Skip to main content

Tactile Features: Recognising Touch Sensations with a Novel and Inexpensive Tactile Sensor

  • Conference paper
Advances in Autonomous Robotics Systems (TAROS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8717))

Included in the following conference series:

Abstract

A simple and cost effective new tactile sensor is presented, based on a camera capturing images of the shading of a deformable rubber membrane. In Computer Vision, the issue of information encoding and classification is well studied. In this paper we explore different ways of encoding tactile images, including: Hu moments, Zernike Moments, Principal Component Analysis (PCA), Zernike PCA, and vectorized scaling. These encodings are tested by performing tactile shape recognition using a number of supervised approaches (Nearest Neighbor, Artificial Neural Networks, Support Vector Machines, Naive Bayes). In conclusion: the most effective way of representing tactile information is achieved by combining Zernike Moments and PCA, and the most accurate classifier is Nearest Neighbor, with which the system achieves a high degree (96.4%) of accuracy at recognising seven basic shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, P.K.: Integrating vision and touch for object recognition tasks. The International Journal of Robotics Research 7(6), 15–33 (1988)

    Article  Google Scholar 

  2. Barron-Gonzalez, H., Prescott, T.: Discrimination of social tactile gestures using biomimetic skin. In: IEEE International Conference on Robotics and Automation, Karlsruhe, Germany (2013)

    Google Scholar 

  3. Chorley, C., Melhuish, C., Pipe, T., Rossiter, J.: Development of a tactile sensor based on biologically inspired edge encoding. In: International Conference on Advanced Robotics, ICAR 2009, pp. 1–6 (2009)

    Google Scholar 

  4. Chorley, C., Melhuish, C., Pipe, T., Rossiter, J.: Tactile edge detection. In: 2010 IEEE Sensors, pp. 2593–2598 (2010)

    Google Scholar 

  5. Dahiya, R., Mittendorfer, P., Valle, M., Cheng, G., Lumelsky, V.: Directions toward effective utilization of tactile skin: A review. IEEE Sensors Journal 13(11), 4121–4138 (2013)

    Article  Google Scholar 

  6. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1(2), 224–227 (1979)

    Article  Google Scholar 

  7. Decherchi, S., Gastaldo, P., Dahiya, R., Valle, M., Zunino, R.: Tactile-data classification of contact materials using computational intelligence. IEEE Transactions on Robotics 27(3), 635–639 (2011)

    Article  Google Scholar 

  8. Gorges, N., Navarro, S., Goger, D., Worn, H.: Haptic object recognition using passive joints and haptic key features. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2349–2355 (2010)

    Google Scholar 

  9. Horn, B.K.P., Brooks, M.J. (eds.): Shape from Shading. MIT Press, Cambridge (1989)

    Google Scholar 

  10. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  11. Jamali, N., Sammut, C.: Majority voting: Material classification by tactile sensing using surface texture. IEEE Transactions on Robotics 27(3), 508–521 (2011)

    Article  Google Scholar 

  12. Johnsson, M., Balkenius, C.: Sense of touch in robots with self-organizing maps. IEEE Transactions on Robotics 27(3), 498–507 (2011)

    Article  Google Scholar 

  13. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43(1), 59–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, H., Song, X., Bimbo, J., Seneviratne, L., Althoefer, K.: Surface material recognition through haptic exploration using an intelligent contact sensing finger. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 52–57 (2012)

    Google Scholar 

  15. Mercimek, M., Gulez, K., Mumcu, T.V.: Real object recognition using moment invariants. Sadhana 30(6), 765–775 (2005)

    Article  MATH  Google Scholar 

  16. Navarro, S., Gorges, N., Worn, H., Schill, J., Asfour, T., Dillmann, R.: Haptic object recognition for multi-fingered robot hands. In: 2012 IEEE Haptics Symposium (HAPTICS), pp. 497–502 (2012)

    Google Scholar 

  17. Noll, R.J.: Zernike polynomials and atmospheric turbulence. Journal of the Optical Society of America 66(3), 207–211 (1976)

    Article  Google Scholar 

  18. Parzen, E.: On estimation of a probability density function and mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pezzementi, Z., Plaku, E., Reyda, C., Hager, G.: Tactile-object recognition from appearance information. IEEE Transactions on Robotics 27(3), 473–487 (2011)

    Article  Google Scholar 

  20. Ratnasingam, S., McGinnity, T.: A comparison of encoding schemes for haptic object recognition using a biologically plausible spiking neural network. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3446–3453 (2011)

    Google Scholar 

  21. Roke, C., Melhuish, C., Pipe, T., Drury, D., Chorley, C.: Deformation-based tactile feedback using a biologically-inspired sensor and a modified display. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856, pp. 114–124. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics 27(3), 832–837 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schneider, A., Sturm, J., Stachniss, C., Reisert, M., Burkhardt, H., Burgard, W.: Object identification with tactile sensors using bag-of-features. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009. pp. 243–248 (2009)

    Google Scholar 

  24. Schopfer, M., Ritter, H., Heidemann, G.: Acquisition and application of a tactile database. In: 2007 IEEE International Conference on Robotics and Automation, pp. 1517–1522 (2007)

    Google Scholar 

  25. Sinapov, J., Sukhoy, V., Sahai, R., Stoytchev, A.: Vibrotactile recognition and categorization of surfaces by a humanoid robot. IEEE Transactions on Robotics 27(3), 488–497 (2011)

    Article  Google Scholar 

  26. Soh, H., Su, Y., Demiris, Y.: Online spatio-temporal gaussian process experts with application to tactile classification. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4489–4496 (2012)

    Google Scholar 

  27. Taddeucci, D., Laschi, C., Lazzarini, R., Magni, R., Dario, P., Starita, A.: An approach to integrated tactile perception. In: 1997 IEEE International Conference on Robotics and Automation, vol. 4, pp. 3100–3105 (1997)

    Google Scholar 

  28. Weiss, K., Worn, H.: The working principle of resistive tactile sensor cells. In: 2005 IEEE International Conference on Mechatronics and Automation, vol. 1, pp. 471–476 (2005)

    Google Scholar 

  29. Winstone, B., Griffiths, G., Pipe, T., Melhuish, C., Rossiter, J.: TACTIP - tactile fingertip device, texture analysis through optical tracking of skin features. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 323–334. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  30. Zernike, V.: Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1(7-12), 689–704 (1934)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Corradi, T., Hall, P., Iravani, P. (2014). Tactile Features: Recognising Touch Sensations with a Novel and Inexpensive Tactile Sensor. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds) Advances in Autonomous Robotics Systems. TAROS 2014. Lecture Notes in Computer Science(), vol 8717. Springer, Cham. https://doi.org/10.1007/978-3-319-10401-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10401-0_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10400-3

  • Online ISBN: 978-3-319-10401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics