction model caters for tasks with
rewards to be negotiated but clear acceptance criteria. The model suits
creative tasks like programming software and is, e.g., adopted by Freelancer
(http://www.freelancer.com).

For the purpose of this paper, we specifically leverage on micro-tasks in mar-
ketplace CS platforms. Crowdsourcing a task in this context involves the follow-
ing steps: The crowdsourcer publishes a description of the task to be performed,
which the crowd can inspect and possibly express interest for. In this step, the
crowdsourcer also defines the reward workers will get for performing the task and
how many answers he would like to collect from the crowd. Not everybody of the
crowd may, however, be eligible to perform a given task, either because the task
requires specific capabilities (e.g., language skills) or because the workers should
satisfy given properties (e.g., only female workers). Deciding which workers are
allowed to perform a task is commonly called pre-selection, and it may be done
either by the crowdsourcer manually or by the platform automatically (e.g., via
questionnaires). Once workers are enabled to perform a task, the platform creates
as many task instances as necessary to collect the expected number of answers.
Upon completion of a task instance (or a set thereof), the crowdsourcer may
inspect the collected answers and wvalidate the respective correctness or quality.
Work that is not of sufficient quality is not useful, and the crowdsourcer rewards
only work that passes the possible check. Finally, the crowdsourcer may need to
integrate collected results into an aggregated outcome of the overall CS process.

2.3 Problem Statement and Hypotheses

This paper aims to understand whether it is possible to crowdsource the min-
ing of mashup model patterns of type mp from a dataset of mashup models
M = {m;} with | € {1...|M|} and |M| being “small” in terms of dataset sizes
required by conventional data mining algorithms (dozens rather than thousands
or millions). Specifically, the work aims to check the following hypotheses:

Hypothesis 1 (Effectiveness). It is possible to mine reusable mashup model
patterns from mashup models by crowdsourcing the identification of patterns.

Hypothesis 2 (Value). Model patterns identified by the crowd contain more
domain knowledge than automatically mined patterns.
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Hypothesis 3 (Applicability). Crowd-based pattern mining outperforms ma-
chine-based pattern mining for small datasets.

It is important to note that the above hypotheses and this paper as a whole
use the term “mining” with its generic meaning of “discovering knowledge,”
which does not necessarily require machine learning.

3 Crowd-Based Pattern Mining

The core assumptions underlying this research are that (i) we have access to
a repository of mashup models (the dataset) of limited size, like in the case of a
cold start of a modeling environment; (ii) the identification of patterns can be
crowdsourced as micro-tasks via maketplace-based CS platforms; and (iii) the
interestingness of patterns as judged subjectively by workers has similar value as
that expressed via minimum support thresholds of automated mining algorithms.

3.1 Requirements

Crowdsourcing the mining of mashup model patterns under these assumptions
asks for the fulfillment of a set of requirements:

R1: Workers must pass a qualification test, so as to guarantee a minimum level
of familiarity with the chosen mashup modeling formalism.

R2: Mashup models m must be represented in a form that is easily intelligible
to workers and that allows them to conveniently express patterns mp.

R3: It must be possible to input a name, a description and a list of tags for an
identified pattern, as well as other qualitative feedback.

R4: To prevent cheating (a common problem in CS) as much as possible, all
inputs must be checked for formal correctness.

R5: The crowdsourced pattern mining algorithm should make use of redundancy
to guarantee that each mashup model is adequately taken into account.

R6: Workers must be rewarded for their work.

R7: Collected patterns must be integrated and homogenized, and repeated pat-
terns must be merged into a set of patterns M P.

RS8: Collected patterns must undergo a quality check, so as to assure the
reusability and meaningfulness of identified patterns.

Given a set of crowd-mined patterns M P, accepting or rejecting our hypotheses
then further requires comparing the quality of M P with that of patterns that are
mined automatically (we use for this purpose our algorithm described in [11]).

3.2 Approach

Figure 2 provides an overview of our approach to crowdsource the mining of
mashup model patterns using CrowdFlower (http://www.crowdflower.com) as
the crowdsourcing platform. Starting from the left-hand side of the figure, the
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Fig. 2. Approach to crowd-based pattern mining with CrowdFower

crowdsourcer deploys the task on CrowdFlower. Doing this requires the creation
of the forms to collect data from the crowd, the uploading of the dataset that
contains the units of work (i.e., the mashup models), the preparation of the
qualification tests (R1), among other tasks that are specific to CrowdFlower.
Once the tasks are deployed, CrowdFlower posts them to third-party platforms
such as Amazon Mechanical Turk and MinuteWorkers where the crowd can
actually perform the requested work. Each mashup model is configured to be
shown to at least three workers, in order to guarantee that each model gets
properly inspected (R5), and a monetary reward is set for each pattern provided
by the crowd (R6). We will discuss more about this last aspect in Section 4.

Each task points to an external Pattern Selector page where the crowd can se-
lect patterns from the mashups in the dataset. The Pattern Selector page consists
in a standard web application implemented in Java, HTML, CSS and Javascript,
which displays the image of a pipe in its original representation (screen shot)
and allows the worker to define patterns on top (R2). In addition, the worker
can provide a name, a description and a list of tags that describe the pattern
(R3). All inputs provided by the worker are validated, e.g., to check that the
worker indeed selects a pattern within the mashup (R4).

The web application for the Pattern Selector page is hosted on a web server
operated by the crowdsourcer. The web server hosts a model repository where
the mashup models are stored and from where the Pattern Selector page gets
the models. It also hosts a pattern repository where the patterns selected by the
crowd are submitted and stored for further analysis, which includes the filtering,
validation and integration of the collected patterns (R7 and R8)

3.3 Algorithm

Algorithm 1 (we call it the Crowd algorithm) illustrates a generic algorithm that
brings together human and machine computation for the mining of patterns from
mashup models. The algorithm receives as input:
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Algorithm 1. Crowd

Data: input dataset I N, pattern mining tasks PMT, data partitioning strategy DPE, data
partition size DPS, answers per partition AP P, per-task reward rw, time alloted ta
Result: set M P of mashup model patterns (name, desc, tag, C, E, DF,V A)

1 IN = initializeDataset(IN);

DP = partitionInputDataset(IN, DPE, DPS);

T = mapDataPartitionsToTasks(DP, PMT, APP);
distributeTasksToCrowd (T, rw, ta);

rawPatterns = collectPatternsFromCrowd();

MP = filterResults(raw Patterns);

return M P;

N 0 s w@woN

— The dataset IN of mashup models from which to identify patterns,

— The design of the parameterized pattern mining task PMT to be executed
by the crowd (the parameters tell which mashup model(s) to work on),

— The data partitioning strategy DPFE telling how to split I N into sub-sets to
be fed as input to PMT,

— The data partition size D PSS specifying the expected size of the input datasets,

— The number of answers APP to be collected per data partition,

— The per-task reward rw to be paid to workers, and

— The time allotted ta to execute a task.

The algorithm consists of seven main steps. First, it initializes the input
dataset IN (line 1) and transforms it into a format that is suitable for the
crowdsourcing of pattern mining tasks (we discuss this step in the next subsec-
tion). Then, it takes the initialized input dataset IN and partitions it according
to parameters DPE and DPS (line 2). In our case, DPFE uses a random selec-
tion of mashup models, DPS =1 and APP = 3. Next, the algorithm maps the
created partitions of mashup models to the tasks PMT (line 3) and distributes
the tasks to the workers of the crowd (line 4). Once tasks are deployed on the
crowdsourcing platform, it starts collecting results from the crowd until the ex-
pected number of answers per model are obtained or the allotted time of the task
expires (line 5). Finally, it filters the patterns according to predefined quality
criteria (line 6), so as to keep only patterns of sufficient quality (we provide more
details of this last step in Section 4).

Note that the core of the approach, i.e., the identification of patterns, is not
performed by the algorithm itself but delegated to the crowd as described next.

3.4 Task design

In order to make sure that only people that are also knowledgeable in Yahoo!
Pipes perform our tasks, we include a set of five multiple choice, pre-selection
questions such as “Which of the following components can be embedded into a
loop?” and “What is the mazimum number of Pipe Output modules permitted
in each pipe?” In order for a worker to be paid, he/she must correctly answer
these questions, for which we already know the answers (so-called gold data).
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Fig. 3. Task design for the selection, description and rating of mashup model patterns

Another core decision when crowdsourcing a task is the Ul used to inter-
act with workers. In general, all crowdsourcing platforms available today allow
a crowdsourcer to design form-based user interfaces directly inside the crowd-
sourcing platform. For the crowdsourcing of simple tasks, such as the annotation
of images or the translation of a piece of text, this is sufficient to collect useful
feedback. In more complex crowdsourcing tasks, such as our problem of iden-
tifying patterns inside mashup models, textual, form-based Uls are not enough
and a dedicated, purposefully designed graphical UI is needed. The task that
workers can perform through this Ul corresponds to the implementation of the
collect PatternsFromCrowd() function in Algorithm 1, i.e., the actual mining.

In order to make workers feel comfortable with the selection of patterns inside
pipes models, we wanted the representation of the pipes to be as close as possible
to what real pipes look like. In other words, we did not want to create an abstract
or simplified representation of pipes models (e.g., a graph or textual description)
and, instead, wanted to keep the full and realistic expressive power of the original
representation. We therefore decided to work with screen shots of real pipes
models, on top of which workers are able to select components of the pipe and
to construct patterns by simply clicking on the respective components. Figure
3 shows a screen shot of the resulting GUI for selecting patterns, in which we
show a pipe with a total of 9 components, of which 5 have been selected by the
worker to form a pattern (see the green-shaded components).

As shown in the figure, next to selecting a pattern, the worker must also
provide information about the pattern such as the name, description and list of
tags (at least 3 tags). In addition, the worker may also rank the pattern regarding



Crowd-Based Mining of Reusable Process Model Patterns 59

to how often he/she has already seen or used the pattern before, and to how
useful he/she thinks the pattern is.

4 Evaluation and Comparison

To study the described C'rowd algorithm, we performed a set of experiments with
CrowdFlower and compared the results with those obtained by running our orig-
inal automated pattern mining algorithm [11] with different minimum support
levels and dataset sizes. We refer to this latter as to the Machine algorithm.

4.1 Evaluation Metrics

While for automated mining it is clear by design how the output of an algorithm
looks like, this is not as clear if the identification of patterns is delegated to the
crowd. As described earlier, it is very common that workers cheat and, hence,
do not provide meaningful data. To filter out those patterns that we can instead
reasonably trust, we define a set of minimum criteria for crowd-mined patterns:
a good mashup pattern is a pattern that consists of at least two modules and
where the modules are connected, the name and description of the pattern are not
empty, and the description and the actual pattern structure match semantically.
The first three criteria we enforce automatically in the pattern identification UI
illustrated in Figure 3. Whether the description and pattern structure match
semantically, i.e., whether the description really tells what the pattern does, is
assessed manually by experts (us). The result of this analysis is a Boolean: either
a pattern is considered good (and it passes the filter) or it is considered bad (and
it fails the filter). Note that with “good” we do not yet assert anything about
the actual value of a pattern; this can only be assessed with modelers using the
pattern in practice. The same expert-based filter is usually also applied to the
outputs of automated mining algorithms and does not introduce an additional
subjective bias compared to automated mining scenarios.

In order to compare the performance of the two algorithms and test our
hypotheses, we use three metrics to compare the sets of patterns they produce in
output: the number of patterns found gives an indication of the effectiveness
of the algorithms in finding patterns; the average pattern size, computed
as the average number of components of the patterns in the respective output
sets, serves as an indicator of how complex and informative identified patterns
are; and the distribution of pattern sizes shows how diverse the identified
patterns are in terms of complexity and information load.

4.2 Experiment Design and Dataset

The Crowd algorithm is implemented as outlined in Algorithm 1 using the
popular CS platform CrowdFlower. Running the algorithm is a joint manual and
automated effort: our Pattern Selector application takes care of initializing the
dataset (the pipes models), partition it, and map partitions to tasks at runtime.
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The actual tasks are deployed manually on CrowdFlower and executed by the
crowd. Filtering out good patterns is again done manually. For each pipe, we
request at least 3 judgments, estimated a maximum of 300 sec. per task, and
rewarded USD 0.10 per task.

The Machine algorithm is based on a frequent sub-graph mining algorithm
described in [11] and implemented in Java. The core parameter used to fine-tune
the algorithm is the minimum support that the mined sub-graphs must satisfy;
we therefore use this variable to test and report on different test settings.

The dataset used to feed both algorithms consists of 997 pipes (with 11.1
components and 11.0 connectors on average) randomly selected from the “most
popular” pipes category of Yahoo! Pipes’ online repository. We opted for this
category because, being popular, the pipes contained there are more likely to be
functional and useful. The pipes are represented in JSON. The dataset used for
the Crowd algorithm consists in a selection of 40 pipes out of the 997 (which
represents a small dataset in conventional data mining). The selection of these
pipes was performed manually, in order to assure that the selected pipes are
indeed runnable and meaningful. In addition to the JSON representation of these
40 pipes, we also collected the screen shots of each pipe through the Yahoo! Pipes
editor. The JSON representation is used in the automated input validators; the
screen shots are used to collect patterns from the crowd as explained earlier.

For our comparison, we run Machine with datasets of 997 (big dataset) and
40 pipes (small dataset). We use Machine®®” and Machine*® to refer to the
former and the latter setting, respectively. We run Crowd only with 40 pipes
and, for consistency, refer to this setting as to Crowd*°.

4.3 Results and Interpretation

Figure 4 summarizes the task instances created and the pat-

terns collected by running Crowd*. The crowd started a to- f’fif,:‘;ﬁﬁces
tal of 326 task instances in CrowdFlower, while it submitted started

only 174 patterns through our Pattern Selector application.

This means that a total of 152 task instances were abandoned gzgnﬁsttgns
without completion. Out of the 174 patterns submitted, only

42 patterns satisfied our criteria for good mashup patterns. 42 patterns

retained

Fig.4. Task in-
stances and pat-
terns in Crowd*®

These data testify a significant level of noise produced by
workers who, in the aim of finishing tasks as quickly as pos-
sible and getting paid, apparently selected random fragments
of pipes and provided meaningless descriptions. The cost of
this run was USD 17.56, including administrative costs.
The charts in Figures 5-7 report on the numbers of patterns, average pattern
sizes and the distribution of pattern sizes obtained by running Machine®®” and
Machine*® with different minimum relative support levels sup,i,. The bars in
gray are the results of the Machine algorithm; the black bars represent the
results of Crowd*®. For comparison, we placed Crowd®® at a support level of
SUPmin = 0.025, which corresponds to 1/40 = 0.025, in that we ask workers to
identify patterns from a single pipe without the need for any additional support.
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H1 (Effectiveness). Figure 5(a) illustrates the number of patterns found by
Machine®”. The number quickly increases for Machine”” as we go from high
support values to low values, reaching almost 500 patterns with sup;,;, = 0.01.
Figure 5(b) shows the results obtained with Machine*?. The lowest support
value for Machine is sup,,i» = 0.05, which corresponds to an absolute support
of 2 in the dataset. It is important to note that only very low support values
produce a useful number of patterns. In both figures, the black bar represents
the 42 patterns identified by Crowd*.

The two figures show the typical problem of automated pattern mining algo-
rithms: only few patterns for high support levels (which are needed, as support
is the only criterion expressing significance), too low support levels required to
produce useful output sizes with small datasets (our goal), and an explosion
of the output size with large datasets. As illustrated in Figure 4, Crowd*® is
instead able to produce a number of patterns in output that is similar to the
size of the dataset in input. Notice also that, while Figure 5 reports on all
the patterns found by Machine, the data for Crowd*® include only good pat-
terns. This means that not only Crowd*’ is able to find patterns, but it is also
able to find practically meaningful patterns. We thus accept Hypothesis 1 and
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conclude that with Crowd® it is possible to mine reusable mashup model pat-
terns by crowdsourcing the identification of patterns.

H2 (Value). Figure 6 shows the average pattern sizes of Machine®®” and
Machine*® compared to that of Crowd*. In both settings, the average pat-
tern size obtained with Crowd?® clearly exceeds the one that can be achieved
with Machine, even for very low support values (0.01). With Figure 7, we look
more specifically into how these patterns look like by comparing those runs of
Machine®®” and Machine*® with Crowd® that produce a similar number of
patterns in output. In both settings this happens for supm,i, = 0.05 and pro-
duced 44 and 35 patterns, respectively. Figures 7(a) and (b) show that automat-
ically mined patterns are generally small (sizes range from 2-4), with a strong
prevalence of the most simple and naive patterns (size 2).

Figure 7(c), instead, shows that the results obtained with Crowd!® present a
much higher diversity in the pattern sizes, with a more homogeneous distribution
and even very complex patterns of sizes that go up to 11 and 15 components.
Crowd is thus able to collect patterns that contain more complex logics and
that are more informative, and thus, possibly contain more domain knowledge.
These patterns also come with a characterizing name, description and list of tags.
These annotations not only enrich the value of a pattern with semantics but also
augment the domain knowledge encoded in the pattern and its reusability. We
thus accept Hypothesis 2 and conclude that patterns mined with Crowd*® contain
more domain knowledge than the automatically mined patterns.

H3 (Applicability). The above assessment of the effectiveness and wvalue of
Crowd® shows that crowd-based pattern mining outperforms machine-based
mining for small datasets, that is, we accept Hypothesis 3. For large datasets,
automated mining still represents a viable solution, but for small datasets crowd-
based ming is not only applicable but also more effective. With a cost per pattern
of USD 0.42 and a running time of approximately 6 hours, crowd-based mining
proves to be a very competitive alternative to hiring a domain expert, which
would be the alternative to attack a cold start in our small dataset scenario.



Crowd-Based Mining of Reusable Process Model Patterns 63

5 Discussion and Analogy with BPM

Regarding the above results, we performed a set of additional experiments to
analyze the robustness of Crowd*® along two dimensions: reward and task
design. We did not notice any reduction of the number of tasks instantiated by
the crowd or the number of patterns collected if we lowered the reward from
USD 0.10 down to USD 0.05. We essentially got the same response as described
in Figure 4, which indicates that we could have gotten the same results also for
less money without any loss of quality. Instead, we noticed that there is a very
strong sensitivity regarding the task design, but only on the number of patterns
that can be collected, not on the number of task instances. Concretely, we tried
to introduce a minimum level of support (at least 2 times in 3, respectively,
10 pipes shown to the worker). The result was only a strong reduction of the
number of patterns submitted. The lesson learned is thus to keep the task as
simple as possible, that is, to apply the KISS (Keep It Simple, Stupid) principle,
and to concentrate the effort instead on the validation of collected data.

There are two key aspects when designing a CS task: input validation and
intuitiveness. We have seen that it is strongly advised to check all inputs for
formal validity (e.g., no empty strings), otherwise workers may just skip in-
puts or input fake content (e.g., a white space). As for the intuitiveness, we
considered collecting patterns via textual input (e.g., the list of component names
in the pattern) or via abstract data flow graphs (automatically constructed from
the JSON representation of pipes), but in the end we opted for the screen shots.
This has proven to be the representation workers are most familiar with; in fact,
screen shots do not introduce any additional abstraction.

In order to filter out workers that had some minimum knowledge of Pipes,
we performed a pre-selection in the form of gold data. Yet, our questions were
too tough in our first tests, and we had to lower our expectations. Interestingly,
however, this did not affect much the quality of the patterns (but workers that
did not pass the test, did not get paid). We also noticed a natural selection
phenomenon: the majority of patterns was submitted by only few workers. We
assume these were workers with good knowledge in Pipes that simply liked this
kind of modeling tasks and, therefore, submitted patterns not only for the sake
of the reward but also for personal satisfaction. We believe that, with the right
quality criteria in place, the pre-selection could be omitted, and the “experts”
(and good patterns) emerge automatically, at the cost/speed of simple CS tasks.

As for the quality of patterns, we carefully analyzed each of the 42 patterns
identified by the crowd and conclude with confidence that all patterns that sat-
isfy our criteria for good patterns are indeed meaningful. Particularly important
in this respect are the additional annotations (name, description, tags) that
equip the patterns with semantics. It is important to notice that assessing the
quality of patterns is non-trivial in general and that the annotations do not only
allow one to grasp better the meaning and purpose of patterns; they also allow
one to tell serious workers and cheaters apart, which increases quality.

In this paper, we specifically focus on mashup model patterns, as we use them
to provide interactive recommendations in Baya. Yet, the approach and findings
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are general enough to be applicable almost straightway also to business process
models. A business process (BP) is commonly modeled as P = (N, E, type), with
N being the set of nodes (events, gateways, activities), F being the set of control
flow connectors, and type assigning control flow constructs to gateway nodes.
Our definition of mashups is not dissimilar: m = (name,C, E, DF,V A). The
components C' correspond to N, and the data flow connectors DF' correspond
to E. These are the constructs that most characterize a pattern. In fact, our
task design requires workers only to mark components to identify a pattern
(connectors, embeddings and value assignments are included automatically). If
applied to BP models, this is equivalent to ask workers to mark tasks.

Our mashup model is further data flow based, while BP models are typically
control flow based (e.g., BPMN or YAWL) and contain control flow constructs
(gateways). If identifying patterns with the crowd, the question is whether gate-
ways should be marked explicitly, or whether they are included automatically
(as in the current task design). In our case, for a set of components to form a
pattern it is enough that they are connected. In the case of BP patterns, this may
no longer be enough. Commonly, BP fragments are considered most reusable if
they are well structured, i.e., if they have a single entry and a single exit point
(SESE). It could thus be sensible to allow workers to select only valid SESE
fragments, although this is not a strict requirement.

As for the comparison of Crowd®® with Machine®” and Machine®?, it is im-
portant to note that the automated mining algorithm would very likely produce
worse results if used with BP models. In fact, mashup models are particularly
suited to automated mining: the components they use are selected from a pre-
defined, limited set of component types (e.g., several dozens). Similarities can
thus be identified relatively easily, which increases the support of patterns. BP
models, instead, are more flexible in their “components” (the tasks): task labels
are free text, and identifying “types” of tasks is a hard problem in itself [7]. For
instance, the tasks “Pay bill”, “Pay” and “Send money” can all be seen as in-
stances of a common task type “Payment.” This, in turn, means that the value
of Crowd*® could be even more evident when mining BP models.

6 Related Work

Crowdsourcing has been applied so far in a variety of related areas. In the
specific context of machine learning, Sheng et al. [14] collect training labels for
data items from the crowd to feed supervised induction algorithms. In the same
context, von Ahn et al. [17] propose an interactive game that requires multiple
players to agree on labels for images, enhancing the quality of labels. In [10],
Sheng et al. propose CrowdMine, a game that leverages on the crowd to identify
graphical patterns used to verify and debug software specifications.

In the context of BPM, the term “patterns” is commonly associated with the
workflow patterns by van der Aalst et al. [16]. Initially, the focus of these pat-
terns was on control flow structures, but then the idea evolved and included all
the aspects (control flow, data flow, resources, exception handling) that charac-
terize workflow languages (http://www.workflowpatterns.com). The proposed


http://www.workflowpatterns.com

Crowd-Based Mining of Reusable Process Model Patterns 65

patterns are an analytical approach to assess the strengths and weaknesses of
workflow languages, more than an instrument to assist developers while model-
ing, although Gschwind et al. [4] also explored this idea.

The automated identification of process models or fragments thereof is com-
monly approached via process mining, more specifically process discovery [15].
Process discovery aims to derive model patterns from event logs, differently from
the problem we address in this paper, which aims to find patterns in a set of
process models. The main assumptions of process discovery techniques are: (i)
each process instance can be identified as pertaining to a process, (ii) each event
in the log can be identified as pertaining to a process instance, (iii) each event
in the log corresponds to an activity in the process, (iv) each event in the log
contains the necessary information to determine precedence relationships. De-
rived process models thus represent patterns of the dynamics of a single process
and generally do not have cross-process validity. Examples of process discovery
algorithms are the a-algorithm [15], Heuristic miner [18], and Fuzzy mining [5].

Only few works focus on mining patterns from process models. Lau et al. [§]
propose to use frequent sub-graph and association rules discovery algorithms to
discover frequent sub-graphs (patterns) to provide modeling recommendations.
Li et. al [9] mine process model variants created from a given reference process
model, in order to identify a new, generic reference model that covers and rep-
resents all these variants better. The approach uses a heuristic search algorithm
that minimizes the average distance (in terms of change operations on models)
between the model and its variants. Greco et al. [3] mine workflow models (rep-
resented as state charts) using two graph mining algorithms, c-find and w-find,
which specifically deal with the structure of workflow models.

We would have liked to compare the performance of our Crowd algorithm also
with that of the above algorithms, yet this would have required either adapting
them to our mashup model or adapting Crowd to process models. We were not
able to do this in time. However, the works by Lau et al. [8] and Greco et al. [3] are
very close to our Machine algorithm: they share the same underlying frequent
sub-graph mining technique. We therefore expect a very similar performance.
The two algorithms also advocate the use of a support-based notion of patterns
and thus present the same problems as the one studied in Section 4.

7 Conclusion

Mining model patterns from a dataset of mashup or process models is a hard
task. In this paper, we presented a crowd-based pattern mining approach that
advances the state of the art with three contributions: we demonstrate that it is
possible to crowdsource a task as complex as the mining of model patterns, that
patterns identified by the crowd are rich of domain knowledge, and that crowd-
based mining particularly excels with small datasets. We further explained how
the Crowd algorithm can be adapted to mine patterns from BP models. To the
best of our knowledge, this is the first investigation in this direction.

In our future work, we would like to study how crowdsourcing can be leveraged
on for big datasets, e.g., by using pattern similarity metrics and the notion of
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support, and how the quality of patterns on the reward given. We also intend
to adapt the Crowd algorithm to BPMN, to compare it with other BPMN-
oriented approaches in literature [8,3], and to study if the crowd can also be
used for quality assessment (to automate the complete pattern mining process).
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