
The StockingCost Constraint

Vinasétan Ratheil Houndji, Pierre Schaus, Laurence Wolsey and Yves Deville

Université catholique de Louvain, Louvain-la-Neuve, Belgium
{vinasetan.houndji, pierre.schaus, laurence.wolsey,

yves.deville}@uclouvain.be

Abstract. Many production planning problems call for the minimiza-
tion of stocking/storage costs. This paper introduces a new global con-
straint StockingCost([X1, . . . , Xn], [d1, . . . , dn], H, c) that holds when
each item Xi is produced on or before its due date di, the capacity c
of the machine is respected, and H is an upper bound on the stocking
cost. We propose a linear time algorithm to achieve bound consistency
on the StockingCost constraint. On a version of the Discrete Lot Sizing
Problem, we demonstrate experimentally the pruning and time efficiency
of our algorithm compared to other state-of-the-art approaches.

Keywords: Production Planning, Discrete Lot Sizing, Constraint Program-
ming, Global Constraint

1 Introduction

Production planning problems, such as Lot Sizing and Scheduling Problems,
require one to determine a minimum cost production schedule to satisfy the
demands for single or multiple items without exceeding machine capacities while
satisfying demands. Reviews of those problems and the corresponding Mixed
Integer Programming (MIP) formulations are presented in [8,2,5,12]. In many
Lot Sizing and Scheduling problems, in particular when the planning horizon is
discrete and finite, there are stocking costs to minimize. These costs depend on
the time spent between the production of an item and its delivery (due date).

To handle such Lot Sizing Problems in Constraint Programming,
we propose an efficient bound consistency filtering algorithm for the
StockingCost([X1, . . . , Xn], [d1, . . . , dn], H, c) constraint that requires each item
Xi to be produced on or before its due date di and the capacity c of the machine
to be respected.

First, we define the StockingCost constraint and how one can achieve prun-
ing with the state-of-the-art approaches. After, we present some algorithms to
achieve Bound Consistency for the total stocking costs H and for the items
Xi, i ∈ [1..n]. Then, we propose a complete O(n) filtering algorithm to achieve
Bound Consistency for all variables. Finally, we present some experimental re-
sults on a Lot Sizing Problem and conclude.

2 The StockingCost Constraint

The StockingCost constraint has the following form:

StockingCost([X1, . . . , Xn], [d1, . . . , dn], H, c)

where

– the variable Xi is the date of production of item i on the machine,
– the integer di is the due-date for item i,
– the integer c is the maximum number of items the machine can produce

during one time slot (capacity),
– if an item is produced before its due date, then it must be stocked. The

variable H is an upper bound on the total number of slots all the items are
need in stock.

The StockingCost constraint holds when each item is produced before its due
date (Xi ≤ di), the capacity of the machine is respected (i.e. no more than c
variables Xi have the same value), and H is an upper bound on the total stocking
cost (

∑
i(di −Xi) ≤ H).

Definition 1. Each variable has a finite domain. We denote by Xmin
i and Hmin

(resp. Xmax
i and Hmax) the minimal (resp. maximal) value in the domain of

variable Xi and H. We also denote tmax = (maxi(X
max
i)−mini(X

min
i)).

Note that StockingCost can be viewed as a soft-constraint [13] that would
impose every item to be produced exactly at the deadline. The stocking cost vari-
able H is the violation of these deadlines. We use inequality instead of equality
(as in van-Hoeve’s definition of soft-constraints [13]) because StockingCost is
an optimization constraint with H typically minimized. Observe that it differs
from a standard inequality constraint mainly because Hmax (the value repre-
senting the current best solution) will change during the search for a solution
[13]. In particular, it implies that we can filter the domains of variables Xi with
respect to Hmax, and potentially increase Hmin with respect to Xi’s.

The objective of a filtering algorithm is to remove values that do not partici-
pate in any solution of the constraint. In this paper, we are interested in achiev-
ing bound-consistency for the StockingCost constraint. This consistency level
generally offers a good trade-off between speed and filtering power. In a bound
consistent constraint, every variable bound (maximum or minimum) occurs in a
solution of the constraint. More formally, the bound-consistency definitions for
the StockingCost constraint are:

Definition 2. Given a domain D of variables Xi and H, the constraint
StockingCost([X1, . . . , Xn], [d1, . . . , dn], H, c) is bound consistent with respect
to D iff

– BC(Xmin
i) (1 ≤ i ≤ n) Let xi = Xmin

i ; there exist xj ∈
[Xmin

j ..Xmax
j] (1 ≤ j ≤ n, i 6= j) and h = Hmax such that

StockingCost([x1, . . . , xn], [d1, . . . , dn], h, c) holds

– BC(Xmax
i) (1 ≤ i ≤ n) Let xi = Xmax

i ; there exist xj ∈
[Xmin

j ..Xmax
j] (1 ≤ j ≤ n, i 6= j) and h = Hmax such that

StockingCost([x1, . . . , xn], [d1, . . . , dn], h, c) holds
– BC(Hmin) Let h = Hmin; there exist xi ∈ [Xmin

i ..Xmax
i](1 ≤ i ≤ n) such

that StockingCost([x1, . . . , xn], [d1, . . . , dn], h, c) holds

Decomposing the constraint

It is classical to decompose a global constraint into a conjunction of simpler
constraints, and applying the filtering algorithms available on the simpler con-
straints. This raises two questions. First, does the filtering on the decomposition
achieves bound consistency? Second, if it achieves the same filtering, what is the
complexity of this filtering?

A first decomposition of the constraint
StockingCost([x1, . . . , xn], [d1, . . . , dn], h, c) is the following:

Xi ≤ di,∀i (1)∑
i

(Xi = t) ≤ c,∀t (2)∑
i

(di −Xi) ≤ H (3)

Assuming that the filtering algorithms for each of the separate constraints
achieve bound consistency, the above decomposition does not achieve bound con-
sistency of the StockingCost constraint, as illustrated in the following example.

Example 1. Consider the following instance StockingCost([X1 ∈ [1..2], X2 ∈
[1..2]], [d1 = 2, d2 = 2], H ∈ [0..2], c = 1). The naive decomposition is not able to
increase the lower bound on H because the computation of H gives (2−X1) +
(2 − X2) = [0..1] + [0..1] = [0..2]. The problem is that it implicitly assumes
that both items can be placed at the due date but this is not possible because
of the capacity 1 of the machine. The lower bound of H should be set to 1. It
corresponds to one item produced in period 1 and the other in period 2.

Other decompositions can be proposed to improve the filtering of the naive
decomposition.

A first improvement is to use the global cardinality constraint (gcc) to model
the capacity requirement of the machine imposing that no value should occur
more than c times. The gcc constraint can efficiently replace tmax constraints of
equation 2 in the basic decomposition. Bound consistency on the gcc constraint
can be obtained in O(n) plus the time for sorting the n variables [9]. However,
together with equation 3, they do not achieve bound consistency of StockingCost
constraint.

A second possible improvement is to use a cost based global cardinality con-
straint (cost-gcc) [10]. In the cost − gcc, the cost of the arc (Xi, v) is equal

to +∞ if v > di and di − v otherwise. The cost − gcc provides more pruning
than equations 2 and 3 in the basic decomposition. Enforcing arc-consistency
for cost-gcc requires a time complexity of O(n · S(m,n + d, γ)) to check con-
sistency where n is the number of variables, d is the size of the domains, m is
the number arcs and S(m,n+ d, γ) is the complexity of the search for shortest
paths from a node to every node in a graph with m arcs and n + d nodes with
a maximal cost γ [10]. For the StockingCost, there can be up to n · tmax arcs.
Hence1 the final complexity to obtain arc-consistency2 on the cost-gcc used to
model StockingCost can be up to O(t3max). To the best of our knowledge the
arc-consistent cost-gcc constraint has never been implemented in a solver. Note
that for c = 1, one can use a minimum assignment constraint with a filtering
based on reduced costs [4]. The consistency check for this constraint is achieved
in O(t3max) (time complexity needed to solve a minimum assignment problem
with the Hungarian algorithm). The advantage of the minimum assignment is
that a minimum cost assignment can be recomputed in O((tmax)2) for one value
removal. It is not possible to clearly characterize the filtering level achieved for
the minimum assignment constraint based on reduced-costs.

Without loss of generality, in the rest of paper, we assume that Xmax
i ≤ di,∀i.

3 Pruning the cost variable

Given an assignment/solution X̄ on variables X = [X1, . . . , Xn], we denote by
H(X̄) the value

∑
i(di − X̄i).

Observation 1 For two assignments X̄ and X̂ satisfying |{Xi : Xi = t}| ≤ c,
if the sorted sequences of values in these solutions are the same, then H(X̄) =
H(X̂).

Let P denote the problem of computing the optimal lower-bound for H:

Hopt(P) = min
∑
i

(di −Xi) s.t.

Xmin
i ≤ Xi ≤ Xmax

i ,∀i
|{Xi : Xi = t}| ≤ c,∀t

Algorithm 1 computes the optimal value Hopt(P) in O(n · log(n)) and detects
infeasibility if the problem not feasible. This algorithm greedily schedules the
productions from the latest to the first one. A current time line t is decreased
and at each step, all the items such that Xmax

i = t are stored into a priority queue
(heap) to be scheduled next. Note that each item is added/removed exactly once
in the heap and the heap is popped at each iteration (line 11). The items with
largest Xmin

i must be scheduled first until no more items can be scheduled in
time t or the maximum capacity c is reached.

1 using Fibonacci heap to implement Dijkstra algorithm for shortest path computation
2 without considering incremental aspects.

Algorithm 1: Filtering of lower bound on H - BC(Hmin)

Input: X = [X1, . . . , Xn] such that Xi ≤ di and sorted (Xmax
i > Xmax

i+1)

1 Hopt ← 0
// total minimum stocking cost

2 t← Xmax
1

// current time slot

3 slack ← c
// current slack at this time slot

4 i← 1
5 heap← {}

// priority queue sorting items in decreasing Xmin
i

6 while i ≤ n do
7 while i ≤ n ∧Xmax

i = t do
8 heap← heap ∪ {i}
9 i← i + 1

10 while heap.size > 0 do
// we virtually produce unit j in t

11 j ← heap.popF irst
12 slack ← slack − 1
13 Hopt ← Hopt + (dj − t)

14 if t < Xmin
i then

15 the constraint is not feasible

16 if slack = 0 then
17 t← t− 1
18 while i ≤ n ∧Xmax

i = t do
19 heap← heap ∪ {i}
20 i← i + 1

21 slack ← c

22 if i ≤ n then
23 t← Xmax

i

24 Hmin ← max(Hmin, Hopt)

Let Pr denote the same problem with relaxed lower bounds of Xi:

Hopt(Pr) = min
∑
i

(di −Xi) s.t.

Xi ≤ Xmax
i ,∀i

|{Xi : Xi = t}| ≤ c,∀t

Observation 2 If problem P is feasible (i.e. the gcc constraint is feasible), then
Hopt(P) = Hopt(Pr).

Proof. If we use a simple queue instead of a priority queue in Algorithm 1, one
may virtually assign items to times t < Xmin

i and the feasibility test is not valid
anymore, but the algorithm terminates with the same ordered sequence of time
slots used in the final solution. By Observation 1, the objective values of optimal
solutions are the same. The complexity of the algorithm without priority queue
is O(n) instead of O(n · log(n)). ut

The greedy Algorithm 1 is able to compute the best lower bound Hopt(Pr)
(in the following we drop problem argument since optimal values are the same)
and filters the lower bound of H if possible.

4 Pruning the item variable

From now on, since we assume the gcc constraint is already bound-consistent
and thus feasible, only the cost argument may cause a filtering of lower-bounds
Xmin

i . Therefore, in the rest of the article, we implicitly assumed relaxed domains
[−∞..Xmax

i] ≤ di.

Definition 3. Let Hopt
Xi←v denote the optimal lower bound in a situation where

Xi is forced to take the value v ≤ Xmax
i .

Clearly, v must be removed from the domain of Xi if Hopt
Xi←v > Hmax. An

interesting question is: What is the minimum value v for Xi such that Hopt
Xi←v =

Hopt?

Definition 4. Let vopti denote the minimum value such that Hopt
Xi←v = Hopt.

We have vopti = min{v ≤ Xmax
i : Hopt

Xi←v = Hopt}.

The following observation gives a lower bound on the evolution on Hopt when
a variable Xi is forced to take a value v < vopti .

Observation 3 For v < vopti , we have Hopt
Xi←v ≥ Hopt + (vopti − v)

After the propagation of Hmin, one may still have some slack between the upper
and the lower bound Hmax −Hmin. Since vopti is the minimum value such that
Hopt

Xi←v = Hopt, we can use the lower bound of Observation 3 to filter Xi as
follows:

Xmin
i ← max(Xmin

i , vopti − (Hmax −Hmin))

In the following we show that the lower-bound of Observation 3 can be im-
proved and that we can actually predict the exact evolution of Hopt

Xi←v for an

arbitrary value v < vopti . A valuable information to this end is the number of
items scheduled at a given time slot t in an optimal solution:

Definition 5. In an optimal solution X̄ (i.e. H(X̄) = Hopt), let

count[t] = |{i : X̄i = t}|.

Algorithm 2 computes vopti ,∀i and count[t],∀t in linear time O(tmax). The
first step of the algorithm is to initialize count[t] as the number of variables
with upper bound equal to t. This can be done in linear time assuming the time
horizon of size (maxi{Xmax

i } − mini{Xmin
i }) is in O(n). We can initialize an

array count of the size of the horizon and increment the entry count[Xmax
i] of

the array in O(1) for each variable Xi.
The idea of the Algorithm 2 is to use a Disjoint-Set T (also called union-

find) data structure [1] making it possible to have efficient operations for
T.Union(S1, S2), grouping two disjoint sets into a same set, and T.F ind(v) re-
turning a ”representative” of the set containing v. It is easy to extend a disjoint-
set data structure with operations T.min(v)/T.max(v) returning the minimum/-
maximum value of the set containing value v. As detailed in the invariant of the
algorithm, time slots are grouped into a set S such that if Xmax

i ∈ S then
vopti = minS.

Algorithm 2: Compute vopti for all i

1 Initialize count as an array such that count[t] = |{Xi : Xmax
i = t}|

2 Create a disjoint set data structure T with the integers

t ∈ [mini{Xmin
i },maxi{Xmax

i }]
3 t← maxi{Xmax

i }
4 repeat
5 while count[t] > c do
6 count[t− 1]← count[t− 1] + count[t]− c
7 count[t]← c
8 T.Union(t− 1, t)

// invariant: vopti = t, ∀i ∈ {i : t ≤ Xmax
i ≤ T.max(T.find(t))}

9 t← t− 1

10 until t ≤ mini{Xmin
i }

11 // if count[mini{Xmin
i] > c then the constraint is infeasible

12 ∀i : vopti = T.min(T.find(Xmax
i))

Example 2. Consider the following instance StockingCost([X1 ∈ [1..3], X2 ∈
[1..6], X3 ∈ [1..7], X4 ∈ [1..7], X5 ∈ [1..8]], [d1 = 3, d2 = 6, d3 = 7, d4 =
7, d5 = 8], H ∈ [0..4], c = 1). At the beginning of the algorithm, count =
[0, 0, 1, 0, 0, 1, 2, 1] and T = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}. After the loop,
count = [0, 0, 1, 0, 1, 1, 1, 1] and T = {{1}, {2}, {3}, {4}, {5, 6, 7}, {8}}. Thus
voptX1

= 3, voptX2
= voptX3

= voptX4
= 5 and voptX5

= 8. Next figure shows the differ-
ent steps of the computation of T . Note that from step 3 to step 8, there is no
change since for t ∈ [1..6], count[t] always ≤ 1 in the loop.

Observation 3 gives a lower bound on the evolution of the optimal stocking
cost when assigning variable Xi to v. Unfortunately, this lower bound is not

1

2

3

4

5

6

7

8

step 1
t = 8

1

2

3

4

5

6

7

8

step 2
t = 7

1

2

3

4

5

6

7

8

step 3
t = 6

1

2

3

4

5

6

7

8

step 4
t = 5

1

2

3

4

5

6

7

8

step 5
t = 4

1

2

3

4

5

6

7

8

step 6
t = 3

1

2

3

4

5

6

7

8

step 7
t = 2

1

2

3

4

5

6

7

8

step 8
t = 1

optimal. One can be convinced easily for instance that with c = 1, if v < vopti

is assigned Xi, it virtually imposes to move to left at least all variables Xj such
that {Xj : Xmax

j = v}. This suggests for c=1, the following improved lower

bound for Hopt
Xi←v :

Hopt
Xi←v ≥ H

opt + (vopti − v) + |{Xj : Xmax
j = v}| (4)

Next example illustrates that this lower bound is still not optimal. It is not
sufficient just only consider the set {Xj : Xmax

j = v} since more variables could
be impacted.

Example 3. Consider the following instance StockingCost([X1 ∈ [1..5], X2 ∈
[1..4], X3 ∈ [1..4]], [d1 = 5, d2 = 4, d3 = 4], H ∈ [0..10], c = 1) with Hopt = 1
and voptX1

= 5. For v = 4, Hopt
X1←4 ≥ Hopt + (voptX1

− v) + |{Xj : Xmax
j = v}| =

1 + (5− 4) + 2 = 4. Here, Hopt
X1←4 is really 4. For v = 3, Hopt

X1←3 ≥ Hopt + (voptX1
−

v) + |{Xj : Xmax
j = v}| = 1 + (5− 3) + 0 = 3 but here Hopt

X1←3 = 4.

Definition 6. A slot t is full if it is using all its capacity count[t] = c.

Observation 4 There is at most bnc c full time slots.

Definition 7. minfull[t] is largest time slot ≤ t which is not full. More exactly
minfull[t] = max{t′ ≤ t : count[t′] < c}.

Definition 8. maxfull[t] is the smallest time slot ≥ t which is not full. More
exactly maxfull[t] = min{t′ ≥ t : count[t′] < c}.

Next observation gives the exact evolution of Hopt
Xi←v that will allow the BC

filtering of Xmin
i .

Observation 5 Hopt
Xi←v = Hopt + (vopti − v) + (v −minfull[v]), ∀v < vopti

To understand the previous observation one can realize that the number
of variables affected (that would need to be shifted by one to the left) by as-
signing Xi ← v is equivalent to the impact caused by insertion of an artificial
item with the domain [−∞..v]. So, the exact impact of Xi ← v is the number
of variables affected by the move plus (v − voptXi

). The Algorithm 3 computes
minfull[t],maxfull[t],∀t. The time complexity is thus O(tmax).

Algorithm 3: Computation of minfull[t],maxfull[t]∀t

1 Create a disjoint set data structure F with the integers

t ∈ [mini{Xmin
i } − 1,maxi{Xmax

i }]
2 t← maxi{Xmax

i }
3 repeat
4 if count[t] = c then
5 F.Union(t− 1, t)

6 t← t− 1

7 until t < mini{Xmin
i }

8 ∀t : minfull(t) = F.min(F.find(t))
9 ∀t : |F.find(t)| > 1 : maxfull(t) = F.max(F.find(t)) + 1

10 ∀t : |F.find(t)| = 1 : maxfull(t) = F.max(F.find(t))

Observation 6 Hopt
Xi←t ≥ H

opt
Xi←t′∀t < t′ ≤ vopti

Observation 7 If a slot t is full (count[t] = c) then ∀i:

Hopt
Xi←t = Hopt

Xi←t′ , ∀t
′ ∈ [minfull[t]..maxfull[t]) such that t′ < vopti

Proof. Suppose that a slot t is full. We know that ∀t′ ∈ [minfull[t]..maxfull[t]),
minfull[t′] = minfull[t]. Thus, ∀t′ ∈ [minfull[t]..maxfull[t]) such that t′ <
vopti , Hopt

Xi←t′ = Hopt+(vopti −t′)+(t′−minfull[t′]) = Hopt+vopti −minfull[t] =

Hopt + (vopti − t) + (t−minfull[t]) = Hopt
Xi←t. ut

The above observation is very important because if the new minimum for
Xi falls on a full time slot, we can increase the lower bound further. The bound
consistent filtering rule is given in Algorithm 4.

Algorithm 4: Bound Consistent Filtering of Xmin
i - BC(Xmin

i)

1 newmin← vopti − (Hmax −Hmin)
2 if count[newmin] = c then

3 newmin← min{vopti ,maxfull[newmin]}
4 Xmin

i ← max(Xmin
i , newmin))

Example 4. Considering the following instance StockingCost([X1 ∈ [1..3], X2 ∈
[1..6], X3 ∈ [1..7], X4 ∈ [1..7], X5 ∈ [1..8]], [d1 = 3, d2 = 6, d3 = 7, d4 = 7, d5 =
8], H ∈ [0..4], c = 1). We know that voptX1

= 3, voptX2
= voptX3

= voptX4
= 5, voptX5

= 8
and count = [0, 0, 1, 0, 1, 1, 1, 1]. After running the algorithm 1 we have Hopt =
2 and thus H ∈ [2..4]. Algorithm 3 gives F = {{0}, {1}, {2, 3}, {4, 5, 6, 7, 8}},
minfull = [1, 2, 2, 4, 4, 4, 4, 4] and maxfull = [1, 2, 4, 4, 9, 9, 9, 9]. Algorithm 4
gives for:
- X1 : newmin = 3− 2 = 1. count[1] = 0 and Xmin

1 = max{1, 1} = 1 ;
- X2, X3, X4 : newmin = 5− 2 = 3. count[3] = 1, newmin = min{4, 5} = 4 and
Xmin

j∈{2,3,4} = max{1, 4} = 4. Next figure shows the evolution of Hopt
X3←t. Note

that for t ∈ [1..3], Hopt
X3←t > Hmax = 4.

0 1 2 3 4 5 6 7 8
t

1

2

3

Hmax = 4

5

6

Hopt

- X5 : newmin = 8 − 2 = 6. count[6] = 1, newmin = min{8, 9} = 8 and
Xmin

5 = max{1, 8} = 8.
Thus X1 ∈ [1..3], X2 ∈ [4..6], X3 ∈ [4..7], X4 ∈ [4..7] and X5 ∈ {8}.

5 A complete filtering algorithm in O(n)

The Algorithms 2 and 3 for computing vopti ,∀i and maxfull(t),∀t presented so
far have a complexity of O(tmax). Although for some problems tmax ≈ n, in prac-
tice it can be larger than n if there is some sparsity on the deadlines. Algorithm
5 describes a complete self-contained version of the filtering for StockingCost

running in O(n) given a sorted version of the variables. This algorithm keeps
tracks of the items in the same set (same vopt) by maintaining two indexes j, k
with the following properties:

– After line 10, items in {j, . . . , i} are the open items (Xi : Xmax
i ≥ t) that

still need to be placed into some slots in an optimal solution.
– After line 10, all the items in {k, . . . , i} have the same vopt. This value vopt

is only known when all the current remaining open items can be placed into
the current slot. That is when the condition at line 13 is true.

Variable u keeps track of the maxfull(t) potential value with maxfull(t)
implemented as a map with constant time insertion. Only time slots t with
maxfull(t) > t are added to the map. Each time a full slot t is discovered (at
lines 19 and 26), one entry is added to the map. By observation 4 the number
of entries added into the map is at most n.

Lines 29 to 34 are just applying the filtering rules from Algorithm 4.

Implementation Details Although the Algorithm 5 is in O(n), it requires the
variables to be sorted. Since the filtering algorithms are called multiple times
during the search process and only a few number of variables are modified be-
tween each call, simple sorting algorithms such as insertion or bubble sort are
generally more efficient than classical sorting algorithms O(n · log(n)).

The map can be a simple Hashmap but a simple implementation with two
arrays of size tmax and a magic number incremented at each call can be used
to avoid computing hash functions and the map object creation/initialization
at each call to the algorithm. One array contains the value for each key index
in the map, and the other array contains magic numbers containing the value
of the magic number at the insertion. An entry is present only if the value at
corresponding index in the magic array is equal to the current magic number.
Incrementing the magic number thus amounts at emptying the map in O(1). The
cost O(tmax) at the map creation has to be paid only once an is thus amortized.

6 Experimental results

Experiments were conducted on instances MI −DLS − CC − SC (Multi Item
- Discrete Lot Sizing - Constant Capacity - Setup Cost) problems described in
[8].

Description of the MI − DLS − CC − SC problem

The Discrete Lot Sizing problem considered here is a multi-item, single machine
problem with capacity of production limited to one per period. There are storage
costs and sequence-dependent changeover costs, respecting the triangle inequal-
ity. Each order consisting of one unit of a particular item has a due date and
must be produced at latest by its due date. The stocking (inventory) cost of
an order is proportional to the number of periods between the due date and
the production period. The changeover cost qi,j is induced when passing from
the production of item i to another one j with qi,i = 0 ∀i. Backlogging is not
allowed. The objective is to assign a production period for each order respecting
its due date and the machine capacity constraint so as to minimize the sum of
stocking costs and changeover costs.

Next example shows a tiny instance of the problem.

Example 5. Consider the problem with the following input data: number of items
type nbItems = 2; number of periods nbPeriods = 5; stocking cost h = 2;

Algorithm 5: Complete filtering algorithm in O(n)

Input:
X = [X1, . . . , Xn, Xn+1] such that Xi ≤ di and sorted (Xmax

i > Xmax
i+1)

Xmax
n+1 = −∞ // artificial variable

1 Hopt ← 0
2 t← Xmax

1

3 i← 1
4 j ← 1 // open items {j, . . . , i} must be placed in some slots

5 k ← 1 // items {k, . . . , i} have same vopt

6 u← t + 1
7 maxfull← map() // a map from int to int

8 while i ≤ n ∨ j < i do
9 while i ≤ n ∧Xmax

i = t do
10 i← i + 1

// place at most c items into slot t
11 for i′ ∈ [j..min(i− 1, j + c− 1)] do
12 Hopt ← Hopt + (di′ − t)

13 if i− j ≤ c then // all the open items can be placed in t
14 full← i− j = c // true if t is fill up completely

15 voptl ← t,∀l ∈ [k..i)
16 j ← i
17 k ← i
18 if full then

// invariant ∀t′ ∈ [t..u− 1], count[t] = c
19 maxfull(t)← u
20 if Xmax

i < t− 1 then
21 u← Xmax

i + 1

22 else
23 u← Xmax

i + 1

24 t← Xmax
i

25 else // all open items can not be placed in t
// invariant ∀t′ ∈ [t..u− 1], count[t] = c

26 maxfull(t)← u
27 j ← j + c // place c items into slot t
28 t← t− 1

29 Hmin ← max(Hmin, Hopt)
30 for i ∈ [1..n] do

31 newmin← vopti − (Hmax −Hmin)
32 if maxfull(t).hasKey(newmin) then

33 newmin← min{vopti ,maxfull(newmin)}
34 Xmin

i ← max(Xmin
i , newmin))

demand times for items of type 1 d1t∈{1,...,5} = (0, 1, 0, 0, 1) and for items of type

2 d2t∈{1,...,5} = (1, 0, 0, 0, 1); q1,2 = 5, q2,1 = 3. A feasible solution of this problem

is productionP lan = (2, 1, 2, 0, 1) which means that item 2 will be produced in
period 1; item 1 in period 2; item 2 in period 3 and item 1 in period 5. Note that
there is no production in period 4, it is an idle period. The cost associated to this
solution is q2,1+q1,2+q2,1+2∗h = 15 but it is not the optimal cost. The optimal
solution is productionP lan = (2, 1, 0, 1, 2) with the cost q2,1 + q1,2 + h = 10.

A Constraint Programming Model

We uniquely identify each order. The aim is to associate to each of these orders
a period that respects the due date of the order. Let date(p) ∈ [1..nbPeriods],
∀p ∈ [1..nbDemands], represents the period in which the order p is satisfied. This
corresponds to period in which the order p is produced/satisfied. Let dueDate(p)
be the deadline for order p, that is the period in which p is due.

If objStorage is an upper bound on the total number of periods in which
orders have to be held in stock, the stocking part can be modeled by the con-
straint:

StockingCost(date, dueDate, objStorage, 1)

Observation 8 There is no difference between two orders of the same item
except for their due dates. Therefore given a feasible production schedule, if it
is possible to swap the production periods of two orders involving the same item
same item (date(p1), date(p2) such that item(p1) = item(p2)), we obtain an
identical solution with the same stocking cost..

Based on observation 8, we remove such symmetries by adding precedence con-
straints on date variables involving by the same item:

date(p1) < date(p2),∀(p1, p2) ∈ [1..nbDemands]× [1..nbDemands] such that

dueDate(p1) < dueDate(p2) ∧ item(p1) = item(p2)

Now, the second part of the objective objChangeover concerning changeover
costs has to be introduced in the model. This part is similar to a successor
CP model for the Traveling Salesman Problem (TSP) in which the cities to be
visited represent the orders and the distances between them are the correspond-
ing changeover costs. Let successor(p), ∀p ∈ [1..nbDemands], define the order
produced on the machine immediately after producing order p. We additionally
create a dummy order nbDemands + 1 to be produced after all the other or-
ders. In the first step, a Hamiltonian circuit successor variable is imposed. This
is achieved by using the classical circuit [7] constraint on successor variables
for dynamic subtour filtering. The date and successor variables are linked with
the element constraint by imposing that the production date of p is before the
production date of its successors:

∀p ∈ [1..nbDemands] : date(p) < date(successor(p))

As announced, the artificial production is scheduled at the end:

date(nbDemands+ 1) = nbPeriods+ 1

Note that as with date variables, some symmetries can be broken. For two
nodes n1, n2 ∈ [1..nbDemands] such that dueDate(n1) < dueDate(n2) and
item(n1) = item(n2), we force that n1 cannot be the successor of n2 with
successor(n2) 6= n1. Finally, a minAsssignment constraint [3] is used on the
successor variables and the changeover part of the objective objChangeover.

The objective to minimize is simply the sum of stocking costs and changeover
costs : (objStorage ∗ h) + objChangeover, where h is the unit stocking cost.

Experimental results

By assuming that the basic filtering date(p) ≤ dueDate(p) ,∀p ∈
[1..nbDemands] is imposed a priori, we compare the performance of the fil-
tering algorithm due to StockingCost(date, deadline, objStorage, 1) constraint
with that achieved by the following three sets of constraints:

– the basic decomposition :∑
p

(date(p) = t) ≤ 1,∀t ∈ [1..nbPeriods]

∑
p

(dueDate(p)− date(p)) ≤ objStorage

– tmax constraints of the previous decomposition are replaced by the global
bound consistency constraint allDifferentBC [6], that is the special case
of gcc constraint when the capacity c = 1 :

allDifferentBC(date)∑
p

(dueDate(p)− date(p)) ≤ objStorage

– the global constraint minAssignment [3] on date and objStorage variables
is added to the previous decomposition.

The StockingCost filtering algorithm and the MI−DLS−CC−SC model
have been implemented in the OscaR open-source solver [11]. They will be avail-
able in OscaR from release 1.1.0. As search heuristic, we used a classical static
binary search on date and successor variables in order to reduce the impact of
the search on model comparisons. Table 1 shows the results for some randomly
generated instances of MI − DLS − CC − SC 3. We present, for each group
of constraints, the number of nodes visited and the time (in seconds) used to
complete the search.

3 Instances available at http://becool.info.ucl.ac.be/resources/

discrete-lot-sizing-problem

http://becool.info.ucl.ac.be/resources/discrete-lot-sizing-problem
http://becool.info.ucl.ac.be/resources/discrete-lot-sizing-problem

Instance StockingCost Minassignment AllDifferent Basic decomp
Nodes Time Nodes Time Nodes Time Nodes Time

1(15 5 13) 0.36 106 26 0.41 106 36 1.25 106 87 1.25 106 99

2(15 5 14) 0.98 106 79 1.26 106 112 3.16 106 255 3.17 106 283

3(15 8 13) 1.10 106 64 2.34 106 156 8.05 106 515 8.07 106 625

4(15 10 12) 0.22 106 12 0.72 106 32 8.02 106 385 8.10 106 478

5(15 10 14) 0.32 106 16 1.41 106 79 18.7 106 1350 18.8 106 1552

6(20 5 17) 1.14 106 135 1.40 106 213 3.33 106 353 4.07 106 548

7(20 10 18) 6.90 106 534 8.02 106 805 9.68 106 906 — —

8(20 10 19) 1.32 106 95 1.34 106 120 9.68 106 616 — —

9(30 5 12) 2.87 106 124 3.00 106 223 3.00 106 127 3.00 106 188

10(30 10 11) 5.51 106 244 6.68 106 530 7.73 106 342 7.73 106 494

11(30 10 16) 2.41 106 156 4.64 106 439 — — — —

12(100 10 11) 1.49 106 60 1.50 106 271 2.30 106 110 2.30 106 153

13(100 10 18) 0.11 106 10 0.15 106 63 0.36 106 23 2.96 106 331

14(100 15 17) 2.79 106 143 6.51 106 1132 22.2 106 1305 22.3 106 1712

15(200 15 22) 19.3 106 854 — — 24.6 106 1187 24.6 106 2024

Table 1. Results for 15 MI-DLS-CC-SC instances. The format of instance is the follow-
ing: InstanceNumber(nbPeriods nbItems nbDemands). ”—” means that the model
did not complete the search after 3600 seconds.

These results suggest that our StockingCost version offers a stronger and
faster filtering than other decompositions. In particular, the last four instances
suggest that the time complexity of our filtering algorithm scales better than the
minAssignment decomposition when the number of time slots increases. This is
not surprising since filtering algorithm for StockingCost is in O(nbDemands)
and not a function of the size of horizon as is the case for the minAssignment
decomposition.

7 Conclusion

In this paper, we have introduced a new global constraint StockingCost to
handle the stocking aspect of Lot Sizing Problems when using Constraint Pro-
gramming. We have described an advanced filtering algorithm achieving bound
consistency with a time complexity linear in the number of variables. The ex-
perimental results show the pruning and time efficiency of the StockingCost

constraint on a version of the Discrete Lot Sizing Problem compared to various
decompositions of the constraint.

References

1. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to Algorithms (Second ed.), chapter 21: Data structures for Disjoint

Sets. MIT press Cambridge, 2001.
2. A Drexl and A Kimms. Lot sizing and scheduling - survey and extensions. European

Journal of Operational Research, pages 221–235, 1997.
3. Filippo Focacci, Andrea Lodi, and Michela Milano. Cost-based domain filter-

ing. In Principles and Practice of Constraint Programming–CP’99, pages 189–203.
Springer, 1999.

4. Filippo Focacci, Andrea Lodi, Michela Milano, and Daniele Vigo. Solving tsp
through the integration of or and cp techniques. Electronic notes in discrete math-
ematics, 1:13–25, 1999.

5. Raf Jans and Zeger Degraeve. Modeling industrial lot sizing problems: A review.
International Journal of Production Research, 2006.

6. Alejandro López-Ortiz, Claude-Guy Quimper, John Tromp, and Peter van Beek.
A fast and simple algorithm for bounds consistency of the alldifferent constraint.
In International Joint Conference on Artificial Intelligence – IJCAI03, 2003.

7. Gilles Pesant, Michel Gendreau, Jean-Yves Potvin, and Jean-Marc Rousseau. An
exact constraint logic programming algorithm for the traveling salesman problem
with time windows. Transportation Science, 32(1):12–29, 1998.

8. Yves Pochet and Laurence Wolsey. Production Planning by Mixed Integer Pro-
gramming. Springer, 2005.

9. Claude-Guy Quimper, Peter Van Beek, Alejandro López-Ortiz, Alexander Golyn-
ski, and Sayyed Bashir Sadjad. An efficient bounds consistency algorithm
for the global cardinality constraint. In Principles and Practice of Constraint
Programming–CP 2003, pages 600–614. Springer, 2003.

10. Jean-Charles Régin. Cost-based arc consistency for global cardinality constraints.
Constraints, 7(3-4):387–405, 2002.

11. OscaR Team. Oscar: Scala in or. https://bitbucket.org/oscarlib/oscar, 2014.
12. Hafiz Ullah and Sultana Parveen. A literature review on inventory lot sizing prob-

lems. Global Journal of Researches in Engineering, 10:21–36, 2010.
13. Willem-Jan van Hoeve. Over-constrained problems. In Hybrid Optimization, pages

191–225. Springer, 2011.

https://bitbucket.org/oscarlib/oscar

	The StockingCost Constraint

