
Sequential Time Splitting and

Bounds Communication for a

Portfolio of Optimization Solvers

Roberto Amadini1 and Peter J. Stuckey2

1 Dept. of Computer Science and Engineering/Lab. Focus INRIA,
University of Bologna, Italy.
2 National ICT Australia

Department of Computing and Information Systems
University of Melbourne 3010., Australia

Abstract. Scheduling a subset of solvers belonging to a given portfolio
has proven to be a good strategy when solving Constraint Satisfaction
Problems (CSPs). In this paper, we show that this approach can also be
effective for Constraint Optimization Problems (COPs). Unlike CSPs,
sequential execution of optimization solvers can communicate informa-
tion in the form of bounds to improve the performance of the following
solvers. We provide a hybrid and flexible portfolio approach that com-
bines static and dynamic time splitting for solving a given COP. Empiri-
cal evaluations show the approach is promising and sometimes even able
to outperform the best solver of the porfolio.

1 Introduction and Related Work

One of the main uses of Constraint Programming (CP) is to model and solve
Constraint Satisfaction Problems (CSP) [19]. Solving CSPs is hard, and there
are plenty of approaches that can be used to tackle them. One of the more recent
trend in this research area—especially in the SAT field—is trying to solve a given
problem by using a portfolio approach [12,23].

An algorithm portfolio is a general methodology that exploits a number of
different algorithms in order to get an overall better algorithm. A portfolio of
CP solvers can therefore be seen as a particular solver, the portfolio solver, that
exploits a collection of m > 1 different constituent solvers s1, . . . , sm in order to
obtain a globally better CP solver. When a new unseen instance i arrives, the
portfolio solver tries to predict which are the best constituent solvers s1, . . . , sk
(k ≤ m) for solving i and then runs such solver(s) on i. This solver selection
process is clearly a fundamental part for the success of the approach and it is
usually performed by exploiting Machine Learning techniques.

There has been a significant body of work in using portfolios to leverage
and combine a number of different solvers in order to get an overall better
solver [15,18]. A particular case of portfolio approach consists in scheduling (even
in parallel) a subset of the constituent solvers within a certain time window (see

for instance [3, 7, 14, 16, 22, 24]. This would seem to be a winning strategy, in
particular due to the fact that often the solving time of a satisfaction problem is
either relatively short or very long. It hence naturally handles the heavy tailed
nature of solving.

Surprisingly, most of the focus of algorithm portfolios has been on constraint
satisfaction problems. In practice most of the combinatorial problems of interest
are Constraint Optimization Problems (COPs), where we are interested in find-
ing a solution which minimizes as much as possible a given objective function.
As pointed out also in [25], there is a lack of use of meta-learning for algorithm
selection: to the best of our knowledge, COP portfolios are mostly developed
just for some specific optimization problems like Knapsack, Most Probable Ex-
planation, Set Partitioning, Travel Salesman Problem [13,15,26] or for example
to properly tune the parameters of a single COP solver [17, 27].

It is hence natural to ask how to create a scheduling algorithm portfolio for
COPs. A crucial difference from CSPs arises because a COP solver may yield
sub-optimal partial solutions before finding the best one (and possibly proving its
optimality). This means that one solver can transmit useful bounds information
to another if they are scheduled sequentially. This key feature is the basis of our
work. Indeed, in a portfolio scenario, a partial solution found by a solver s1 is a
token of knowledge that s1 can pass to another solver s2 in order to prune its
search space and therefore possibly improve its solving process. In this paper, we
thus address the problem of boosting optimization by exploiting the sequential
cooperation of different COP solvers. To do so, we will introduce the notion of
solving behaviour for taking into account the anytime performance of the solvers.

A work related to this paper is [9], in which algorithm control techniques are
used to share bounds information between the scheduled solvers without, how-
ever, explicitly rely on the solvers behaviours (as in our technical definition).
In [20] the authors provide a generic approach to knowledge sharing, based on
the communication of learned clauses and cuts information, which is suitable for
sequential SAT solvers but is less likely to be useful when solvers are very dis-
parate in nature. Finally, [4] reports an empirical evaluation of different portfolio
approaches applied to COPs, without however taking into account the anytime
performance of the solvers as well as the possible bounds communication between
them.

Paper Structure. In Section 2 we give the technical definitions of solving
behaviour and timesplit solver; then, in Section 3, we provide and evaluate
TimeSplit: an algorithm aimed to determine the best time splitting according to
already known behaviours. By exploiting the results of TimeSplit in Section 4 we
introduce TPS, a generic and flexible portfolio approach that relies on two steps:
when a new unseen problem arrives, a static solver schedule (computed off-line)
is run first, while a dynamic schedule is executed then by possibly exploiting the
best solution found in the first stage. In Section 5 we describe the methodology
and the results achieved by TPS, using the SUNNY [3,4] algorithm as a baseline
for computing and evaluating different portfolio approaches. Finally, in Section
6 we conclude by providing some possible future directions.

2 Solving Behaviour and Timesplit Solvers

Let us fix a dataset of minimization3 problems ∆, a universe of COP solvers Σ
(which can include a particular portfolio Π ⊆ Σ) and a solving time window
[0, T]. We wish to determine the best sequence of solvers in Σ to run on p and
for how long to run each solver within the interval [0, T] in order obtain the
best result for instance p. Ideally we aim to improve the best solver of Σ for the
instance p.

We define the (solving) behaviour of each solver s ∈ Σ applied to a problem
p ∈ ∆ over time [0, T] as a sequence of pairs B(s, p) = [(t1, v1), . . . , (tn, vn)] where
ti ∈ [0, T] is the time when s finds a solution, and vi is the objective value of
such a solution. Note that we can consider the pairs ordered so that t1 < · · · < tn
while v1 > · · · > vn since we assume the solving process is monotonic (we can
omit the non-monotonic entries if any). For example, consider the behaviours
B(s1, p) = [(10, 40), (50, 25), (100, 15)] and B(s2, p) = [(800, 45), (900, 10)] illus-
trated in Figure 1a with a timeout of T = 1000 seconds. The best value v∗ = 10
is found by s2 after 900 seconds, but it takes 800 seconds to find its first solu-
tion (v = 45). Meanwhile, s1 finds a better value (v = 40) after just 10 seconds
and even better values in just 100 seconds. So, the question is: what happens if
we “inject” the upper bound 40 from s1 to s2? Considering that starting from
v = 45 the solver s2 is able to find v∗ in 100 seconds (from 800 to 900), hopefully
starting from any better (or equal) value v′ ≤ 45 the time needed by s2 to find
v∗ is no more than 100 seconds. Note that from a graphical point of view what
we would like to do is therefore to “shift” the curve of s2 towards the left from
t = 800 to 10, by exploiting the fact that after 10 seconds s1 can suggest to
s2 the upper bound v = 40. The cooperation between s1 and s2 would thereby
reduce by ∆t = 790 seconds the time needed to find v∗, and moreover would
allow us to exploit the remaining ∆t seconds for finding better solutions or even
proving the optimality of v∗. However, note that the virtual behaviour may not
occur: it may be that s2 calculates important information in the first 800 seconds
required to find the solution v∗ = 10, and therefore the injection of v = 40 could
be useless (if not harmful!).

Given a problem p ∈ ∆ and a schedule σ = [(s1, t1), . . . , (sk, tk)] of k solvers
we define the corresponding timesplit solver as a particular solver such that: i)
first, runs s1 on p for t1 seconds; ii) then, for i = 1, . . . , k− 1, runs si+1 on p for
ti+1 seconds possibly exploiting the best solution found by the previous solver si
in ti seconds. We will use the notation σ to indicate the base of timesplit solver σ
where we omit the last solver in the schedule, i.e. σ = [(s1, t1), . . . , (sk−1, tk−1)].
Intuitively, if sk is the last solver of the schedule, σ is the timesplit solver that
ideally contributes to improve sk.

As an example, in Figure 1a the ideal timesplit solver would be defined by
σ = [(s1, 10), (s2, 990)], but note that there are cases in which the timesplit
solver is actually a single solver, since the best solver is not virtually improvable

3 We can convert a maximization problem to a minimization problem by simply negat-
ing the objective function.

10 50 100 800 900 1000
Time [seconds]

10

15

25

40

45

So
lu

tio
n

Va
lu

e

∆t

s2

s1

(a) σ = [(s1, 10), (s2, 990)]

100 250 500 700 800 900 1000
Time [seconds]

100

75

50

30

20

10

So
lu

tio
n

Va
lu

e

s2

s1

(b) σ = [(s2, 1000)]

20 100 250 400 600 800 1000
Time [seconds]

100

80

60

50

30

20

10

So
lu

tio
n

Va
lu

e ∆1

∆2s1

s2

s3

(c) σ = [(s2, 100), (s3, 150), (s1, 750)]

20 100 250 400 600 800 1000
Time [seconds]

100

80

60

50

30

20

10

So
lu

tio
n

Va
lu

e
∆1

∆2
s1

s2

(d) σ = [(s1, 100), (s2, 150), (s3, 750)]

Fig. 1: Examples of solving behaviours and corresponding time splitting σ.

by any other: this happens when every solution found by the best solver is also
the best solution found so far (e.g., see Figure 1b). Moreover, there may be also
cases in which splitting the time window in more than two slots (even alternating
the same solvers) may ideally lead to better performances. Indeed, the “overall”
best solver at the time edge T might no longer be the best one at a previous
time t < T . For example, in Figure 1c the best solver at time t ≥ 800 is s1, at
time 400 ≤ t < 800 is s3 while for t ≤ 400 is s2; in Figure 1d the best solver is
s1 if t < 400 or t ≥ 800, while for 400 ≤ t < 800 is s2.

3 Splitting Selection and Evaluation

Once we have informally hypothesized the potential benefits of timesplit solvers,
some questions naturally arise. First, which metric(s) is reasonable to formally
define the “best solver”? Furthermore, how do we split the time window between
solvers for determining the (virtually) best timesplit solver? Finally, to what ex-
tent do timesplit solvers act like the virtual timesplit solvers? In order to answer
these questions, we fixed some proper metrics, defined a splitting algorithm and
empirically evaluated the assumptions previously introduced.

3.1 Evaluation Metrics

In order to evaluate the performances of different COP solvers (and thus formally
define the notion of best solver) we examine a number of metrics for grading a
solver s on a problem p over a time limit T .

Analogous to the usual metric for CSP solvers, let proven(s, p) = 1 if solver
s finds and proves the optimal solution (including proving unsatisfiability or
unboundedness) for problem p in T seconds, and 0 otherwise. A slightly better
metric measures optimization time, i.e. the time to find an optimal solution.
Let otime(s, p) = t if s finds and proves the optimal solution of p in time t,
and otime(s, p) = T if proven(s, p) = 0. Unfortunately, both these metrics are
rather poor at discriminating: for many optimization problems no solver may be
able to prove optimality.

The score function introduced in [4] gives to each solver a score in [0.25, 0.75]
proportional to the distance between the best solution it finds and the best
known solution. An additional reward (score = 1) is given if proven(s, p) = 1
while a punishment (score = 0) is given if no solution is found without proving
unsatisfiability. Let val(s, p, t) = min ({+∞} ∪ {v | (t′, v) ∈ B(s, p), t′ ≤ t}) be
the (possible) best objective value found by solver s for instance p at time t. Let
Vp = {val(s, p, T) ∈ Z | s ∈ Σ} be the set of all the objective values found by
any solver s at the time limit T . The score of solver s on a problem p (at the
time limit T) is a value score(s, p) ∈ {0, 1} ∪ [0.25, 0.75] such that:

score(s, p) =



























0 if val(s, p, T) = +∞; else

1 if proven(s, p) = 1; else

0.75 if val(s, p, T) = minVp = maxVp; else

0.75− 0.5 ·
val(s, p, T)−minVp

maxVp −minVp

Under this measure, a better solver has a higher score. While more discriminatory
than the previous measures, the score measure is still only considers the result
at the time limit T , without considering how it was reached (i.e. the behaviour).

In this work we introduce a new metric able to estimate the anytime solver
performance. Let Wp = {val(s, p, t) ∈ Z | s ∈ Σ, t ∈ [0, T]} be the set of all the
solutions found by any solver at any time, so minWp is the best solution found
for problem p and maxWp is the worst one. If B(s, p) = [(t1, v1), . . . , (tn, vn)] is
the behaviour of solver s on problem p, we define the (solving) area of s on p as:

area(s, p) = t1 +

n
∑

i=1

(

0.25 + 0.5 ·
val(s, p, ti)−minWp

maxWp −minWp

)

(ti+1 − ti)

where tn+1 = otime(s, p). As the name implies, area is a normalized measure
of the area under a solver behaviour. This metric is similar to the primal in-
tegral [8] used for measuring impact of heuristics for MIP solvers, but differs
since the primal integral assumes the optimal solution is known, while area also
differentiates between finding and proving a solution optimal. The area measure

folds in a number of measures of the strength of an optimization algorithm: the
quality of the best solution found, how quickly any solution is found, whether
optimality is proven, and how quickly good solutions are found. Even though the
ideal goal is to find the best objective value and hopefully proving its optimality,
area allows us to discriminate much more between solvers, since we capture the
tradeoff between speed and solution quality. Two solvers which eventually reach
the same best solution (without proving optimality) are indistinguishable with
the other measures, but we would almost certainly prefer the solver that finds
the solution(s) faster. Furthermore, consider two solvers that prove optimality
at the same instant t < T : while both will have otime = t, area will reward the
solver in [0, t] that finds better solutions faster.

Finally, we can now define the best solver of Σ for a given problem p as
the solver s ∈ Σ which minimizes (w.r.t. the lexicographic ordering) the set
of triples (1 − score(s, p), otime(s, p), area(s, p)) i.e., the solver that finds the
best solution within the time limit T , breaking ties using minimum optimization
time first, and then minimum area (i.e., giving priority to the solvers that prove
optimality in less time, or at least that quickly find sub-optimal solutions).

3.2 TimeSplit Algorithm

Our goal is now to find a suitable timesplit solver for instance p which can
improve upon the best solver for p. The algorithm TimeSplit described with
pseudo-code in Listing 1.1 encodes what was informally explained earlier (see
Figure 1). Given as input a problem p, a portfolioΠ ⊆ Σ, and the timeout T , the
basic idea of TimeSplit is to start from the behaviour of the best solver s2 ∈ Π
for p and then examine other solvers behaviours looking for the maximum ideal
“left shift” toward another solver s1 ∈ Π \ {s2}. Then, starting from s1, this
process is iteratively repeated until no other shift is found. The best solver of Π
is assigned to s2 via function best solver in line 2, while line 3 set the current
schedule σ to [(s2, T)]. In line 4 auxiliary variables are initialized: tot shift keeps
track of the sum of all the shifts identified, max shift is the current maximum
shift that s2 can perform, split time is the time instant from which s2 will start
its execution, while split solver is the solver that has to be run before s2 until
split time instant. The while loop enclosed in lines 5-18 is repeated until no
more shifts are possible (i.e., max shift = 0). The three nested loops starting
at lines 7-9 find two pairs (t1, v1) and (t2, v2) such that s2 can virtually shift to
another solver s1, i.e., such that in the current solving window [0, split time] we
have that at time t1 < t2 solver s1 finds a value v1 better than or equal to v2.

If the actual shift ∆t = t2 − t1 is greater than max shift , in lines 11-13 the
auxiliary variables are updated accordingly. At the end of each such loop, if at
least one shift has been detected (max shift > 0) the current schedule σ needs
to be updated. In line 15, the allocated time of the current first solver of σ
(i.e., s2) is decreased by an amount of time max shift + split time (note that
first(σ) is a reference to the first element of σ, while snd returns the second
element of a pair, i.e. the allocated time in this case). This is because split time
seconds will be allocated to split solver (line 16: push front inserts an element

on top of the list) while max shift seconds corresponding to the ideal shift will
be later donated to the ’overall’ best solver of Π (i.e., the last solver of σ) via
tot shift variable. At this stage, the search for a new shift is restricted to the time
interval [0, split time] in which the new best solver s2 will be split solver (line
18). Once out of the while loop (no more shifts are possible) the total amount
of all the shifts found is added to the best solver (line 19: last(σ) is a reference
to the last element of σ) and the final schedule is finally returned in line 20.

Listing 1.1: TimeSplit Algorithm.

1 TimeSplit(p,Π, T) :
2 s2 = best solver(p,Π, T)
3 σ = [(s2, T)]
4 tot shift = 0 ; max shift = 1 ; split time = T ; split solver = s2
5 while max shift > 0 :
6 max shift = 0
7 for (t2, v2) in {(t, v) ∈ B(s2, p) | t ≤ split time} :
8 for s1 in Π \ {s2} :
9 for (t1, v1) in {(t, v) ∈ B(s1, p) | t < t2 ∧ v ≤ v2} :

10 if t2 − t1 > max shift :
11 max shift = t2 − t1
12 split time = t1
13 split solver = s1
14 if max shift > 0 :
15 first(σ).snd −= max shift + split time

16 push front(σ, (split solver , split time))
17 tot shift += max shift

18 s2 = split solver

19 last(σ).snd += tot shift

20 return σ

3.3 TimeSplit Evaluation

In order to experimentally verify the correctness of our assumptions of the be-
haviour of timesplit solvers, we tested TimeSplit by considering a portfolio Π
constructed from the solvers of the MiniZinc 1.6 suite [21] (i.e., CPX, G12/FD,
G12/LazyFD, and G12/MIP) with some additional solvers disparate in their
nature, namely: Gecode [11] (CP solver), MinisatID [10] (SAT-based solver),
Chuffed (Lazy Clause CP solver), and G12/Gurobi (MIP solver). We retrieved
and filtered an initial dataset∆ of 4864 MiniZinc COPs fromMiniZinc 1.6 bench-
marks and the MiniZinc Challenges 2012/13 and then ran TimeSplit using a
solving timeout of T = 1800 seconds. In particular, we ran and compared two
versions of the algorithm: the original one and a variant (denoted TS-2 in what
follows) in which we imposed a maximum size of 2 solvers for each schedule σ.
This is because splitting [0, T] in too many slots can be counterproductive in
practice: excessive fragmentation of the time window may produce time slots
that are too short to be useful. Once executed these algorithms, in order to eval-
uate their significance we discarded all the “degenerate” instances for which the

score proven otime area

VBS 82.40% 34.73% 1298.67 478.05
TimeSplit 80.49% 33.67% 1263.74 347.91

TS-2 80.60% 33.89% 1259.98 343.97

Table 1: Average performances.

VBS TimeSplit TS-2

VBS — 222 232
TimeSplit 373 — 40

TS-2 364 13 —

Table 2: Pairwise Comparisons.

potential total shift was minimal (less than 5 seconds). We then ended up with
a reduced dataset ∆′ ⊂ ∆ of 596 instances. We ran timesplit solvers defined by
the schedule returned by each algorithm on every instance of ∆′. In addition,
we added as a baseline the Virtual Best Solver (VBS) i.e. a fictitious portfolio
solver that always choose the best solver for every instance according to a given
metric. Finally, we evaluated and compared the average performance in terms
of the above mentioned metrics: score, proven, otime, area.

Table 1 shows the average results for each approach. As can be seen, the
performances are rather close. On average, VBS is still the best solver if we focus
on score metric (i.e., considering only the values found at the time limit T).
Regarding proven and otime metrics, we can observe a substantial equivalence:
VBS is slightly better in terms of percentage of optima proven, while it is worse
than TimeSplit and TS-2 if we consider the average time to prove optimality.
Conversely, looking at area the situation appears to be more clearly defined:
on average, VBS is substantially worse than both TimeSplit and TS-2. This
means that, even if the virtual behaviour does not always occur, often the time
splitting we propose is able to find good partial solutions more quickly than
the best solver of Π. Focusing just on the two versions of TimeSplit, we can
also note that these are substantially equivalent: this confirms the hypothesis
that limiting the algorithm to schedule only two solvers is a reasonable choice
(TS-2 seems slightly better than TimeSplit on average). Indeed, among all the
instances of ∆′, only for 53 of them TimeSplit has produced a schedule with
more than two solvers.

0

200

400

600

800

1,000

1,200

1,400

Times Mean (Times)

Instances

T
im

e
 [

s
e

c
.]

Fig. 2: Times allocated to σ(p).

Table 2 shows instead how many
times the approach on the i-th row is
better than the one on the j-th col-
umn. In this case we can note that
TimeSplit and TS-2 perform better
than VBS: indeed, in the cases in which
the score is the same for both the ap-
proaches, often the timesplit solvers
take less time to find a (partial) solution. Note that for 375 problems (62.92%
of ∆′) at least one between TimeSplit and TS-2 is better than the VBS. Let ∆∗

be the set of such instances, and considering the base σ(p) of each schedule σ(p)
returned by the best approach between TimeSplit and TS-2 for each instance
of p ∈ ∆∗, we noticed an interesting fact: the time allocated to σ(p) is usually
pretty low. Figure 2 reports the distribution of such each times. As can be seen,
almost all the times are concentrated in the lower part of the graph: even if the
maximum value is 1363 seconds, the mean is less than a minute (54.18 seconds
to be precise) while the median value is significantly lower (9 seconds).

4 Timesplit Portfolio Solvers

The results of Section 3.3 show that in a non-negligible number of cases the ben-
efits of using a timesplit solver are tangible. Unfortunately, in such experiments
for every instance we already knew the corresponding runtimes of each solver
of the portfolio. The main motivation of this work is instead to try to predict
and run the best timesplit solver for a new unseen instance. Regrettably, given
runtime prediction of a solver is a non-trivial task, predicting the detailed solver
behaviour on a new test instance is even harder. Indeed, in our case we can not
simply limit ourselves to guess the best solver for a new instance, but we should
instead predict a suitable timesplit solver [(s1, t1), . . . , (sk, tk)]. Moreover, even
if in most cases the TimeSplit algorithm works pretty well, on the others we
noticed a considerable number of instances for which this algorithm is ineffective
(or even harmful). Therefore, a successful strategy should be able not only to
predict a proper timesplit solver, but also to distinguish between the instances
for which the timesplit is actually useful and those where it is counterproductive.
Furthermore, another interesting observation that has emerged from the results
of Section 3.3 is that often for the “significant” timesplit solvers is sufficient to
run the base of the schedule for a relatively low number of seconds in order to
allow an effective improvement of the best solver.

On the basis of these observations and motivations, what we propose is there-
fore a generic and hybrid framework that we called Timesplit Portfolio Solver
(TPS). When a new instance p arrives, we compute and run on p a corresponding
timesplit solver TPS(p) = [(S, C), (D(p), T −C)], where [(S, C)] is a static times-
plit solver pre-computed off-line that will run for C < T seconds, while for the
remaining T −C seconds we execute a dynamic timesplit solver [(D(p), T −C)]
computed on-line by means of a given prediction algorithm D(p)

The underlying idea of TPS is to exploit for the first C seconds a fixed sched-
ule calculated a priori, whose purpose is to produce as many good sub-optimal
solutions as possible. If after C seconds the optimality is still not proven, in
the remaining T − C seconds the algorithm D(p) tries to predict which is the
best (timesplit) solver for p, that will be executed taking advantage of any up-
per bound provided by S. Since TPS is a general model that can be arbitrarily
specialized, in the rest of the Section we explain in more detail what choices we
made and what algorithms we used to define and evaluate (variants of) TPS.

4.1 Static Splitting

Drawing inspiration from what was done in [16] for SAT problems, we decided
to compute a static schedule of solvers according to the outcomes of TimeSplit
on a given set of training instances. While in [16] the authors solve a Resource
Constrained Set Covering Problem (RCSCP) in order to get a schedule that
maximizes the number of training instances that can be solved within a time limit
of C = 180 seconds, in our case the objective is different. What we would like is
indeed to compute a schedule that may act as a good base for the solver(s) who
will be executed in the remaining T −C seconds. To do this, we first identify by

means of TimeSplit algorithm the set ∆∗ of all the training instances for which
a timesplit solver outperforms the VBS. Let σ(p) = [(sp,1, tp,1), . . . , (sp,k, tp,k)] be
the schedule returned by TimeSplit on each p ∈ ∆∗. We look for a schedule S

that maximizes the number of time slots tp,i ∈ σ(p) for i = 1, . . . , k− 1 that are
covered, that is the portfolio solver allocates at least tp,i seconds to solver sp,i.
Again, note that we consider the base σ(p) instead of σ(p) since at this stage we
are not interested in choosing the best solver: we want to determine an effective
timesplit solver able to quickly find suitable sub-optimal solutions. However, a
nice side-effect of this approach is that it also may be able to solve quickly those
instances that are extremely difficult for some solvers but very easy for others.

For each p ∈ ∆∗, we define ∇p = {(sp,i, t) | (sp,i, tp,i) ∈ σ(p), ti ≤ t ≤ C}

as the set of all the pairs (sp,i, t) that cover the time slot tp,i within C seconds.
Named Π∗ =

⋃

p∈∆∗{s ∈ Π : (s, t) ∈ ∇p} the set of the solvers of the portfolio

that appear in at least a∇p, and fixed C = T/10, we solve the following problem:

min



(C + 1)
∑

p∈∆∗

yp +
∑

s∈Π∗

∑

t∈[0,C]

t xs,t



 s.t.

yp +
∑

(s,t)∈∇p

xs,t ≥ 1 ∀p ∈ ∆
∗

∑

s∈Π∗

∑

t∈[0,C]

t xs,t ≤ C

yp, xs,t ∈ {0, 1} ∀p ∈ ∆
∗
, ∀s ∈ Π

∗
, ∀t ∈ [0, C]

For each pair (s, t) there is a binary variable xs,t that will be equal to one if
and only if in S the solver s will run for t seconds. For each problem p, the
binary variable yp will be one if and only if S cannot cover any time slot of σ(p).
Constraint yp +

∑

xs,t ≥ 1 imposes that instance p is covered (possibly setting
yp = 1 in the worst case) while

∑

t xs,t ≤ C ensures that S will not exceed
the time limit C. The objective is thus to minimize the number of uncovered
instances first (by means of C + 1 coefficient for each yp), and the total time of
S then (using t coefficient for each xs,t).

Note that the solution of the problem defines an allocation ξ = {(s, t) : xs,t =
1} and not actually a schedule: we still have to define the execution order of the
solvers. Since the interaction between different solvers is not easily predictable,
and neither generalizable, we decided to use a simple and reasonable heuristic:
we get the schedule S by sorting each (s, t) ∈ ξ by increasing allocated time t.

4.2 Dynamic Splitting

Once defined the static part of TPS, we want to determine an algorithm D(p) able
to predict for a new unseen instance p a proper (timesplit) solver to run for T−C
seconds after [(S, C)]. Inspired by the results of [4], we made use of the SUNNY
algorithm [3, 4]. The reasons behind this choice are essentially two. First, even
if originally designed for CSP portfolios [3], the adaption of SUNNY for COPs
turns out to perform well according to the results of [4]. Second, SUNNY is not

p1 p2 p3 Total
s1 (1, 150) (0.25, 1000) (0.75, 1000) (2, 2150)
s2 (0, 1000) (1, 10) (0, 1000) (1, 2010)
s3 (1, 100) (0.75, 1000) (0.7, 1000) (2.45, 2100)
s4 (0.75, 1000) (0.75, 1000) (0.25, 1000) (1.75, 3000)

Table 3: Pairs (score, otime) of each solver si for every problem pj .

limited to predict a single solver but selects instead a schedule of the constituent
solvers: in other terms, it implicitly returns a timesplit solver.

SUNNY is a new lazy algorithm portfolio originally tailored for CSPs: given
a CSP p and a portfolio Π, it uses a k-NN algorithm to select from a set of
training instances a subset N(p, k) of the k instances closer to p according to
the Euclidean distance. Then, on-the-fly, it computes a schedule of solvers by
considering the smallest sub-portfolio S ⊆ Π able to solve the maximum number
of instances in the neighborhood N(p, k) and by allocating to each solver of S a
time proportional to the number of solved instances in N(p, k). In [4] SUNNY
was adapted in order to deal with COPs: this variant selects the sub-portfolio
S ⊆ Π that maximizes the score in the neighborhood and allocates to each
solver a time in [0, T] proportional to its total score in N(p, k). In particular,
while in the CSP version SUNNY allocates to a backup solver4 an amount of time
proportional to the number of instances not solved inN(p, k), in the COP version
it assigns to it a slot of time proportional to k−h where h is the maximum score

achieved by the sub-portfolio S. While for CSPs the final schedule is obtained by
sorting the solvers by increasing solving time, for COPs the sorting is done by
using increasing otime. In a nutshell, the underlying idea behind SUNNY is to
minimize the probability of choosing the wrong solvers(s) by exploiting instance
similarities in order to get the smallest possible schedule of solvers. Padding the
uncovered instances of N(p, k) with the backup solver has the purpose of filling
the “gray area” between the best sub-portfolio found and a virtual solver always
able to find the optimal solution with the (hopefully) most reliable solver of Π.
Of course, this is an arbitrary choice that biases the schedule toward the backup
solver. But experimental results have proven the effectiveness of this approach.

Example 1. Let us suppose that Π = {s1, s2, s3, s4}, the backup solver is s3,
T = 1000 seconds, k = 3, N(p, k) = {p1, p2, p3}, and the scores/optimization
times are defined as listed in Table 3. The minimum size sub-portfolio that
reaches the highest score h = 1+ 1+ 0.75 = 2.75 is {s1, s2}. On the basis of the
sum of the scores reached by s1 and s2 in N(p, k) (resp. 2 and 1, see the last
column of Table 3) we then determine a slot size of t = T/(2+1+(k−h)) = 307.69
seconds and assign t1 = 2 ∗ t = 615.38 seconds to s1 and t2 = 1 ∗ t = 307.69
seconds to s2. The remaining t3 = 1000 − (t1 + t2) = 76.93 seconds are finally
allocated to the backup solver s3. The final schedule [(s2, t2), (s3, t3), (s1, t1)] is
then obtained by sorting s1, s2, s3 by their total optimization time in N(p, k)
(i.e., 2010, 2100, and 2150 respectively: see the last column of Table 3).

4 A backup solver is a special solver of the portfolio (typically, its single best solver)
aimed to handle exceptional circumstances (e.g.,premature failures of other solvers).

5 Empirical Evaluation

In order to measure the performances of the TPS described in Sections 4.1 and 4.2,
in the following referred to as sunny-tps, we considered a solving timeout of
T = 1800 seconds, a threshold of C = 180 seconds, the portfolio Π = {Chuffed,
CPX, G12/FD, G12/LazyFD, G12/Gurobi, G12/MIP, Gecode, MinisatID} and
the dataset ∆ of 4864 MiniZinc instances introduced in Section 3.3.

We evaluated sunny-tps using a 10-fold cross validation [6]: ∆ was randomly
partitioned in 10 disjoint folds ∆1, . . . , ∆10 treating in turn one fold ∆i as the
test set TSi (i = 1, . . . , 10) and the union of the remaining folds

⋃

j 6=i ∆j as the
training set TRi. For each training set TRi we then computed a corresponding
static schedule [(Si, 180)] as explained in Section 4.1, and for every instance
p ∈ TSi we computed and executed the timesplit solver [(Si, 180), (Di(p), 1620)]
where Di(p) is the schedule returned by SUNNY algorithm for problem p using
a reduced solving window of T − C = 1620 seconds.

Note that, for computing Di(p), SUNNY has to retrieve the k instances of
TRi closest to p. In order to do so, a proper set of features has to be extracted
from p (and each instance of TRi). Instead of using the whole set of 155 features
extracted by the mzn2feat tool described in [2,5] (as in [4]) we decided to select
a proper subset of them by exploiting the new extractor mzn2feat-1.0.5 This
tool is a new version of mzn2feat designed to be more portable, light-weight,
flexible, and independent from the particular machine on which it is run as well
as from the specific global redefinitions of a given solver. Indeed, mzn2feat-1.0
does not compute features based on graph measures (since this process could
be very time/space consuming), solver specific features (like global constraint
redefinitions) and dynamic features (to decouple the extractor from a particular
solver and from the given machine on which it is executed). In more detail,
mzn2feat-1.0 extracts in total 95 features: the variables (27), domains (18),
constraints (27), and solving (11) features are exactly the same of mzn2feat; the
objective features (8) are the 12 objective features of [5] except the 4 features
that involve graph measures; finally, the global constraints features are just 4 and
no longer bound to the Gecode solver, namely: the number of global constraints
n, the number of different global constraints m, the ratio m/n and the ratio n/c
where c is the total number of constraints of the problem. We finally removed
all the constant features and scaled them in [-1, 1], obtaining thus a reduced set
of 88 features.

As in Section 2, we evaluated the average performance of sunny-tps in
terms of score, proven, otime, area by varying the neighbourhood size k in
{10, 15, 20}. Finally, we compared sunny-tps vs. the following approaches:

– SBS: is the overall Single Best Solver of Π according to the given metric; 6

– VBS: is the Virtual Best Solver of Π defined as in Section 3.3;

5 Available at http://www.cs.unibo.it/~amadini/mzn2feat-1.0.tar.bz2
6 Regarding the score, otime, and area metrics the single best solver of Π turned out
to be CPX, while for the proven metric it is Chuffed. According to these results, we
elected CPX as the backup solver of Π.

http://www.cs.unibo.it/~amadini/mzn2feat-1.0.tar.bz2

10 15 20
60

65

70

75

80

85

90

95

100

SBS ORI COM TPS VBS

k value

s
c

o
re

 [
%

]

(a) score results (in percent).

10 15 20
40

45

50

55

60

65

70

75

80

SBS ORI COM TPS VBS

k value

o
p

ti
m

a
 p

ro
v

e
n

 [
%

]

(b) proven results (in percent).

– sunny-ori: is the original SUNNY algorithm evaluated in [4], that is a port-
folio solver in which the selected solvers are executed independently (i.e.,
without any bounds communication) in the time window [0, T] without the
“warm start” provided by S for the first C seconds;

– sunny-com: is a portfolio solver that acts basically as sunny-ori, with the
only exception that solvers execution is not independent: the best value found
by a solver within its time slot is subsequently exploited by the following
solver of the schedule.

The universe of all the (timesplit) solvers we used for our empirical evalua-
tion was therefore Σ = Π ∪ {SBS, VBS, sunny-com, sunny-ori, sunny-tps}. It
is worth nothing that, while in [1,4] the evaluation was based on simulations of
the portfolio approaches according to the already computed behaviours of every
solver of Π on every instance of ∆, in this work all the approaches have been
actually run and evaluated. Indeed, as shown also in Section 3.3, in this case we
can not make use of simulations since the side effects of bounds communication
are unpredictable in advance.

5.1 Test Results

The average score results (in percent) by varying the k parameter are re-
ported in Figure 3a. The plot clearly shows a common pattern: SBS, sunny-ori,
sunny-com, sunny-tps, and VBS are respectively sorted by increasing score for
every value of k. In general, we can see a rather sharp separation between the
various approaches: this witnesses the effectiveness of bounds communication
for reaching a better score or, in other terms, for improving the objective value
(possibly proving its optimality). For example, the percentage difference between
sunny-ori and sunny-com ranges between 2.83% and 3.45%. Furthermore, run-
ning the static schedule for the first 180 seconds (and therefore shrinking the
dynamic schedule of sunny-com in the remaining 1620 seconds) seems to be ad-
vantageous: sunny-tps is always better than SBS, sunny-ori, and sunny-com.
The peak performance (86.91%) is reached with k = 15, but the difference with
k = 10 and 20 is minimal (0.73% and 0.59% respectively). Considering k = 15,
sunny-tps has an average score higher than SBS by 10.55%, and lower than VBS

by 6.9%. Moreover, in 82 cases (1.69% of ∆) it scores better than VBS.

10 15 20
0

100

200

300

400

500

600

700

800

SBS ORI COM TPS VBS

k value

o
p

ti
m

iz
a

ti
o

n
 t

im
e

 [
s

e
c

.]

(a) otime results (in seconds).

10 15 20
0

100

200

300

400

500

600

SBS ORI COM TPS VBS

k value

a
re

a
 [

s
e

c
.]

(b) area results (in seconds).

When considering the proven metric (Figure 3b) the performance differ-
ence between the different SUNNY approaches is not so pronounced. Indeed,
sunny-ori, sunny-com, and sunny-tps are pretty close: for every k, the per-
centage difference between the worst and the best SUNNY approach ranges
between 0.45% and 1.13%. In this case we can say that the remarkable differ-
ence in performance between the portfolio solvers and the SBS is mainly due to
the SUNNY algorithm rather than the bounds communication. In other words,
passing the bound is not so effective if we just focus on proving optimality. A
possible explanation is that communicating an upper bound can be useful to find
a better solution (see Figure 3a) but ineffective when it comes to prove optimal-
ity. In these cases probably the time needed by a solver to compute information
for completing the search process can not be offset by the mere knowledge of an
objective bound. Nonetheless, the plot shows how the “warm start” provided by
the static schedule is helpful: in fact, the performance of sunny-tps is always
better than the other approaches. The peak performance (k = 15) is 72.06%,
about 10.36% more than SBS and only 3.74% less than VBS. For 27 instances
(0.56% of ∆) sunny-tps is able to prove the optimality while VBS is not.

Let us now focus on optimization time. In Figure 4a we see, in contrast to
all the score and proven results that appear to be pretty robust by varying k,
a slight discrepancy between k = 10 and k > 10. This delay time in proving
optimality is due to the scheduling order of the constituent solvers. However, for
k = 15 the results improve and for k = 20 are substantially the same. The peak
performance is achieved with k = 15 (272.61 seconds), 105.07 less than SBS and
145.9 more than VBS; in 53 cases (1.09% of ∆) sunny-tps is able to prove the
optimality in less time than VBS.

The area results depicted in Figure 4b clearly show the benefits of bounds
communication. First, note that sunny-ori is always worse than SBS: this is be-
cause each solver scheduled by sunny-ori is executed independently, and there-
fore for every solver the search is always (re-)started from scratch without ex-
ploiting previously found solutions. sunny-com significantly improves sunny-ori,
even if its average area is very close to SBS (even worse for k = 10). On the other
hand, the fixed schedule run by sunny-tps often allows one to quickly find par-
tial solutions and thus to noticeably outperform both sunny-ori and sunny-com.
Like the otime metric, the average area is not so close to VBS (the peak perfor-

mance, with k = 15, is 272.61 seconds: 132.77 seconds more than VBS, and 114.9
less than SBS), but sunny-tps outperforms VBS in 110 cases (2.26% of ∆).

6 Conclusions and Future Work

In this work we addressed the problem of boosting optimization by exploiting
the sequential cooperation of different COP solvers. Exploiting the fact that
finding good solutions early can significantly improve optimization solvers, we
first provided a proper TimeSplit algorithm that relies on the behaviour of
different solvers on an instance for determining a good timesplit solver for this
instance (i.e., ideally able to outperform the best solver of a portfolio). Our
results show that on average the actual timesplit solver does perform similarly
to (and sometimes even better than) the Virtual Best Solver of the portfolio.
We therefore exploited the results of TimeSplit in order to define the Timesplit
Portfolio Solver (TPS), a generic and hybrid framework that combines a static
schedule (computed off-line and run for a limited time) as well as a dynamic
schedule (computed on-line by means of a proper prediction algorithm and run
in the remaining time) for solving a new unseen instance by exploiting the bounds
communication between the scheduled solvers. In particular, on the one hand,
we determined the static schedule by solving a Set Covering problem according
to the results of TimeSplit on a set of training instances, and, on the other,
we defined the dynamic selection by exploiting the SUNNY algorithm [3, 4].
Empirical results shows that this idea can be beneficial and sometimes even able
to outperform the Virtual Best Solver according to different metrics that we
introduced (namely, score, proven, otime, and area) in order to evaluate the
performance of different (portfolio) solvers.

We see this work a cornerstone for portfolio approaches to solving Constraint
Optimization Problems. Clearly bounds communication should be taken into
account in this case. It is natural to think of extensions to this work, for example,
one may try to maximize the ideal shift by considering all the constituent solvers
instead of focusing just on improving the best one. Moreover, the nature of TPS
naturally allows one to instantiate its generic schema with new algorithms and
techniques (perhaps by simply adapting the most successful portfolio approaches
of the SAT and CSP fields). For instance, one might study how to select the set
of features to improve solver selection. Note that, contrary to [1,4], for example,
significant experimentation is required since it is clearly not predictable in a
deterministic way what the side effects of transmitting bounds from a solver to
another are. Finally, other interesting directions concerns the study of parallel
timesplit solvers as well as the communication of not only the objective bounds
but also other additional information (such as for instance cuts which is common
in SAT portfolios).

Acknowledgments NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research Council through
the ICT Centre of Excellence Program. This work was partially supported by
Asian Office of Aerospace Research and Development grant 12-4056.

References

1. Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. An Empirical Evalua-
tion of Portfolios Approaches for Solving CSPs. In CPAIOR, 2013.

2. Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. Features for Building
CSP Portfolio Solvers. CoRR, abs/1308.0227, abs/1308.0227, 2013.

3. Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. SUNNY: a Lazy Port-
folio Approach for Constraint Solving. http://www.cs.unibo.it/~amadini/iclp_
2014.pdf, In ICLP, 2014.

4. Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. Portfolio Approaches
for Constraint Optimization Problems. http://www.cs.unibo.it/~amadini/

lion_2014.pdf, In LION, 2014.
5. Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. An Enhanced Fea-

tures Extractor for a Portfolio of Constraint Solvers. http://www.cs.unibo.it/

~amadini/sac_2014.pdf, In SAC, 2014.
6. S. Arlot and A. Celisse. A survey of cross-validation procedures for model selection.

Statistics Surveys, 4:40–79, 2010.
7. Gilles Audemard, Benot Hoessen, Sad Jabbour, Jean-Marie Lagniez, and Cdric

Piette. PeneLoPe, a Parallel Clause-Freezer Solver. In SAT Challenge 2012.
8. Timo Berthold. Measuring the impact of primal heuristics. Operations Research

Letters, 41(6):611–614, 2013.
9. Tom Carchrae and J. Christopher Beck. Low-knowledge algorithm control. In

AAAI, pages 49–54, 2004.
10. Broes DeCat. KRR Software: MinisatID. http://dtai.cs.kuleuven.be/krr/

software/minisatid, 2013.
11. GECODE - An open, free, efficient constraint solving toolkit. http://www.gecode.

org.
12. Carla P. Gomes and Bart Selman. Algorithm portfolios. Artif. Intell., 2001.
13. Haipeng Guo and William H. Hsu. A machine learning approach to algorithm

selection for NP-hard optimization problems: a case study on the MPE problem.
Annals OR, 156(1):61–82, 2007.

14. Youssef Hamadi, Säıd Jabbour, and Lakhdar Sais. ManySAT: a Parallel SAT
Solver. JSAT, 6(4):245–262, 2009.

15. Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algorithm
Runtime Prediction: The State of the Art. CoRR, abs/1211.0906, 2012.

16. Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf
Sellmann. Algorithm Selection and Scheduling. In CP, 2011.

17. Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. ISAC -
Instance-Specific Algorithm Configuration. In ECAI, 2010.

18. Lars Kotthoff. Algorithm Selection for Combinatorial Search Problems: A Survey.
CoRR, abs/1210.7959, 2012.

19. Alan K. Mackworth. Consistency in Networks of Relations. Artif. Intell., 1977.
20. Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann. Boost-

ing sequential solver portfolios: Knowledge sharing and accuracy prediction. In
LION, pages 153–167. Springer, 2013.

21. Minizinc version 1.6. http://www.minizinc.org/download.html.
22. Eoin OMahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry

OSullivan. Using case-based reasoning in an algorithm portfolio for constraint
solving. AICS 08, 2009.

23. John R. Rice. The Algorithm Selection Problem. Advances in Computers, 1976.

http://www.cs.unibo.it/~amadini/iclp_2014.pdf
http://www.cs.unibo.it/~amadini/iclp_2014.pdf
http://www.cs.unibo.it/~amadini/lion_2014.pdf
http://www.cs.unibo.it/~amadini/lion_2014.pdf
http://www.cs.unibo.it/~amadini/sac_2014.pdf
http://www.cs.unibo.it/~amadini/sac_2014.pdf
http://dtai.cs.kuleuven.be/krr/software/minisatid
http://dtai.cs.kuleuven.be/krr/software/minisatid
http://www.gecode.org
http://www.gecode.org
http://www.minizinc.org/download.html

24. Olivier Roussel. ppfolio. http://www.cril.univ-artois.fr/˜roussel/ppfolio/.
25. Kate Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm

selection. ACM Comput. Surv., 41(1), 2008.
26. Orestis Telelis and Panagiotis Stamatopoulos. Combinatorial Optimization

through Statistical Instance-Based Learning. In ICTAI, 2001.
27. Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-brown. Hydra-MIP:

Automated Algorithm Configuration and Selection for Mixed Integer Program-
ming. In RCRA workshop on Experimental Evaluation of Algorithms for Solving

Problems with Combinatorial Explosion, 2011.

	Sequential Time Splitting and Bounds Communication for a Portfolio of Optimization Solvers

