Skip to main content

50 Shades of Rule Composition

From Chemical Reactions to Higher Levels of Abstraction

  • Conference paper
Book cover Formal Methods in Macro-Biology (FMMB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8738))

Included in the following conference series:

Abstract

Graph rewriting has been applied quite successfully to model chemical and biological systems at different levels of abstraction. A particularly powerful feature of rule-based models that are rigorously grounded in category theory, is, that they admit a well-defined notion of rule composition, hence, provide their users with an intrinsic mechanism for compressing trajectories and coarse grained representations of dynamical aspects. The same formal framework, however, also allows the detailed analysis of transitions in which the final and initial states are known, but the detailed stepwise mechanism remains hidden. To demonstrate the general principle we consider here how rule composition is used to determine accurate atom maps for complex enzyme reactions. This problem not only exemplifies the paradigm but is also of considerable practical importance for many down-stream analyses of metabolic networks and it is a necessary prerequisite for predicting atom traces for the analysis of isotope labelling experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fontana, W., Buss, L.W.: What would be conserved if “the tape were played twice”? Proc. Natl. Acad. Sci. USA 91, 757–761 (1994)

    Article  Google Scholar 

  2. Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)

    Article  Google Scholar 

  3. Danos, V.: Formal molecular biology. Theor. Comp. Sci. 325, 69–110 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Graph theory for rule-based modeling of biochemical networks. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 89–106. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Păun, G.: Computing with membranes. J. Comp. Syst. Sci. 61, 108–143 (2000)

    Article  MATH  Google Scholar 

  6. Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Arnold, C., Stadler, P.F., Prohaska, S.J.: Chromatin computation: Epigenetic inheritance as a pattern reconstruction problem. J. Theor. Biol. 336, 61–74 (2013)

    Article  Google Scholar 

  8. Hlavacek, W., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Sci. STKE 6, 334–336 (2006)

    Google Scholar 

  9. Sekar, J.A., Faeder, J.R.: Rule-based modeling of signal transduction: a primer. Methods Mol. Biol. 880, 139–218 (2012)

    Article  Google Scholar 

  10. Berry, G., Boudol, G.: The chemical abstract machine. In: Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1990, pp. 81–94. Assoc. Computing Machinery, New York (1990)

    Google Scholar 

  11. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci. 43, 1085–1093 (2003)

    Article  Google Scholar 

  12. Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-Walsh, C., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-based models. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012). Leibniz International Proceedings in Informatics (LIPIcs), vol. 18, pp. 276–288 (2012)

    Google Scholar 

  13. Beck, M., Benkö, G., Eble, G., Flamm, C., Müller, S., Stadler, P.F.: Graph grammars as models for the evolution of developmental pathways. In: Schaub, H., Detje, F., Brüggemann, U. (eds.) The Logic of Artificial Life: Abstracting and Synthesizing the Principles of Living Systems, pp. 8–15. IOS Press, Akademische Verlagsgesellschaft, Berlin (2004)

    Google Scholar 

  14. Sauer, U.: Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62 (2006)

    Article  Google Scholar 

  15. Zamboni, N.: 13C metabolic flux analysis in complex systems. Curr. Opin. Biotech. 22, 103–108 (2011)

    Article  MathSciNet  Google Scholar 

  16. Durot, M., Bourguignon, P.Y., Schachter, V.: Genome-scale models of bacterial metabolisn: reconstruction and applications. FEMS Microbiol. Rev. 33, 164–190 (2009)

    Article  Google Scholar 

  17. Feist, A.M., Herrgård, M.J., Thiele, I., Reed, J.L., Palsson, B.Ø.: Reconstruction of biochemical networks in microorganisms. Nature Rev. Microbiol. 7, 129–143 (2009)

    Article  Google Scholar 

  18. Holliday, G.L., Bartlett, G.J., Almonacid, D.E., O’Boyle, N.M., Murray-Rust, P., Thornton, J.M., Mitchell, J.B.O.: MACiE: a database of enzyme reaction mechanisms. Bioinformatics 21, 4315–4316 (2005)

    Article  Google Scholar 

  19. Holliday, G.L., Andreini, C., Fischer, J.D., Rahman, S.A., Almonacid, D.E., Williams, S.T., Pearson, W.R.: MACiE: exploring the diversity of biochemical reactions. Nucleic Acids Research 40, D783–D789 (2012)

    Google Scholar 

  20. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Inferring chemical reaction patterns using graph grammar rule composition. J. Syst. Chem. 4(4) (2013)

    Google Scholar 

  21. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM, New York (1971)

    Chapter  Google Scholar 

  22. Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Article  Google Scholar 

  23. Weininger, D., Weininger, A., Weininger, J.L.: SMILES 2. Algorithm for Generation of Unique SMILES Notation. J. Chem. Inf. Comput. Sci. 29(2), 97–101 (1989)

    Article  Google Scholar 

  24. Atanasov, B.P., Mustafi, D., Makinen, M.W.: Protonation of the beta-lactam nitrogen is the trigger event in the catalytic action of class A beta-lactamases. Proc. Natl. Acad. Sci. 97(7), 3160–3165 (2000)

    Google Scholar 

  25. Bar-Even, A., Flamholz, A., Noor, E., Milo, R.: Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat. Chem. Biol. 8(6), 509–517 (2012)

    Article  Google Scholar 

  26. Entner, N., Doudoroff, M.: Glucose and gluconic acid oxidation of pseudomonas saccharophila. J. Biol. Chem. 196, 853–862 (1952)

    Google Scholar 

  27. Borodina, I., Schöller, C., Eliasson, A., Nielsen, J.: Metabolic network analysis of streptomyces tenebrarius, a streptomyces species with an active entner-doudoroff pathway. Appl. Environ. Microbiol. 71(5), 2294–2302 (2005)

    Article  Google Scholar 

  28. Romano, A.H., Conway, T.: Evolution of carbohydrate metabolic pathways. Res. Microbiol. 147(6/7), 448–455 (1996)

    Article  Google Scholar 

  29. Stettner, A.I., Segré, D.: The cost of efficiency in energy metabolism. PNAS 110(24), 9629–9630 (2013)

    Article  Google Scholar 

  30. Flamholz, A., Noor, E., Bar-Even, A., Liebmeister, W., Milo, R.: Glycolytic stratewgy as a tradeoff between energy yield and protein cost. PNAS 110(24), 10039–10044 (2013)

    Article  Google Scholar 

  31. Benner, S., Kim, H., Ricardo, A.: Planetary organic chemistry and the origins of biomolecules. Cold Spring Harb. Perspect. Biol. 2(7), a003467 (2010)

    Google Scholar 

  32. Breslow, R.: On the mechanism of the formose reaction. Tetrahedron Letters 1(21) (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F. (2014). 50 Shades of Rule Composition. In: Fages, F., Piazza, C. (eds) Formal Methods in Macro-Biology. FMMB 2014. Lecture Notes in Computer Science(), vol 8738. Springer, Cham. https://doi.org/10.1007/978-3-319-10398-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10398-3_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10397-6

  • Online ISBN: 978-3-319-10398-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics