Skip to main content

Performance Tuning of Fock Matrix and Two-Electron Integral Calculations for NWChem on Leading HPC Platforms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8551))

Abstract

Attaining performance in the evaluation of two-electron repulsion integrals and constructing the Fock matrix is of considerable importance to the computational chemistry community. Due to its numerical complexity improving the performance behavior across a variety of leading supercomputing platforms is an increasing challenge due to the significant diversity in high-performance computing architectures. In this paper, we present our successful tuning methodology for these important numerical methods on the Cray XE6, the Cray XC30, the IBM BG/Q, as well as the Intel Xeon Phi. Our optimization schemes leverage key architectural features including vectorization and simultaneous multithreading, and results in speedups of up to 2.5x compared with the original implementation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A2 Processor User’s Manual for BlueGene/Q, http://www.alcf.anl.gov/user-guides/ibm-references#a2-processor-manual

  2. Edison Cray XC30, http://www.nersc.gov/systems/edison-cray-xc30/

  3. Foster, I., Tilson, J., Wagner, A., Shepard, R., Harrison, R., Kendall, R., Littlefield, R.: Toward High-Performance Computational Chemistry: I. Scalable Fock Matrix Construction Algorithms. Journal of Computational Chemistry 17, 109–123 (1996)

    Article  Google Scholar 

  4. Global Arrays Toolkit, http://www.emsl.pnl.gov/docs/global/

  5. Gill, P.M.W.: Molecular Integrals Over Gaussian Basis Functions. Advances in Quantum Chemistry 25, 141–205 (1994)

    Article  Google Scholar 

  6. Hammond, J., Krishnamoorthy, S., Shende, S., Romero, N.A., Malony, A.: Performance Characterization of Global Address Space Applications: A Case Study with NWChem. Concurrency and Computation: Practice and Experience, 1–17 (2010)

    Google Scholar 

  7. Harrison, R., Guest, M., Kendall, R., Bernholdt, D., Wong, A., Stave, M., Anchell, J., Hess, A., Littlefield, R., Fann, G., Nieplocha, J., Thomas, G., Elwood, D., Tilson, J., Shepard, R., Wagner, A., Foster, I., Lusk, E., Stevens, R.: Toward high-performance computational chemistry: II. a scalable self-consistent field program. Journal of Computational Chemistry 17, 124–132 (1996)

    Article  Google Scholar 

  8. Hopper Cray XE6, http://www.nersc.gov/systems/hopper-cray-xe6/

  9. Hurley, J.N., Huestis, D.L., Goddard, W.A.: Optimized Two-Electron-Integral Transformation Procedures for Vector-Concurrent Computer Architecture. The Journal of Physical Chemistry 92, 4880–4883 (1988)

    Article  Google Scholar 

  10. Jong, W.A., Bylaska, E., Govind, N., Janssen, C.L., Kowalski, K., Muller, T., Nielsen, I.M., Dam, H.J., Veryazov, V., Lindh, R.: Utilizing High Performance Computing for Chemistry: Parallel Computational Chemistry. Physical Chemistry Chemical Physics 12, 6896–6920 (2010)

    Article  Google Scholar 

  11. Kumar, S., Aamidala, A.R., Faraj, D.A., Smith, B., Blocksome, M., Cernohous, B., Miller, D., Parker, J., Ratterman, J., Heidelberger, P., Chen, D., Steinmacher-Burrow, B.: PAMI: A Parallel Active Message Interface for the Blue Gene/Q Supercomputer. In: The 26th International Parallel and Distributed Processing Symposium (May 2012)

    Google Scholar 

  12. The Intel MIC, http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html

  13. Mira IBM Bluegene/Q, http://www.alcf.anl.gov/user-guides/mira-cetus-vesta

  14. Obara, S., Saika, A.: Efficient Recursive Computation of Molecular Integrals Over Cartesian Gaussian Functions. The Journal of Chemical Physics 84, 3963–3975 (1986)

    Article  Google Scholar 

  15. Ozog, D., Shende, S., Malony, A., Hammond, J.R., Dinan, J., Balaji, P.: Inspector-Executor Load Balancing Algorithms for Block-Sparse Tensor Contractions. In: Proceedings of the 27th International ACM Conference on International Conference on Supercomputing (May 2013)

    Google Scholar 

  16. Tilson, J.L., Minkoff, M., Wagner, A.F., Shepard, R., Sutton, P., Harrison, R.J., Kendall, R.A., Wong, A.T.: High-Performance Computational Chemistry: Hartree-Fock Electronic Structure Calculations on Massively Parallel Processors. International Journal of High Performance Computing Applications 13, 291–306 (1999)

    Article  Google Scholar 

  17. Top500 Supercomputer Sites, http://www.top500.org/lists/2013/06/

  18. Valiev, M., Bylaska, E., Govind, N., Kowalski, K., Straatsma, T., van Dam, H., Wang, D., Nieplocha, J., Apra, E., Windus, T., de Jong, W.: Nwchem: a comprehensive and scalable open-source solution for large scale molecular simulations. Computer Physics Communications 181, 1477–1489 (2010)

    Article  MATH  Google Scholar 

  19. Wolinski, K., Hinton, J.F., Pulay, P.: Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. Jounal of the American Chemical Society 112, 8251–8260 (1990)

    Article  Google Scholar 

  20. Helgaker, T., Olsen, J., Jorgensen, P.: Molecular Eletronic-Structure Theory. Wiley (2013), www.wiley.com

  21. Helgaker, T., Taylor, P.R.: Gaussian Basis Sets and Molecular Integrals. In: Modern Electronic Structure Theory (Advances in Physical Chemistry). World Scientific (1995), www.worldscientific.com

  22. Lindh, R., Ryu, U., Liu, B.: The Reduced Multiplication Scheme of the Rys Quadrature and New Recurrence Relations for Auxiliary Function Based Two Electron Integral Evaluation. The Journal of Chemical Physics 95, 5889–5892 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhang Shan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Shan, H., Austin, B., De Jong, W., Oliker, L., Wright, N.J., Apra, E. (2014). Performance Tuning of Fock Matrix and Two-Electron Integral Calculations for NWChem on Leading HPC Platforms. In: Jarvis, S., Wright, S., Hammond, S. (eds) High Performance Computing Systems. Performance Modeling, Benchmarking and Simulation. PMBS 2013. Lecture Notes in Computer Science(), vol 8551. Springer, Cham. https://doi.org/10.1007/978-3-319-10214-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10214-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10213-9

  • Online ISBN: 978-3-319-10214-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics