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Abstract. According to the Erdős discrepancy conjecture, for any infinite ±1
sequence, there exists a homogeneous arithmetic progression of unbounded dis-
crepancy. In other words, for any±1 sequence(x1, x2, ...) and a discrepancyC,
there exist integersm andd such that|

∑
m

i=1
xi·d| > C. This is an80-year-old

open problem and recent development proved that this conjecture is true for dis-
crepancies up to2. Paul Erdős also conjectured that this property of unbounded
discrepancy even holds for the restricted case of completely multiplicative se-
quences (CMSs), namely sequences(x1, x2, ...) wherexa·b = xa · xb for any
a, b ≥ 1. The longest CMS with discrepancy2 has been proven to be of size
246. In this paper, we prove that any completely multiplicativesequence of size
127, 646 or more has discrepancy at least4, proving the Erdős discrepancy con-
jecture for CMSs of discrepancies up to3. In addition, we prove that this bound is
tight and increases the size of the longest known sequence ofdiscrepancy3 from
17, 000 to 127, 645. Finally, we provide inductive construction rules as well as
streamlining methods to improve the lower bounds for sequences of higher dis-
crepancies.

Introduction

Discrepancy theory addresses the problem of distributing points uniformly over some
geometric object, and studies how irregularities inevitably occur in these distributions.
For example, this subfield of combinatorics aims to answer the following question: for
a given setU of n elements, and a finite familyS = {S1, S2, . . . , Sm} of subsets ofU ,
is it possible to color the elements ofU in red or blue, such that the difference between
the number of blue elements and red elements in any subsetSi is small?

Important contributions in discrepancy theory include theBeck-Fiala theorem [1]
and Spencer’s Theorem [2]. The Beck-Fiala theorem guarantees that if each element
appears at mostt times in the sets ofS, the elements can be colored so that the imbal-
ance, or discrepancy, is no more than2t − 1. According to the Spencer’s theorem, the
discrepancy ofS grows at most asΩ(

√

n log(2m/n)). Nevertheless, some important
questions remain open.

According to Paul Erdős himself, two of his oldest conjectures relate to the discrep-
ancy of homogeneous arithmetic progressions (HAPs) [3]. Namely, a HAP of length
k and of common differenced corresponds to the sequence(d, 2d, . . . , kd). The first
conjecture can be formulated as follows:
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Conjecture 1. Let (x1, x2, ...) be an arbitrary±1 sequence. The discrepancy ofx w.r.t.
HAPs must be unbounded, i.e. for any integerC there is an integerm and an integerd
such that|

∑m
i=1 xi·d| > C.

This problem has been open for over eighty years, as is the weaker form according
to which one can restrict oneself to completely multiplicative functions. Namely,f is
a completely multiplicative function iff(a · b) = f(a) · f(b) for anya, b. The second
conjecture translates to:

Conjecture 2. Let (x1, x2, ...) be an arbitrary completely multiplicative±1 sequence.
The discrepancy ofx w.r.t. HAPs must be unbounded, i.e. for any integerC there is a
m and ad such that|

∑m
i=1 xi·d| > C.

Hereinafter, when non-ambiguous, we refer to the discrepancy of a sequence as its
discrepancy with respect to homogeneous arithmetic progressions. Formally, we denote
disc(x) = maxm,d|

∑m
i=1 xi·d|. We denoteE1(C) the length for which any sequence

has discrepancy at leastC + 1, or equivalently, one plus the maximum length of a
sequence of discrepancyC. Similarly, we defineE2(C) the length for which anycom-
pletely multiplicative sequence has discrepancy at leastC + 1. 1

A proof or disproof of these conjectures would constitute a major advancement in
combinatorial number theory [4]. To date, both conjectureshave been proven to hold
for the caseC ≤ 2. The values ofE1(1), E2(1), andE2(2) have been long proven to be
12, 10, and247 respectively, while recent development provedE1(2) = 1161 [5]. Konev
and Lisitsa [5] also provide a new lower bound forE1(3). After 3 days of computation,
a SAT solver was able to find a satisfying assignment for a sequence of length13, 000.
Yet, it would fail to find a solution of size14, 000 in over 2 weeks of computation. They
also report a solution of length17, 000, the longest known sequence of discrepancy3.
In this paper, we substantially increase the size of the longest sequence of discrepancy
3, from 17, 000 to 127, 645. In addition, we claim thatE2(3) = 127, 646, making this
bound tight, asPlingeling was able to prove unsat andLingeling generated an
UNSAT proof in DRUP format [6].

This paper is organized as follows. The next section formally defines the Erdos
discrepancy problems (for the general case and the multiplicative case) and presents
SAT encodings for both problems. We then investigate streamlined search techniques to
boost the search for lower bounds of these two problems, and to characterize additional
structures that appear in a subset of the solutions. Furthermore, in a subsequent section,
we provide construction rules that are based on these streamliners and allow to generate
larger sequences of limited discrepancy from smaller ones.The last section presents the
results of these approaches.

Problem Formulation

In this section, we first formally define the two conjectures as decision problems and
then propose encodings for these problems.

1 Note that, if Conjecture 1 (resp. Conjecture 2) were to be rejected,E1(C) (resp.E2(C) ) would
correspond to infinity.
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Definition 1 (EDP1). Given two integers n and C, does there exist a ±1 sequence
(x1, . . . , xn) such that |

∑m
i=1 xi·d| ≤ C for any 1 ≤ d ≤ n,m ≤ n/d.

Konev and Lisitsa [5] provide a SAT encoding for this problemthat uses an au-
tomaton accepting any sub-sequence of discrepancy exceeding C. A statesj of the
automaton corresponds to the sum of the input sequence, while the accepting state
sB captures whether the sequence has exceeded the discrepancyC. A proposition
s
(m,d)
j is true whenever the automaton is in state

∑m−1
i=1 xi·d after reading the sequence

(xd, . . . , x(m−1)d). Let pi be the proposition corresponding toxi = +1. A proposition
that tracks the state of the automaton for an input sequence(xd, x2d, . . . , x⌊n/d⌋d) can
be formulated as:

φ(n,C, d) = s
(1,d)
0

n/d
∧

m=1

(

∧

−C≤j<C

(

s
(m,d)
j ∧ pid → s

(m+1,d)
j+1

)

∧

∧

−C<j≤C

(

s
(m,d)
j ∧ pid → s

(m+1,d)
j+1

)

∧

(

s
(m,d)
C ∧ pid → sB

)

∧

(

s
(m,d)
−C ∧ pid → sB

)

)

(1)

In addition, we need to encode that the automaton is in exactly one state at any point
in time. Formally, we define this proposition as:

χ(n,C) =
∧

1≤d≤n/C,1≤m≤n/d

(

∨

−C≤j≤C

s
(i,d)
j ∧

∧

−C≤j1,j2≤C

(

s
(i,d)
j1

∨ s
(i,d)
j2

)

)

(2)

Finally, we can encode the Erdős Discrepancy Problem as follows:

EDP1(n,C) : sB ∧ χ(n,C) ∧

n
∧

d=1

φ(n,C, d) (3)

Furthermore, as the authors of [5], the actual statess
(m,d)
j of the automaton do not

require2C + 1 binary variables to represent the2C + 1 values of the states. Instead,
one can modify this formulation and use⌈log2(2C + 1)⌉ binary variables to encode the
automaton states.

For the completely multiplicative case, we introduce additional constraints to cap-
ture the multiplicative property of any element of the sequence, i.e.xid = xixd for any
1 ≤ d ≤ n, 1 ≤ i ≤ n/d. With respect to the boolean variablespi, pd andpid, such a
constraint acts as XNOR gate of inputpi andpd and of outputpid. Formally, we denote
this propositionM(i, d) and define:

M(i, d) = (pi ∨ pd ∨ pid) ∧ (pi ∨ pd ∨ pid) ∧ (pi ∨ pd ∨ pid) ∧ (pi ∨ pd ∨ pid) (4)



4

Importantly, for completely multiplicative sequences, the discrepancy of the sub-
sequence (xd, ..., xmd) of lengthm and common differenced will be the same as
the discrepancy of the subsequence (x1, ..., xm). Indeed , we have|

∑m
i=1 xi·d| =

|
∑m

i=1 xixd| = |xd| · |
∑m

i=1 xi| = |
∑m

i=1 xi|. Therefore, one needs only check that
the partial sums

∑m
i=1 xi, 1 ≤ m ≤ n never exceedC nor go below−C. Furthermore,

note that a completely multiplicative sequence is entirelycharacterized by the values it
takes at prime positions, i.e.{xp|p is prime}. In addition, if there exists a completely
multiplicative sequence sequence(x1, ..., xp−1) of discrepancyC with p prime, then
the sequence(x1, ..., xp−1, (−1)

1

∑m
i=1

xi≥0) will also be a CMS of discrepancyC. As
a result,E2(C) cannot be a prime number.

Overall, for the completely multiplicative case, we obtain:

EDP2(n,C) : sB ∧ χ(n,C) ∧ φ(n,C, 1)
∧

1≤d≤n,1≤i≤n/d

M(i, d) (5)

Streamlined Search

The encoding ofEDP1 given in the previous section has successfully led to prove a
tight bound for the caseC = 2 [5]. On an Intel Core i5-2500K CPU, it takes about 800
seconds forPlingeling [7] to find a satisfying assignment forEDP1(1160, 2) and
less than 6 hours forGlucose [8] to generate a proof ofE1(2) = 1, 161. Nevertheless,
for the caseC = 3, it requires more than 3 days of computation forPlingeling to
find a sequence of sizen = 13, 000, and fails to find a sequence of size14, 000 in over
two weeks of computation.

In this section, in order to improve this lower bound and acquire a better understand-
ing of the solution space, we explore streamlining techniques that identifies additional
structure occurring in a subset of the solutions. Among the solutions of a combinato-
rial problem, there might be solutions that possess regularities beyond the structure of
the combinatorial problem itself. Streamlining [9] is an effective combinatorial search
strategy that exploits these additional regularities. By intentionally imposing additional
structure to a combinatorial problem, it focuses the searchon a highly structured sub-
space and triggers increased constraint reasoning and propagation. This search tech-
nique is sometimes referred to as “tunneling” [10]. In otherwords, a streamlined search
consists in adding specific desired or observed regularities, such as a partial pattern that
appears in a solution, to the combinatorial solver. These additional regularities boost
the solver that may find more effectively larger solutions that contain these regularities.
If no solution is found, the observed regularities were likely accidental. Otherwise, one
can analyze these new solutions and suggests new regularities. This methodology has
been successfully applied to find efficient constructions for different combinatorial ob-
jects, such as spatially-balanced Latin squares [11], or graceful double-wheel graphs
[12].

When analyzing solutions ofEDP1(n, 2) for n ∈ [1, 1160], there is a feature that
visually stands out of the solutions. When looking at a solution as a2D-matrix with
entries in{−,+} and changing the dimensions of the matrix, there seems to be clear
preferred matrix dimensions (saym-by-p) such that them rows are mostly identical for



5

the columns1 to p − 1, suggesting thatxi = xi mod p for 1 ≤ i ≤ p − 1. We denote
period(x, p, t) the streamliner that enforces this observation and define:

period(x, p, t) : xi = xi mod p ∀1 ≤ i ≤ t, i 6≡ 0 mod p (6)

First, while this observation by itself did not allow to improve the current best lower
bound forE1(3), it led to the formulation of the construction of the next section. Second,
it also led to the re-discovery of the so-called ’improved Walters sequence’ [13], defined
as follows:

µ3(i) =











+1, if i is 1 mod 3

−1, if i is 2 mod 3

−µ3(i/3), otherwise.

(7)

In the following, we denotewalters(x,w) the streamliner imposing that the firstw
elements of a sequencex follow the improved Walters sequence, i.e.:

walters(x,w) : xi = µ3(i) ∀1 ≤ i ≤ w (8)

One can easily see that the improved Walters sequence is a special case of the pe-
riodic sequence defined previously. Namely, for any sequencex wherewalters(x,w)
holds true, then we haveperiod(x, 9, w).

Finally, another striking feature of the solutions ofEDP1(n, 2) is that they tend to
follow a multiplicative sequence. Interesting,EDP2 restrictsEDP1 to the special case
of multiplicative functions and we observe for the caseC = 2 that this restriction
substantially impacts the value of the best bound possible (i.e.E1(2) = 1, 161 whereas
E2(2) = 247). Nevertheless, the solutions ofEDP1(n, 2) exhibit a partial multiplicative
property and we define:

mult(x,m, l) : xi·d = xixd ∀2 ≤ d ≤ m, 1 ≤ i ≤ n/d, i ≤ l (9)

In the experimental section, we show the speed-ups that are triggered using these
streamliners, and how the best lower bound forEDP1(n, 2) gets greatly improved.

Construction Rule

In this section, we show how we used insights from theperiod(x, p, t) streamliner in
order to generate an inductive construction rule for sequences of discrepancyC from
sequences of lower discrepancy.

Consider a sequencex that is periodic of periodp, as defined in the previous section,
i.e.period(x, p, |x|) holds true, and is of lengthn = p ∗ k. Then, the sequencex can be
written as:

x = (y1, y2, . . . , yp−2, yp−1, z1

y1, y2, . . . , yp−2, yp−1, z2

. . .

y1, y2, . . . , yp−2, yp−1, zk) (10)
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LetC be the discrepancy ofz = (z1, z2, ..., zk) andC′ the discrepancy of(y1, ..., yp−1).
Given that

∑m
i=1 xip =

∑m
i=1 zi for any1 ≤ m ≤ k, we havedisc(x) ≥ C. Note that

if x was completely multiplicative, then it would holddisc(x) = C. We study the gen-
eral case wherex is not necessarily multiplicative, and investigate the conditions under
whichdisc(x) is guaranteed to be less or equal toC + C′.

For a given common differenced and lengthm, we consider the subsequence
(xd, x2d, ..., xmd). Let q = p

gcd(d,p) . Given the definition 10 ofx, the subsequence
(xd, x2d, ..., xmd) corresponds to:

(yd mod p, y2d mod p, ..., y(q−1)d mod p, zq, (11)

yd mod p, y2d mod p, ..., y(q−1)d mod p, z2q, (12)

yd mod p, ...) (13)

Note that ifp dividesd or d dividesp, this subsequence becomes(zq, z2q, ..., zqm)
and is of discrepancy at mostC. As a result, a sufficient condition forx to be of dis-
crepancy at mostC+C′ is to haveyd mod p, y2d mod p, ..., y(q−1)d mod p of discrepancy
C′ and summing to0. We say that such a sequence has a discrepancymodp of C′.
Formally, we define the problem of finding such sequences as follows:

Definition 2 (Discrepancy mod p). Given two integers p andC′, does there exist a ±1
sequence (y1, . . . , yp−1) such that:

|

m
∑

i=1

yi·d mod p| ≤ C′, ∀1 ≤ d ≤ n,m <
p

gcd(d, p)
(14)

p

gcd(d,p)
−1

∑

i=1

yi·d mod p = 0, ∀1 ≤ d ≤ n (15)

Notice that, given the equation 15,p should be odd for such a sequence to exist.
We encode this problem as a Constraint Satisfaction Problem(CSP) in a natural way

from the problem definition. We provide the experimental results in the next section.

Results

All experiments were run on a Linux (version 2.6.18) clusterwhere each node has an
Intel Xeon Processor X5670, with dual-CPU, hex-core @2.93GHz, 12M Cache, 48GB
RAM. Unless otherwise noted, the results were obtained using the parallel SAT solver
Plingeling, versionats1 for the SAT encodings, and usingIBM ILOG CPLEX

CP Optimizer, release12.5.1 for the CP encodings.
First, we evaluate the proposed streamliners for the two problems. Table 1 reports

the length of the sequences that were successfully generated, as well as the computation
time. The first clear observation is that, for EDP1, the streamlined search based on the
partial multiplicative property significantly boosts the search and allows to generate
solutions that appear to be out of reach of the standard search approach. For example,
while it takes about 10 days to find a solution of length13, 900without streamliners, the
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streamlined search generates a substantially-large satisfying assignment of size31, 500
in about 15 hours. Next, we study streamliners that were usedfor EDP2, i.e. partially
imposing the walters sequence. The results clearly show thespeed up triggered by the
combination of the new encoding for EDP2 with thewalters streamliners. Interestingly,
the longestwalters sequence of discrepancy3 is of size819. Nevertheless, one can
successfully impose the first800 elements of the walters sequence and still expand it to
a sequence of length108, 000. Furthermore, when imposingwalters(730), it takes less
than 1 hour and an half to find a satisfying assignment for a sequence of size127, 645.
Moreover, without additional streamliners, it takes about60 hours to prove unsat for the
case127, 646 and allows us to claim that this bound is tight. Nevertheless, the solver
generates a DRUP proof of size 335GB, which lies beyond the reach of traditional
checkers [6].

Encoding Streamliners Size of sequence Runtime (in sec)

- 13,000 286,247
- 13,500 560,663
- 13,900 770,122

mult(120,2000) 15,600 4,535
EDP1 mult(150,2000) 18,800 8,744

mult(200,1000) 23,900 12,608
mult(700,10000) 27,000 45,773
mult(700,20000) 31,500 51,144

walters(800) 81,000 1,364
EDP2 walters(800) 108,000 4,333

walters(700) 112,000 5,459
walters(730) 127,645 4,501

Table 1: Solution runtimes of searches with and without streamliners. The streamlined
search leads to new lower bounds for the 2 EDP problems.

In terms of the inductive construction described in the previous section, we can gen-
erate sequences whose discrepancymodp is 1, for p in 1, 3, 5, 7, and9, while it also
generates sequences of discrepancymodp equal to2 for p in 11, 13, 15, 17, 25, 27, 45,
and81. Overall, this proves that one can take any sequencex of length |x| and dis-
crepancyC and generate one of length9|x| and of discrepancyC + 1, or of length
81|x| and of discrepancyC + 2. As a result, this provides a new bound for the case
of discrepancy4, and provesE1(4) > 9 ∗ 127645 = 1, 148, 805. Interestingly, such a
long sequence suggests that the proof of the Erdos conjecture forC > 3 may require
additional insights and analytical proof, beyond the approach proposed in this work.

Conclusions

In this paper, we address the Erdos discrepancy problem for general sequences as well
as for completely multiplicative sequences. We adapt a SAT encoding previously pro-
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posed and investigate streamlining methods to speed up the solving time and under-
stand additional structures that occur in some solutions. Overall, we substantially im-
prove the best known lower bound for discrepancy 3 from17, 001 to 127, 646. In ad-
dition, we claim that this bound is tight, as suggested by theunsat proof generated
by Lingeling. Finally, we propose construction rules to inductively generate longer
sequences of limited discrepancy.
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