Skip to main content

Wavelet Analysis of Non-stationary Signals in Medical Cyber-Physical Systems (MCPS)

  • Conference paper
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 8638))

Included in the following conference series:

Abstract

The advantages of multichannel medical cyber-physical systems (MCPS), which are designed to receive and process signals of human biological rhythms (EEG, ECG, blood pressure) at the remote server and to issue diagnostic conclusions, are discussed. The paper presents new data processing algorithms for MCPS based on continuous wavelet transform (CWT). The proposed method provides an array of parameters characterizing frequency restructuring of medical signals in different frequency bands. Since frequency fluctuations in brain and heart rhythms are closely related to different processes in human organism, the obtained data can allow us: to identify the disease at its early stages; to test the adaptive capacity of the human organism; to give diagnostic reports on cardiovascular and nervous systems; to analyze changes in rhythm during biofeedback sessions. The techniques set forth in the paper can help in the creation of a unique “rhythmic portrait” of a person to diagnose his physiological state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sokolsky, O., Chen, S., Hatcliff, J., Jee, E., Kim, B., King, A., Mullen-Fortino, M., Park, S., Roederer, A., Venkatasubramanian, K.K.: Challenges and Research Directions in Medical Cyber–Physical Systems. Proceedings of the IEEE 100(1), 75–90 (2012)

    Article  Google Scholar 

  2. Poovendran, R.: Cyber–Physical Systems: Close Encounters Between Two Parallel Worlds (Point of View). Proceedings of the IEEE 98(8), 1363–1366 (2010)

    Article  Google Scholar 

  3. Lee, E.A.: Cyber Physical Systems: Design Challenges. In: 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 363–369 (2008)

    Google Scholar 

  4. Lee, E.A., Seshia, S.A.: Introduction to embedded systems: A cyber-physical systems approach, UC, Berkeley (2011)

    Google Scholar 

  5. Sutter, R., Fuhr, P., Grize, L., Marsch, S., Rüegg, S.: Continuous video-EEG monitoring increases detection rate of nonconvulsive status epilepticus in the ICU. Epilepsia 52(3), 453–457 (2011)

    Article  Google Scholar 

  6. Authier, S., Paquette, D., Gauvin, D., Sammut, V., Fournier, S., Chaurand, F., Troncy, E.: Video-electroencephalography in conscious non human primate using radiotelemetry and computerized analysis: Refinement of a safety pharmacology model. Journal of Pharmacological and Toxicological Methods 60(1), 88–93 (2009)

    Google Scholar 

  7. Abubakr, A., Ifeayni, I., Wambacq, I.: The efficacy of routine hyperventilation for seizure activation during prolonged video-electroencephalography monitoring. Journal of Clinical Neuroscience 17(12), 1503–1505 (2010)

    Article  Google Scholar 

  8. Kennett, R.: Modern electroencephalography. J. Neurol. 259, 783–789 (2012)

    Article  Google Scholar 

  9. Migdalas, A., Pardalos, P., Sverre, S.: Story Parallel Computing in Optimization. Springer Publishing Company, Incorporated (2012)

    Google Scholar 

  10. Kontoghiorghes, E.J.: Handbook of Parallel Computing and Statistics. CRC Press (2005)

    Google Scholar 

  11. Khludova, M.: On-line parallelizable task scheduling on parallel processors. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 229–233. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Academic Press, New York (2008)

    Google Scholar 

  13. Koronovskii, A.A., Khramov, A.E.: Continuous wavelet analysis and its applications, Moscow, Fizmatlit (2003) (in Russian)

    Google Scholar 

  14. Chui, C.K.: An introduction to wavelets. Academic Press, New York (1992)

    MATH  Google Scholar 

  15. Daubechies, I.: Ten lectures on wavelet. Society for industrial and applied mathematics, Philadelphia (1992)

    Google Scholar 

  16. Pavlov, A.N., Hramov, A.E., Koronovskii, A.A., Sitnikova, E., Yu, M.V.A., Ovchinnikov, A.A.: Wavelet analysis in neurodynamics. Physics-Uspekhi. Advances in Physical Sciences 55(9), 845–875 (2012)

    Google Scholar 

  17. Bozhokin, S.V., Suvorov, N.B.: Wavelet analysis of transients of an electroencephalogram at photostimulation. Biomed. Radioelektron (3), 21–25 (2008)

    Google Scholar 

  18. Bozhokin, S.V.: Wavelet analysis of learning and forgetting of photostimulation rhythms for a nonstationary electroencephalogram. Technical Physics 55(9), 1248–1256 (2010)

    Article  Google Scholar 

  19. Bozhokin, S.V.: Continuous wavelet transform and exactly solvable model of nonstationary signals. Technical Physics 57(7), 900–906 (2012)

    Article  Google Scholar 

  20. Bozhokin, S.V., Suslova, I.B.: Wavelet analysis of a mathematical model of the brain bursts electroencephalogram. In: Proceedings of the XVI - Russian Scientific and Technical Conference, Neuroinformatics–2014, Moscow Engineering Physics Institute, January 27-30 (2014); Collection of scientific papers. In: 3 parts. CH.2.M.: MEPhI 2014. P.51-66. ISBN 978-5-7262-1899-1 (in Russian)

    Google Scholar 

  21. Boriani, G., Auricchio, A., Klersy, C., et al.: Healthcare personnel resource burden related to in-clinic follow-up of cardiovascular implantable electronic devices: a European Heart Rhythm Association and Eucomed joint survey. Europace 13(8), 1166–1173 (2011)

    Article  Google Scholar 

  22. Lomidze, N.N., Revishvili, A.S., Kuptsov, V.V., Spiridonov, A.A.: Remote monitoring of patients - results of clinical studies. Journal of Arrhythmology 74, 71–77 (2013) (in Russian)

    Google Scholar 

  23. Ricci, R.P., Morichelli, L., Santini, M.: Home monitoring remote control of pacemaker and implantable cardioverter defibrillator patients in clinical practice: impact on medical management and health-care resource utilization. Europace 10(2), 164–170 (2008)

    Article  Google Scholar 

  24. Varma, N., Epstein, A.E., Irimpen, A., et al.: Efficacy and safety of automatic remote monitoring for implantable cardioverter-defibrillator follow-up: the Lumos-T Safely Reduces Routine Office Device Follow-up (TRUST) trial. Circulation 122(4), 325–329 (2010)

    Article  Google Scholar 

  25. Mabo, P.: Home monitoring for pacemaker follow-up: The first prospective randomised trial. Presentation at Cardiostim, Nice Acropolis, French Riviera, Jun 16-19 (2010)

    Google Scholar 

  26. Halimi, F., Clémenty, J., Patrick, A., et al.: Optimized post-oper-ative surveillance of permanent pacemakers by home monitoring: the OEDIPE trial. Europace 10(12), 1392–1399 (2008)

    Article  Google Scholar 

  27. Bozhokin, S.V., Shchenkova, I.M.: Analysis of the heart rate variability using stress tests. Human Physiology 34(4), 461–467 (2008)

    Article  Google Scholar 

  28. Bozhokin, S.V., Suslova, I.M.: Double Wavelet Transform of Frequency-Modulated Nonstationary Signal. Technical Physics 58(12), 1730–1736 (2013)

    Article  Google Scholar 

  29. Bozhokin, S.V., Suslova, I.B.: Analysis of non-stationary HRV as a frequency modulated signal by double continuous wavelet transformation method. Biomedical Signal Processing and Control 10(3), 34–40 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bozhokin, S.V., Suslova, I.B. (2014). Wavelet Analysis of Non-stationary Signals in Medical Cyber-Physical Systems (MCPS). In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN 2014. Lecture Notes in Computer Science, vol 8638. Springer, Cham. https://doi.org/10.1007/978-3-319-10353-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10353-2_42

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10352-5

  • Online ISBN: 978-3-319-10353-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics