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Abstract. Calculational Style of Programming, while very appealing,
has several practical difficulties when done manually. Due to the large
number of proofs involved, the derivations can be cumbersome and error-
prone. To address these issues, we have developed automated theorem
provers assisted program and formula transformation rules, which when
coupled with the ability to extract context of a subformula, help in
shortening and simplifying the derivations. We have implemented this
approach in a Calculational Assistant for Programming from Specifi-
cations (CAPS). With the help of simple examples, we show how the
calculational assistant helps in taking the drudgery out of the derivation
process while ensuring correctness.
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1 Introduction

Calculational Style of Programming [11], [18] is a programming methodology
wherein programs are systematically derived from their formal specifications.
At every step in the derivation process, a partially derived program/formula
is transformed into another form, by following certain heuristic guidelines. The
derived programs are correct-by-construction since correctness is implicit in the
derivation. The calculational style is known for its readability and rigour. The
calculational derivation helps in understanding the rationale behind the intro-
duction of the program constructs and associated invariants thereby providing
more opportunities to explore alternative solutions. This method often results
in simple and elegant programs [18]. Although very appealing, there are several
practical difficulties in effectively adopting this methodology. For many program-
ming problems, the derivations are long and difficult to organize. As a result,
the derivations, if done manually, are error-prone and cumbersome. To address
these issues, the present work takes inspiration from various approaches from
the fields of program verification, automated theorem proving, and interactive
theorem proving to design and build a Calculational Assistant for Programming
from Specifications (CAPS)1. Our aim has been to address the difficulties as-

1 CAPS is available at http://www.cse.iitb.ac.in/~dipakc/CAPS
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sociated with the pen-and-paper calculational style while retaining the positive
aspects.

Various tools exists to assist programmers in verifying the correctness of
programs during the implementation phase itself. Tools like Dafny [19], Why3
[13], VCC [7] and VeriFast [17] generate the verification conditions and try to
automatically prove these verification conditions. Dafny even has an extension
called poC (program-oriented calculations) [20] which provides support for au-
tomatic verification of calculational proofs. However, the primary focus of such
tools being the verification of programs, these tools provide limited guidance to
the programmer in the actual task of deriving the programs.

There is a recent trend in program synthesis in which the programmer pro-
vides a syntactic template for the desired program in addition to the correctness
specification [16], [23], [24]. These are automatic approaches which require a syn-
tactic template to be provided by the user. Our focus, on the other hand, is on
calculational derivation in an interactive setting.

Tools like Refinement Calculator [5] and PRT [6] provide tool support for
the refinement based formal program derivation. Refinement Calculator uses
HOL as an underlying proof engine. The PRT tool has similar goals; it extends
the Ergo theorem prover and provides an Emacs based user interface. With
these tools, the program constructs need to be encoded in the language of the
underlying theorem prover. We chose not to tightly couple the system with any
particular theorem prover. CAPS has built-in refinement rules and the system
generates the required correctness proof obligations. We have tried to keep the
notation and style of the derivation as close as possible to the pen-and-paper
calculational style which is known for its readability. Our main emphasis has
been on developing theorem prover assisted tactics to reduce the length of the
derivations.

The main contributions of this work are as follows. (a) We have designed and
implemented a calculational assistant for derivation of imperative programs. The
tool provides a tactic based framework for carrying out program as well as for-
mula transformations in a coherent way. (b) We have extended the Structured
Calculational Proof format [2] by making the transformation relation explicit
and by adding metavariable support. We have automated the mundane formula
manipulation tasks and exploited the power of automated theorem proving to
design powerful transformation rules (tactics) which help in shortening and sim-
plifying the derivations without sacrificing the correctness. The automated the-
orem prover (ATP) assisted tactics also help in carrying out derivations that are
not amenable to the calculational style. (c) By providing a unified framework
for carrying out formula as well as program transformations, we have kept the
derivation style in CAPS close to the calculational style.

With the help of simple examples, we show how the theorem prover assisted
tactics help in shortening and simplifying the derivations thereby taking the
drudgery out of the derivation process while ensuring correctness.



2 Motivating Example

In this section, we derive – without using any tool support – a simple program by
following the calculational style of program derivation. This exercise highlights
the complex user interactions usually involved in a typical program derivation
session. We use this example in later sections to motivate and illustrate the main
features of CAPS.

Consider the following programming problem specified in a natural language
(adapted from exercise 4.3.4 in [18]).

Let f [0..N) be an array of booleans where N is a natural number. Derive a
program for the computation of a boolean variable r such that r is true iff all the
true values in the array come before all the false values.

One of the several ways to formally specify this problem is shown in Fig.
1(a) where S denotes the program to be derived. For representing quantified
expressions, we use the Eindhoven notation (OP i : R : T ) [18] where OP is the
quantifier version of a symmetric and associative binary operator op, i is a list of
quantified variables, R is the Range - a boolean expression typically involving the
quantified variables, and T is the Term - an expression. This notation is usually
used for arithmetic quantified terms (

∑
,
∏

). By using the same notation for
all the quantified terms – including the logical quantified terms (∀, ∃) – we can
have generalized calculational rules.

We start by analysing the shape of the postcondition R and apply the Re-
placing Constants by Variables heuristics [18]. In particular, we introduce a fresh
variable n, add bounds on n, and rewrite postcondition R as(

r ≡
(
∃p : 0 ≤ p ≤ n :

(
(∀i : 0 ≤ i < p : f [i])
∧ (∀i : p ≤ i < n : ¬f [i])

)))
∧ 0 ≤ n ≤ N ∧ n = N

We then apply the Taking Conjuncts as Invariant heuristics [18] to arrive at
loop invariant P0 ∧ P1 and guard ¬ (n = N) where P0 and P1 are as follows.

P0 :

(
r ≡

(
∃p : 0 ≤ p ≤ n :

(
(∀i : 0 ≤ i < p : f [i])
∧ (∀i : p ≤ i < n : ¬f [i])

)))
P1 : 0 ≤ n ≤ N

We observe that P0 and P1 can be established initially by r, n := true, 0.
At this stage, we arrive at the program shown in Fig. 1(b) as the solution for
S. We investigate an increase of n by 1 and envision the multiple assignment
r, n := r′, n+ 1 for S0 where r′ is a placeholder for the unknown expression.

From the Invariance Theorem [18], the proof obligation for invariance of P0 is
P0∧P1∧n 6= N ⇒ wp (r, n := r′, n+ 1; , P0) where wp is the weakest precondition
predicate transformer [12]. To calculate r′, we assume P0, P1, and n 6= N and
simplify the consequent of this formula as shown in Fig. 1(c). Every step in the
calculation is associated with the relation to be maintained (≡ in this case) and
a hint justifying the step. For brevity, we skip the proof of preservation of P1.



con N : int {N ≥ 0}; var f : array [0..N) of bool;
var r: bool;
S

R :

{
r ≡

(
∃p : 0 ≤ p ≤ N :

(
(∀i : 0 ≤ i < p : f [i])
∧ (∀i : p ≤ i < N : ¬f [i])

))}
(a)

r, n := true, 0;{
inv : P0 ∧ P1

bound : N − n

}
do n 6= N →

S0

od

(b)

0 wp (S0, P0)
1 ≡ { envision r, n := r′, n+ 1 for S0}
2 wp (r, n := r′, n+ 1; , P0)
4 ≡ { definition of P0 and assignment }
5 r′ ≡ (∃p : 0 ≤ p ≤ n+ 1 : (∀i : 0 ≤ i < p : f [i]) ∧ (∀i : p ≤ i < n+ 1 : ¬f [i]))
6 ≡ { split off p = n+ 1; 0 ≤ n+ 1}

7 r′ ≡
(

(∃p : 0 ≤ p ≤ n : (∀i : 0 ≤ i < p : f [i]) ∧ (∀i : p ≤ i < n+ 1 : ¬f [i]))
∨ (∀i : 0 ≤ i < n+ 1 : f [i]) ∧ (∀i : n+ 1 ≤ i < n+ 1 : ¬f [i])

)
8 ≡ { empty range rule }

9 r′ ≡
(

(∃p : 0 ≤ p ≤ n : (∀i : 0 ≤ i < p : f [i]) ∧ (∀i : p ≤ i < n+ 1 : ¬f [i]))
∨ (∀i : 0 ≤ i < n+ 1 : f [i])

)
10 ≡ { split off i = n}

11 r′ ≡
(

(∃p : 0 ≤ p ≤ n : (∀i : 0 ≤ i < p : f [i]) ∧ (∀i : p ≤ i < n : ¬f [i]) ∧ ¬f [n])
∨ (∀i : 0 ≤ i < n+ 1 : f [i])

)
12 ≡ { distribute ∧ over ∃ since ¬f [n] does not have free occurrence of p}

13 r′ ≡
(

((∃p : 0 ≤ p ≤ n: (∀i : 0 ≤ i < p: f [i]) ∧ (∀i : p ≤ i < n: ¬f [i])) ∧ ¬f [n])
∨ (∀i : 0 ≤ i < n+ 1 : f [i])

)
14 ≡ { invariant P0}
15 r′ ≡(r ∧ ¬f [n]) ∨ (∀i : 0 ≤ i < n+ 1 : f [i])
16 ≡ { add invariant P2 : s ≡ (∀i : 0 ≤ i < n : f [i]) and assume P2(n := n+ 1).}
17 r′ ≡(r ∧ ¬f [n]) ∨ s
18 ≡ { instantiating r′ to (r ∧ ¬f [n]) ∨ s}
19 true

(c)

r, n, s := true, 0, true;{
inv : P0 ∧ P1 ∧ P2

bound : N − n

}
do n 6= N →
{P2}S1 {P2(n := n+ 1)};
r, n := (r ∧ ¬f [n]) ∨ s, n+ 1;

od

(d)

r, n, s := true, 0, true;{
inv : P0 ∧ P1 ∧ P2

bound : N − n

}
do n 6= N →

s := s ∧ f [n];
{P2(n := n+ 1)}
r, n := (r ∧ ¬f [n]) ∨ s, n+ 1

od

(e)

Fig. 1. Calculational derivation of the motivating example.

In step 15 in Fig. 1(c), the expression under consideration is neither easily
computable nor easily expressible in terms of the program variables. We, there-
fore, introduce a variable s and add an invariant P2 : s ≡ (∀i : 0 ≤ i < n : f [i]).
We now observe that P2 can be established initially by s := true since the uni-



versal quantification over an empty range equals true. With this we arrive at
the program shown in Fig. 1(d).

Program S1 has been added to ensure that P2(n := n+ 1) is a precondition
of the assignment to r. For S1, we envision the assignment s := s′. By following
the same procedure as before, we can calculate the value of s′ to be s∧f [n]. The
final derived program is presented in Fig. 1(e).

As this example shows, the final derived program, even when annotated with
the invariants, may not be sufficient to provide the reader with the rationale
behind the introduction of the program constructs and the invariants; whole
derivation history is required.

3 Harnessing the Automated Theorem Provers

Readability of the calculational style comes from its ability to express all the
important steps in the derivation, and at the same time being able to hide the
secondary steps. By secondary steps, we mean the steps that are of secondary
importance in deciding the direction of the derivation. For example, the steps
involved in the proof for the justifications of the transformations do not change
the course of the derivation. These justifications, when obvious, are often stated
as hints without explicitly proving them. However, when the justifications are
not obvious, it might take several steps to prove them. During the pen-and-paper
calculational derivations, the transformation steps are kept small enough to be
verifiable manually. Doing low level reasoning involving simple propositional rea-
soning, arithmetic reasoning, or equality reasoning (replacing equals by equals),
can get very long and tedious if done in a completely formal way. Moreover, the
lengthy derivations involving the secondary steps often hamper the readability.
In such cases, there is a temptation to take long jumps while doing such deriva-
tions manually (without a tool support) resulting in correctness errors. With the
help of automated theorem provers, however, we can afford to take long jumps
in the derivation without sacrificing the correctness.

Many common proof paradigms like proof by contradiction, case analysis,
induction, etc. are not easily expressed in a purely calculational style. Although,
with some effort, these proofs can be handled by the structured calculational
approach [2], employing automated theorem provers greatly simplifies the proof
process. We use ATP assisted tactics to automate transformation steps that may
not always be amenable to the calculational style.

The template based program synthesis approaches [16], [23], [24] take the
specification and the syntactic template of the program as an input and auto-
matically generate the whole program. In contrast, we are interested not just
in the final program but also in the complete derivation as it helps in under-
standing the rationale behind the introduction of the program constructs and
the associated invariants. Therefore, we employ the automated theorem provers
at a much lower level in an interactive setting. This choice gives the user more
control to explore alternative solutions since all the design decisions are manifest
in the derivation.



Using the Why3 tool [13] as an interface, we have integrated automated
theorem provers Alt-Ergo [8], CVC3 [4], SPASS [25] and Z3 [9] with CAPS.
The Why3 platform provides two languages: a logic language (Why) and a ML-
like programming language (WhyML). In CAPS, we use only the logic language
since we are using Why3 only for the purpose of interacting with various theorem
provers. The proof obligation formulas are transformed to Why3’s logic language
and Why3 is invoked in the background to prove these proof obligations with
the help of various theorem provers. Using Why3 as an interface saves us from
dealing with the different logical languages and predefined theories of various
theorem provers.

We next describe the CAPS system and its specific features which play vital
role in designing the theorem prover assisted tactics.

4 Calculational Assistant
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Fig. 2. A schematic
representation of a
Synthesis Tree

CAPS is a calculational assistant for programming from
specifications (precondition and postcondition) specified
in first-order logic. The core component of CAPS is im-
plemented in the Scala programming language. An inter-
active user interface is provided in the form of a web ap-
plication. The web application uses AJAX to provide a
responsive user interface.

The derivation style in CAPS is very similar to the
calculational style explained in Section 2. Users start the
derivation by providing the formal specification of the pro-
gram and then incrementally transform it into a fully de-
rived annotated program by applying predefined trans-
formation rules called Synthesis Tactics. The complete
derivation history is recorded in the form of a tree called
Synthesis Tree. Fig. 2 shows a schematic representation of
the Synthesis Tree. The portions of the tree enclosed by
rectangles correspond to the transformations performed
on the subprograms. This functionality is explained in Sec-
tion 5.1. Users have a facility to backtrack to any node in the Synthesis Tree and
branch out to explore different derivation possibilities. The final output of the
derivation is a fully synthesized AnnotatedProgram (explained in Section 4.1)
along with the complete derivation history.

The GUI of the tool is shown in Fig. 3. The tactics panel shows the list of
applied tactics (a path in the synthesis tree), the content panel shows the pro-
gram/formula corresponding to the selected node, and the input panel is shows a
input form used for a applying tactic. CAPS has in-built tactics for transforming
partially derived annotated programs and proof obligations formulas.

While reasoning about a program fragment, it is natural to treat them as
a formula (a Hoare triple) whose details needs to be worked out to make the
formula valid. In CAPS, however, we treat programs and formulas differently as



Annotated assignment program

Annotated unknown program

Global invariants
Program variables

Fig. 3. CAPS GUI. There are three panels: Tactics Panel (left), Content
Panel(center) and Input Panel (bottom). The input panel shows the input form
for the RTVInPost (Replace term by variable) tactic.

they differ in many aspects: (a) Transformation rules for programs and formulas
are quite different. (b) Program context consists of program variables whereas
formula context consists of set of assumptions. (c) Visual representations of
programs and formulas are quite different. By treating programs and formulas
differently and keeping separate context management mechanisms for them, we
are able to reason directly at the program level. This also helps in displaying
programs and formulas in their natural form in the graphical user interface.

4.1 Program Transformations

For representing a program fragment and its specification, we introduce a data
structure called AnnotatedProgram. It is obtained by augmenting each program
construct in the Guarded Command Language (GCL) [10] with its precondition
and postcondition. We also introduce a new program construct UnknownProg
to represent an unsynthesized program fragment.

The program transformation tactics are based on the refinement rules from
the refinement calculus [3], [21] and the high level program derivation heuristics



from the literature on calculational program derivation [12], [18]. For example,
consider the program transformation tactics shown in Fig. 4. The Weaken the
Precondition tactic captures the rule “{R}S {Q} and P ⇒ R implies {P}S {Q}”
whereas the Take Conjuncts as Invariants tactic captures the program deriva-
tion heuristics with the same name [18]. The main difference between the rules
in the refinement calculus and the transformation tactics in CAPS is that the
refinement rules gradually transform the specification to a program (without
annotations) whereas our program transformation tactics transform a partially
derived annotated program to a fully derived annotated program.

Tactic:
Weaken the Precondition.

Input:
R

Applicability condition:
P ⇒ R

{P}
UnknownProg (1)
{Q}

{P}
{P} SkipProg {R} ;
{R} UnknownProg(2) {Q}

{Q}

Tactic:
Take Conjuncts as Invariants.

Inputs:
Invariant conjuncts: R1

Variant: t
Applicability condition:

P ⇒ R1

{P}
UnknownProg (1)
{R1 ∧ R2}

{P}
{inv : R1}{variant : t}
While(¬R2) {
{R1 ∧ ¬R2}
UnknownProg (2)
{R1}

}
{R1 ∧ R2}

Fig. 4. Program transformation tactics.

4.2 Formula Transformations

As discussed in Section 2, program derivation often involves guessing the un-
known program fragments in terms of placeholders and then deriving program
expressions for the placeholders in order to discharge the correctness proof obli-
gations. This functionality is implemented in CAPS by using metavariables to
represent the placeholders.

Some steps in the derivations involve transformation of annotated programs
whereas others involve transformation of proof obligation formulas. We call these
two modes of the derivation as program mode and formula mode respectively.
In order to emulate this functionality in a tactic based framework, we devised
a tactic called StepIntoPO. On applying this tactic to an annotated program
containing metavariables, a new formula node representing the proof obligations
(verification conditions) is created in the synthesis tree. This formula is then
incrementally transformed to a form, from which it is easier to instantiate the
metavariables. After successfully discharging the proof obligation and instantiat-
ing all the metavariables, a tactic called StepOut is applied to get an annotated
program with all the metavariables replaced by the corresponding instantiations.



{0 ≤ x ∧ 0 < y} q, r := q′, x {0 ≤ r ∧ q ∗ y + r = x}
n1

0 ≤ x ∧ 0 < y ⇒ wp (q, r := q′, x; , 0 ≤ r ∧ q ∗ y + r = x)

n2

0 ≤ x ∧ 0 < y ⇒ q′ = 0

n3

true

n4

{0 ≤ x ∧ 0 < y} q, r := 0, x {0 ≤ r ∧ q ∗ y + r = x}
n5

step into PO

simplify

Guess q′ to be 0

step out tactic

Fig. 5. A path in the synthesis tree for the Integer Division program. The StepIn-
toPO tactic is used to create a formula node corresponding to the proof obliga-
tion of the program node.

Example. Fig. 5 shows a path in the synthesis tree corresponding to the
derivation of the Integer Division program (compute the quotient (q) and the
remainder (r) of the integer division of x by y where x ≥ 0 and y > 0). Node
n1 in the synthesis tree represents an assignment program which contains a
metavariable q′. In order to discharge the corresponding proof obligation, the
user applies a StepIntoPO tactic resulting in a formula node n2. The task for
the user now is to derive an expression for q′ that will make the formula valid.
On further transformations, the user arrives at node n3 from which it is easier
to instantiate q′ as “0”. Finally, the application of StepOut tactic results in a
program node n5 where the metavariable q′ is replaced with the instantiated
expression “0”.

F0

R { hint justifying F0 R F1 }
F1

R { hint justifying F1 R F2 }
. . . . . .
R { hint justifying Fn−1 R Fn }

Fn

Fig. 6. Calculation representation

Formula Transformations. We adopt
a transformational style of inference
wherein a formula F0 is transformed step
by step while preserving a reflexive and
transitive relation R. Because of the tran-
sitivity of R, the sequence of transforma-
tions F0RF1R, ...RFn implies that F0RFn
holds. This derivation is represented in the
calculational notation as shown in Fig. 6.

Note that the relation maintained at an individual step can be stronger than
the overall relation as the sequence of transformations F0 R0 F1 R1, . . . Rn−1 Fn
implies F0 R Fn, provided relation Ri is at least as strong as the relation R for
all i from 0 to n− 1.



5 Theorem Prover Assisted Tactics

In order to integrate ATPs at local level, we first need to extract the context
of the subprogram/subformula under consideration. The extracted context can
then be used as assumptions while discharging the corresponding proof obliga-
tions.

5.1 Extracting Context of Subprograms

A partially derived program at some intermediate stage in the program deriva-
tion may contain multiple unsynthesized subprograms. Users may want to focus
their attention on the derivation of one of these unknown subprograms. The
derivation of a subprogram is, for the most part, independent of the rest of the
program. Hence it is desirable to provide a mechanism wherein all the contex-
tual information required for the derivation of a subprogram is extracted and
presented to users so that they can carry out the derivation independently of
the rest of the program. For example, in Fig. 1(b), user has focused on S0 and
derived it separately as shown in Fig. 1(c).

The activity of focusing on a subproblem is error-prone if carried out without
tool support. In Fig. 1(d), subprogram S1 is added to establish P2(n := n+1). We
do not recalculate r′ since the assumptions during the derivation of r′ (invariant
P0 and P1) still continue to hold provided S1 does not modify variables r and
n. User has to keep this fact in mind while deriving S1 separately. Due care
must be taken during manual derivation to ensure that after any modification,
the earlier assumptions still continue to hold. In CAPS, every program fragment
is associated with its full specification (precondition, postcondition) and the
context, and the corresponding proof obligations are automatically generated.

Since the precondition and postcondition of each program construct are made
explicit, user can focus on synthesizing a subprogram in isolation. Focusing on
a subprogram is achieved by applying the StepInTactic which displays the sub-
program under consideration along with the context and hides the rest of the
program. User can then transform this subprogram to a desired form and apply
the StepOutTactic when done. In Fig. 2, the portions of the tree enclosed by
rectangles correspond to the transformations performed on the subprograms.

5.2 Extracting Context of Subformulas

CAPS also provides a functionality to focus on a subformula of the formula
under consideration. Besides the obvious advantage of restricting attention to the
subformula, this functionality also makes the additional contextual information
available to the user which can be used for manipulating the subformula.

We adopt a style of reasoning similar to the window inference proof paradigm
[14], [15], [22]. Our implementation differs from the stack based implementation
in [15] since we maintain the history of all the transformations.



Table 1. Contextual assumptions: The R-preserving transformation from F [f ]
to F [f ′] under the assumptions Γ can be achieved by r-preserving transformation
from f to f ′ under the assumptions Γ ′. (It is assumed that Γ does not contain
a formula with i as a free variable. This is ensured during the derivation by
appropriately renaming the bound variables.)

F[f] R r Γ ′

A ∧B
≡ ≡

Γ ∪ {B}⇒ ⇒
⇐ ⇐

A ∨B
≡ ≡

Γ ∪ {¬B}⇒ ⇒
⇐ ⇐

¬ A
≡ ≡

Γ⇒ ⇐
⇐ ⇒

A =⇒ B

≡ ≡
Γ ∪ {¬B}⇒ ⇐

⇐ ⇒

B =⇒ A

≡ ≡
Γ ∪ {B}⇒ ⇒

⇐ ⇐

F[f] R r Γ ′

A ≡ B
≡ ≡

Γ⇒ ≡
⇐ ≡(

∀i : R.i : T.i
) ≡ ≡

Γ ∪ {¬T.i}⇒ ⇐
⇐ ⇒(

∃i : R.i : T.i
) ≡ ≡

Γ ∪ {T.i}⇒ ⇒
⇐ ⇐(

∀i : R.i : T.i
) ≡ ≡

Γ ∪ {R.i}⇒ ⇒
⇐ ⇐(

∃i : R.i : T.i
) ≡ ≡

Γ ∪ {R.i}⇒ ⇒
⇐ ⇐

Extracting the Context. Let F [f ] be a formula with an identified subformula f
and Γ be the set of current assumptions. Now, we want to transform the subfor-
mula f to f ′ (keeping the rest of the formula unchanged) such that F [f ]RF [f ′]
holds where R is a reflexive and transitive relation to be preserved. The rela-
tionship to be preserved (r) and the contextual assumptions that can used (Γ ′)
during the transformation of f to f ′ are governed by the following inference
pattern [26].

Γ ′ ` f r f ′
Γ ` F [f ]RF [f ′]

(1)

Table 1 lists the assumptions Γ ′ and the relation r for a few combinations of
F [f ] and R. The StepInTactic applications can be chained together. For example,
if we want to transform A∧B ⇒ C while preserving implication (⇒) relation, we
may focus on the subformula A and preserve reverse implication (⇐) assuming
¬C and B.

Our representation is an extension of the Structured Calculational Proof for-
mat [2]. The transformations on the subformulas are indented and contextual
information is stored in the top row of the indented derivation. Each indented
derivation is called a frame. Besides the assumptions, a frame also stores the re-
lation to be maintained by the transformations in the frame. Tactic applications
ensure that the actual relation maintained is at least as strong as the frame rela-
tion. Fig. 7 shows two calculational derivations. In the first derivation, formula
F [f ] is transformed into F [f ′] by preserving relation R. The same outcome is



achieved in the second derivation by focusing on the subformula f and trans-
forming it to f ′ under the assumptions Γ ′ while preserving r provided F [ ], Γ ,
R, Γ ′, and r are in accordance with Equation 1.

Frame Assumptions: Γ
Frame Relation: R

F (f)
R { Hint }

F (f ′)

Frame Assumptions: Γ
Frame Relation: R

F (f)
. {step into}

Frame Assumptions: Γ ′

Frame Relation: r
f

r { Hint }
f ′

/ {step out }
F (f ′)

Fig. 7. Focusing on subformula.

Fig. 8 shows application of this tactic in CAPS. The user focuses on a sub-
formula and manipulates it further while preserving the equivalence (≡) relation
(which is stronger than the frame relation ⇐). The assumptions extracted from
the context can be used during the transformation of the subformula.

5.3 Automation at Tactic Level

We now describe the various functions of CAPS that are automated with the
help of ATPs and the scenarios in which these automations are helpful.

Tactic Applicability Conditions. Some of the tactics are purely syntactic ma-
nipulations and are correct by construction whereas others have applicability
conditions which need to be verified. For example, the Split Range Tactic and
the Empty Range Tactic for the universal quantifier are shown below.

Split Range Tactic
(∀ i : P.i ∨Q.i : T.i)

≡ { Split Range }
(∀ i : P.i : T.i) ∧ (∀ i : Q.i : T.i)

Empty Range Tactic
(∀ i : R.i : T.i)

≡ { Empty Range; R.i ≡ false}
true

The Split Range Tactic does not have any applicability condition whereas the
Empty Range Tactic has an additional applicability condition (∀i :: R.i ≡ false)
(i.e. R.i is unsatisfiable.). These conditions are automatically verified in CAPS
using ATPs. Note that in the absence of this integration, the way to accomplish
this transformation – at the risk of making the derivation lengthy – is to focus
onto R.i and transform it to false and then step out and transform the whole
formula to true.

Proofs involving no metavariables. Proofs that do not involve any metavariable
are good candidates for full automation. In Section 2, we skipped the proof for
preservation of the loop invariant P1 : 0 ≤ n ≤ N . This invariant proof obligation



Fig. 8. Calculation of initialization assignment (q, r := 0, x) to establish invari-
ant 0 ≤ r ∧ q ∗ y + r = x in the derivation of Integer Division program

does not involve any metavariable, and hence is not of interest from the synthesis
point of view. We automatically prove such proof obligations with the help of
ATPs. In case the automated provers fail to discharge the proof obligation or
prove it invalid, we have to revert back to the step-by-step way of proving.

Verifying the transformations. During the calculational derivations, it is some-
times easier to directly specify the desired formula and verify it to be correct
instead of deriving the formula in a purely interactive way. We have a Verified-
Transformation tactic that serves this purpose. This tactic takes the formula
corresponding to the next step and the relation to be maintained as an input
and verifies if the relation holds. This functionality is similar in spirit to the
verified transformation functionality offered by the poC (program-oriented cal-
culations) [21] extension of Dafny. The derivation in Fig. 8 has three instances
of application of this tactic (labeled by a hint “Replace formula by an equivalent
formula”). This tactic greatly reduces the length of the derivations.

The VerifiedTransformation tactic is also helpful in discharging proofs which
are not amenable to the calculational style. Many common proof paradigms (like



〈
N ≥ 1 ∧ f [0] ≤ A < f [N ] ∧ f [x] ≤ A < f [y]∧
0 ≤ x < N ∧ x ≤ y ≤ N ∧ y 6= x+ 1
Frame Relation: ≡

〉
f [x′] ≤ A < f [y] ∧ 0 ≤ x′ < N ∧ x′ < y ≤ N

≡ { A < f [y]; Simplify }
f [x′] ≤ A ∧ 0 ≤ x′ < N ∧ x′ < y ≤ N

≡ { y ≤ N ; Simplify }
f [x′] ≤ A ∧ 0 ≤ x′ < N ∧ x′ < y

. {step into}〈N ≥ 1 ∧ f [0] ≤ A < f [N ] ∧ f [x] ≤ A < f [y]∧
0 ≤ x < N ∧ x ≤ y ≤ N ∧ y 6= x+ 1
f [x′] ≤ A ∧ 0 ≤ x′ ∧ x′ < y
Frame Relation: ≡

〉
x′ < N

≡
{
x′ < y and y ≤ N ; Simplify

}
true

/ { step out }
f [x′] ≤ A ∧ 0 ≤ x′ ∧ x′ < y

(a)

〈
N ≥ 1 ∧ f [0] ≤ A < f [N ] ∧ f [x] ≤ A < f [y]∧
0 ≤ x < N ∧ x ≤ y ≤ N ∧ y 6= x+ 1
Frame Relation: ≡

〉
f [x′] ≤ A < f [y] ∧ 0 ≤ x′ < N ∧ x′ < y ≤ N

≡ { SimplifyAuto }
f [x′] ≤ A ∧ 0 ≤ x′ ∧ x′ < y

(b)

Fig. 9. (a) Excerpt from the derivation of the binary search program using
multiple applications of the Simplify tactic, (b) The same derivation performed
using the SimplifyAuto tactic.

proof by contradiction, case analysis, induction, etc.) are not easily expressed in
a purely calculational style [2]. Although, with some effort, these proofs can be
discharged by using the functionality for focusing on subcomponents (which is
based on the structured calculational approach in [2]), employing the automated
theorem provers greatly simplifies the derivation. Note that this tactic is different
from the earlier tactics; in all the other tactics a formula is transformed in a
specific way and only the applicability condition is proved automatically, whereas
in this tactic, the user directly specifies an arbitrary formula as the transformed
form of a given formula and the tactic application just verifies the correctness
of the transformation.

Simplification. The Simplify tactic simplifies the current formula by eliminating
the true/false subformulas. For example, it transforms the formula ϕ ∧ true
to ϕ. The SimplifyAuto tactic takes this idea further by recursively focusing on
the subformulas in bottom-up fashion and verifying – with the help of ATPs –
if the subformulas are valid/invalid. The same effect can be achieved by inter-
actively focusing on each subformula, proving/disproving the subformula under
the modified assumptions, and then simplifying the formula. The SimplifyAuto
tactic automates this process resulting in simpler derivations in many cases.



Fig. 9(a) shows an excerpt from the derivation of the binary search program
whereas Fig. 9(b) shows how the same outcome can be accomplished in a single
step using the SimplifyAuto tactic.

6 Conclusions and Future Work

To address the problem of lengthy and tedious calculational program derivations,
we have proposed an approach to integrate automated theorem provers at a tactic
level and implemented it in a calculational assistant (CAPS) which we have
built to assist users in deriving imperative programs from formal specifications.
We have adapted various techniques from the fields of program verification and
theorem proving for providing features like ability to step into proof obligations,
metavariable support, and ability to extract context of a subformula, which help
in realizing the tactic level automation. The introduced tactics help in shortening
the derivations and also in carrying out derivations that are not amenable to the
calculational style. We have managed to keep the derivation style close to the
pen-and-paper calculational style thereby retaining the benefits of readability
and rigour.

This tool will be used in the future offerings of the “Program Derivation”
(CS420) class at IIT Bombay. To improve the usability, we plan to develop
heuristics to rank the tactics in a given context so that at every stage in the
derivation, users can be presented with a list of tactics sorted by descending
likelihood of application. We also plan to develop high level program derivation
tactics where the low level synthesis tasks (like synthesizing loop-free programs)
are taken care of by the syntax-guided synthesis solvers [1].
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