
Incremental QBF Solving?

Florian Lonsing and Uwe Egly

Vienna University of Technology
Institute of Information Systems
Knowledge-Based Systems Group
http://www.kr.tuwien.ac.at/

Abstract. We consider the problem of incrementally solving a sequence
of quantified Boolean formulae (QBF). Incremental solving aims at us-
ing information learned from one formula in the process of solving the
next formulae in the sequence. Based on a general overview of the prob-
lem and related challenges, we present an approach to incremental QBF
solving which is application-independent and hence applicable to QBF
encodings of arbitrary problems. We implemented this approach in our
incremental search-based QBF solver DepQBF and report on implemen-
tation details. Experimental results illustrate the potential benefits of
incremental solving in QBF-based workflows.

1 Introduction

The success of SAT technology in practical applications is largely driven by incre-
mental solving. SAT solvers based on conflict-driven clause learning (CDCL) [32]
gather information about a formula in terms of learned clauses. When solving a
sequence of closely related formulae, it is beneficial to keep clauses learned from
one formula in the course of solving the next formulae in the sequence.

The logic of quantified Boolean formulae (QBF) extends propositional logic
by universal and existential quantification of variables. QBF potentially allows
for more succinct encodings of PSPACE-complete problems than SAT. Moti-
vated by the success of incremental SAT solving, we consider the problem of
incrementally solving a sequence of syntactically related QBFs in prenex con-
junctive normal form (PCNF). Building on search-based QBF solving with clause
and cube learning (QCDCL) [8,13,21,24,36], we present an approach to incre-
mental QBF solving, which we implemented in our solver DepQBF.1

Different from many incremental SAT and QBF [27] solvers, DepQBF allows
to add clauses to and delete clauses from the input PCNF in a stack-based way by
push and pop operations. A related stack-based framework was implemented in

? Supported by the Austrian Science Fund (FWF) under grant S11409-N23. We would
like to thank Armin Biere and Paolo Marin for helpful discussions. This article will
appear in the proceedings of the 20th International Conference on Principles and
Practice of Constraint Programming, LNCS, Springer, 2014.

1 DepQBF is free software: http://lonsing.github.io/depqbf/

ar
X

iv
:1

40
2.

24
10

v3
 [

cs
.L

O
]

 2
3

Ju
n

20
14

http://www.kr.tuwien.ac.at/
http://lonsing.github.io/depqbf/

the SAT solver PicoSAT [5]. A solver API with push and pop increases the usabil-
ity from the perspective of a user. Moreover, we present an optimization based
on this stack-based framework which reduces the size of the learned clauses.

Incremental QBF solving was introduced for QBF-based bounded model
checking (BMC) of partial designs [26,27]. This approach, like ours, relies on
selector variables and assumptions to support the deletion of clauses from the
current input PCNF [1,11,20,28]. The quantifier prefixes of the incrementally
solved PCNFs resulting from the BMC encodings are modified only at the left
or right end. In contrast to that, we consider incremental solving of arbitrary
sequences of PCNFs. For the soundness it is crucial to determine which of the
learned clauses and cubes can be kept across different runs of an incremen-
tal QBF solver. We aim at a general presentation of incremental QBF solving
and illustrate problems related to clause and cube learning. Our approach is
application-independent and applicable to QBF encodings of arbitrary problems.

We report on experiments with constructed benchmarks. In addition to ex-
periments with QBF-based conformant planning using DepQBF [12], our results
illustrate the potential benefits of incremental QBF solving in application do-
mains like synthesis [6,33], formal verification [4], testing [17,25,34], planning [9],
and model enumeration [3], for example.

2 Preliminaries

We introduce terminology related to QBF and search-based QBF solving neces-
sary to present a general view on incremental solving.

For a propositional variable x, l := x or l := ¬x is a literal, where v(l) = x
denotes the variable of l. A clause (cube) is a disjunction (conjunction) of literals.
A constraint is a clause or a cube. The empty constraint ∅ does not contain any
literals. A clause (cube) C is tautological (contradictory) if x ∈ C and ¬x ∈ C.

A propositional formula is in conjunctive (disjunctive) normal form if it con-
sists of a conjunction (disjunction) of clauses (cubes), called CNF (DNF). For
simplicity, we regard CNFs and DNFs as sets of clauses and cubes, respectively.

A quantified Boolean formula (QBF) ψ := Q̂. φ is in prenex CNF (PCNF)
if it consists of a quantifier-free CNF φ and a quantifier prefix Q̂ with Q̂ :=
Q1B1 . . . QnBn where Qi ∈ {∀,∃} are quantifiers and Bi are blocks (i.e. sets) of
variables such that Bi 6= ∅ and Bi ∩Bj = ∅ for i 6= j, and Qi 6= Qi+1.

The blocks in the quantifier prefix are linearly ordered such that Bi < Bj

if i < j. The linear ordering is extended to variables and literals: xi < xj if
xi ∈ Bi, xj ∈ Bj and Bi < Bj , and l < l′ if v(l) < v(l′) for literals l and l′.

We consider only closed PCNFs, where every variable which occurs in the
CNF is quantified in the prefix, and vice versa.

A variable x ∈ Bi is universal, written as q(x) = ∀, if Qi = ∀ and existential,
written as q(x) = ∃, if Qi = ∃. A literal l is universal if q(v(l)) = ∀ and existential
if q(v(l)) = ∃, written as q(l) := ∀ and q(l) := ∃, respectively.

An assignment is a mapping from variables to the truth values true and false.
An assignment A is represented as a set of literals A := {l1, . . . , lk} such that,
for li ∈ A, if v(li) is assigned to false (true) then li = ¬v(li) (li = v(li)).

A PCNF ψ under an assignment A is denoted by ψ[A] and is obtained from
ψ as follows: for li ∈ A, if li = v(li) (li = ¬v(li)) then all occurrences of v(li) in
ψ are replaced by the syntactic truth constant > (⊥), respectively. All constants
are eliminated from ψ[A] by the usual simplifications of Boolean algebra and
superfluous quantifiers and blocks are deleted from the quantifier prefix of ψ[A].
Given a cube C and a PCNF ψ, ψ[C] := ψ[A] is the formula obtained from ψ
under the assignment A := {l | l ∈ C} defined by the literals in C.

The semantics of closed PCNFs is defined recursively. The QBF > is satis-
fiable and the QBF ⊥ is unsatisfiable. The QBF ψ = ∀(B1 ∪ {x}) . . . QnBn. φ is
satisfiable if ψ[¬x] and ψ[x] are satisfiable. The QBF ψ = ∃(B1∪{x}) . . . QnBn. φ
is satisfiable if ψ[¬x] or ψ[x] are satisfiable.

A PCNF ψ is satisfied under an assignment A if ψ[A] = > and falsified under
A if ψ[A] = ⊥. Satisfied and falsified clauses are defined analogously.

Given a constraint C, LQ(C) := {l ∈ C | q(l) = Q} for Q ∈ {∀,∃} denotes the
set of universal and existential literals in C. For a clause C, universal reduction
produces the clause UR(C) := C \ {l | l ∈ L∀(C) and ∀l′ ∈ L∃(C) : l′ < l}.

Q-resolution of clauses is a combination of resolution for propositional logic
and universal reduction [7]. Given two non-tautological clauses C1 and C2 and
a pivot variable p such that q(p) = ∃ and p ∈ C1 and ¬p ∈ C2. Let C ′ :=
(UR(C1) \ {p}) ∪ (UR(C2) \ {¬p}) be the tentative Q-resolvent of C1 and C2.
If C ′ is non-tautological then it is the Q-resolvent of C1 and C2 and we write
C ′ = C1 ⊗ C2. Otherwise, C1 and C2 do not have a Q-resolvent.

Given a PCNF ψ := Q̂. φ, a Q-resolution derivation of a clause C from ψ is
the successive application of Q-resolution and universal reduction to clauses in
ψ and previously derived clauses resulting in C. We represent a derivation as a
directed acyclic graph (DAG) with edges (1) C ′′ → C ′ if C ′ = UR(C ′′) and (2)
C1 → C ′ and C2 → C ′ if C ′ = C1⊗C2. We write Q̂.φ ` C if there is a derivation
of a clause C from ψ. Otherwise, we write Q̂.φ 0 C. Q-resolution is a sound and
refutationally-complete proof system for QBFs [7]. A Q-resolution proof of an
unsatisfiable PCNF ψ is a Q-resolution derivation of the empty clause.

3 Search-Based QBF Solving

We briefly describe search-based QBF solving with conflict-driven clause learning
and solution-driven cube learning (QCDCL) [8,13,21,24,36] and related proper-
ties. In the context of incremental QBF solving, clause and cube learning requires
a special treatment, which we address in Section 4.

Given a PCNF ψ, a QCDCL-based QBF solver successively assigns the vari-
ables to generate an assignment A. If ψ is falsified under A, i.e. ψ[A] = ⊥, then
a new learned clause C is derived by Q-resolution and added to ψ. If ψ is unsat-
isfiable, then finally the empty clause will be derived by clause learning. If ψ is

Clause derivation: Cube derivation:

C8 = (¬x1)

C7 = (¬y8 ∨ ¬x1)

C3 = (¬x1 ∨ x4) C4 = (¬y8 ∨ ¬x4)

C14 = ∅

C13 = (¬x1)

C10 = (¬y8)

C9 = (. . .)

C12 = (y8 ∧ ¬x1)

C11 = (. . .)

Fig. 1. Derivation DAGs of the clauses and cubes from Example 1. The literals in the
initial cubes C9 and C11 have been omitted in the figure to save space.

satisfied under A, i.e. ψ[A] = >, then a new learned cube is constructed based
on the following model generation rule, existential reduction and cube resolution.

Definition 1 (model generation rule [13]). Given a PCNF ψ := Q̂.φ, an as-
signment A such that ψ[A] = > is a model2 of ψ. An initial cube C = (

∧
li∈A li)

is a conjunction over the literals of a model A.

Definition 2 ([13]). Given a cube C, existential reduction produces the reduced
cube ER(C) := C \ {l | l ∈ L∃(C) and ∀l′ ∈ L∀(C) : l′ < l}.

Definition 3 (cube resolution [13,36]). Given two non-contradictory cubes
C1 and C2, cube resolution is defined analogously to Q-resolution for clauses, ex-
cept that existential reduction is applied and the pivot variable must be universal.
The cube resolvent of C1 and C2 (if it exists) is denoted by C := C1 ⊗ C2.

If ψ is satisfiable, then finally the empty cube will be derived by cube learning
(Theorem 5 in [13]). Whereas in clause learning initially clauses of the input
PCNF ψ can be resolved, in cube learning first initial cubes have to be generated
by the model generation rule, which can then be used to produce cube resolvents.
Similar to Q-resolution derivations (DAGs) of clauses and Q-resolution proofs,
we define cube resolution derivations of cubes and proofs of satisfiability.

Example 1. Given the satisfiable PCNF ψ := ∃x1∀y8∃x5, x2, x6, x4. φ, where
φ :=

∧
i:=1,...,6 Ci with C1 := (y8 ∨ ¬x5), C2 := (x2 ∨ ¬x6), C3 := (¬x1 ∨ x4),

C4 := (¬y8 ∨ ¬x4), C5 := (x1 ∨ x6), and C6 := (x4 ∨ x5).
Figure 1 shows the derivation of the clauses C7 := C3 ⊗ C4 = (¬y8 ∨ ¬x1)

and C8 := UR(C7) = (¬x1) by Q-resolution and universal reduction.
The assignment A1 := {x6, x2,¬y8,¬x5, x4} is a model of ψ by Definition 1.

Hence C9 := (x6 ∧ x2 ∧ ¬y8 ∧ ¬x5 ∧ x4) is an initial cube. Existential re-
duction of C9 produces the cube C10 := ER(C9) = (¬y8). Similarly, A2 :=
{y8,¬x4,¬x1, x5, x6, x2} is a model of ψ and C11 := (y8∧¬x4∧¬x1∧x5∧x6∧x2) is
an initial cube. Existential reduction of C11 produces the cube C12 := ER(C11) =

2 We adopted this definition of models from [21].

(y8 ∧ ¬x1). The cube C13 := (¬x1) is obtained by resolving C10 = (¬y8) and
C12 = (y8 ∧¬x1). Finally, existential reduction of C13 produces the empty cube
C14 := ER(C13) = ∅, which proves that the PCNF ψ is satisfiable.

A QCDCL-based solver implicitly constructs derivation DAGs in constraint
learning. However, typically only selected constraints of these derivations are
kept as learned constraints in an augmented CNF [36].

Definition 4. Let ψ := Q̂. φ be a PCNF. The augmented CNF (ACNF) of ψ
has the form ψ′ := Q̂. (φ ∧ θ ∨ γ), where Q̂ is the quantifier prefix, φ is the set
of original clauses, θ is a CNF containing the learned clauses, and γ is a DNF
containing the learned cubes obtained by clause and cube learning in QCDCL.

Given an ACNF ψ′ and an assignment A, the notation ψ′[A] is defined simi-
larly to PCNFs. Analogously to clause derivations, we write Q̂. φ ` C if there is
a derivation of a cube C from the PCNF Q̂.φ. During a run of a QCDCL-based
solver the learned constraints can be derived from the current PCNF.

Proposition 1. Let ψ′ := Q̂. (φ∧θ∨γ) be the ACNF obtained by QCDCL from a
PCNF ψ := Q̂. φ. It holds that (1) ∀C ∈ θ : Q̂. φ ` C and (2) ∀C ∈ γ : Q̂. φ ` C.

Proposition 1 follows from the correctness of constraint learning in non-incre-
mental QCDCL. That is, we assume that the PCNF ψ is not modified over time.
However, as we point out below, in incremental QCDCL the constraints learned
previously might no longer be derivable after the PCNF has been modified.

Definition 5. Given the ACNF ψ′ := Q̂. (φ ∧ θ ∨ γ) of the PCNF ψ := Q̂. φ, a
clause C ∈ θ (cube C ∈ γ) is derivable with respect to ψ if ψ ` C. Otherwise, if
ψ 0 C, then C is non-derivable.

Due to the correctness of model generation, existential/universal reduction,
and resolution, constraints which are derivable from the PCNF ψ can be added
to the ACNF ψ′ of ψ, which results in a satisfiability-equivalent (≡sat) formula.

Proposition 2 ([13]). Let ψ′ := Q̂. (φ ∧ θ ∨ γ) be the ACNF of the PCNF
ψ := Q̂. φ. Then (1) Q̂.φ ≡sat Q̂.(φ ∧ θ) and (2) Q̂.φ ≡sat Q̂.(φ ∨ γ).

4 Incremental Search-Based QBF Solving

We define incremental QBF solving as the problem of solving a sequence of
PCNFs ψ0, ψ1, . . . , ψn using a QCDCL-based solver. Thereby, the goal is to not
discard all the learned constraints after the PCNF ψi has been solved. Instead,
to the largest extent possible we want to re-use the constraints that were learned
from ψi in the process of solving the next PCNF ψi+1. To this end, the ACNF
ψ′i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1) of ψi+1 for i > 0, which is maintained by the
solver, must be initialized with a set θi+1 of learned clauses and a set γi+1 of
learned cubes such that θi+1 ⊆ θi, γi+1 ⊆ γi and Proposition 2 holds with respect

to ψi+1. The sets θi and γi contain the clauses and cubes that were learned from
the previous PCNF ψi and potentially can be used to derive further constraints
from ψi+1. If θi+1 6= ∅ and γi+1 6= ∅ at the beginning, then the solver solves
the PCNF ψi+1 incrementally. For the first PCNF ψ0 in the sequence, the solver
starts with empty sets of learned constraints in the ACNF ψ′0 = Q̂0. (φ0∧θ0∨γ0).

Each PCNF ψi+1 for 0 ≤ i < n in the sequence ψ0, ψ1, . . . , ψn has the form
ψi+1 = Q̂i+1. φi+1. The CNF part φi+1 of ψi+1 results from φi of the previous
PCNF ψi = Q̂i. φi in the sequence by addition and deletion of clauses. We write
φi+1 = (φi \φdeli+1)∪φaddi+1 , where φdeli+1 and φaddi+1 are the sets of deleted and added

clauses. The quantifier prefix Q̂i+1 of ψi+1 is obtained from Q̂i of ψi by deletion
and addition of variables and quantifiers, depending on the clauses in φaddi+1 and

φdeli+1. That is, we assume that the PCNF ψi+1 is closed and that its prefix Q̂i+1

does not contain superfluous quantifiers and variables.
When solving the PCNF ψi using a QCDCL-based QBF solver, learned

clauses and cubes accumulate in the corresponding ACNF ψ′i = Q̂i. (φi∧θi∨γi).
Assume that the learned constraints are derivable with respect to ψi. The PCNF
ψi is modified to obtain the next PCNF ψi+1 to be solved. The learned con-
straints in θi and γi might become non-derivable with respect to ψi+1 in the
sense of Definition 5. Consequently, Proposition 2 might no longer hold for the
ACNF ψ′i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1) of the new PCNF ψi+1 if previously
learned constraints from θi and γi appear in θi+1 and γi+1. In this case, the
solver might produce a wrong result when solving ψi+1.

4.1 Clause Learning

Assume that the PCNF ψi = Q̂i. φi has been solved and learned constraints
have been collected in the ACNF ψ′i = Q̂i. (φi ∧ θi ∨ γi). The clauses in φdeli+1 are
deleted from φi to obtain the CNF part φi+1 = (φi \ φdeli+1) ∪ φaddi+1 of the next

PCNF ψi+1 = Q̂i+1. φi+1. If the derivation of a learned clause C ∈ θi depends
on deleted clauses in φdeli+1, then we might have that ψi ` C but ψi+1 0 C.
In this case, C is non-derivable with respect to the next PCNF ψi+1. Hence
C must be discarded before solving ψi+1 starts so that C 6∈ θi+1 in the initial
ACNF ψ′i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1). Otherwise, if C ∈ θi+1 then the solver
might construct a bogus Q-resolution proof for the PCNF ψi+1 and, if ψi+1 is
satisfiable, erroneously conclude that ψi+1 is unsatisfiable.

Example 2. Consider the PCNF ψ from Example 1. The derivation of the clause
C8 = (¬x1) shown in Fig. 1 depends on the clause C4 = (¬y8 ∨ ¬x4). We have
that ψ ` C8. Let ψ1 be the PCNF obtained from ψ by deleting C4. Then ψ1 0 C8

because C3 = (¬x1∨x4) is the only clause which contains the literal ¬x1. Hence
a possible derivation of the clause C8 = (¬x1) must use C3. However, no such
derivation exists in ψ1. There is no clause C ′ containing a literal ¬x4 which can
be resolved with C3 to produce C8 = (¬x1) after a sequence of resolution steps.

Consider the PCNF ψi+1 = Q̂i+1. φi+1 with φi+1 = φi ∪ φaddi+1 which is ob-

tained from Q̂i. φi by only adding the clauses φaddi+1 , but not deleting any clauses.

Assuming that Q̂i.φi ` C for all C ∈ θi in the ACNF ψ′i = Q̂i. (φi ∧ θi ∨ γi),
also Q̂i+1. (φi ∪φaddi+1) ` C. Hence all the learned clauses in θi are derivable with
respect to the next PCNF ψi+1 and can be added to the ACNF ψ′i+1.

4.2 Cube Learning

Like above, let ψ′i = Q̂i. (φi ∧ θi ∨ γi) be the ACNF of the previously solved

PCNF ψi = Q̂i. φi. Dual to clause deletions, the addition of clauses to φi can
make learned cubes in γi non-derivable with respect to the next PCNF ψi+1 =
Q̂i+1. φi+1 to be solved. The clauses in φaddi+1 are added to φi to obtain the CNF
part φi+1 = (φi \φdeli+1)∪φaddi+1 of ψi+1. An initial cube C ∈ γi has been obtained
from a model A of the previous PCNF ψi, i.e. ψi[A] = >. We might have that
ψi+1[A] 6= > with respect to the next PCNF ψi+1 because of an added clause
C ′ ∈ φaddi+1 (and hence also C ′ ∈ φi+1) such that C ′[A] 6= >. Therefore, A is not
a model of ψi+1 and the initial cube C is non-derivable with respect to ψi+1,
i.e. Q̂i.φi ` C but Q̂i+1.φi+1 0 C. Hence C and every cube whose derivation
depends on C must be discarded to prevent the solver from generating a bogus
cube resolution proof for ψi+1. If ψi+1 is unsatisfiable, then the solver might
erroneously conclude that ψi+1 is satisfiable. That is, Proposition 2 might not
hold with respect to non-derivable cubes and the ACNF ψ′i+1 of ψi+1.

Example 3. Consider the PCNF ψ from Example 1. The derivation of the cube
C10 = (¬y8) shown in Fig. 1 depends on the initial cube C9 = (x6 ∧ x2 ∧ ¬y8 ∧
¬x5∧x4), which has been generated from the model A1 = {x6, x2,¬y8,¬x5, x4}.
The cube C9 is derivable with respect to ψ since ψ[A1] = >, and hence ψ ` C9.
The cube C10 is also derivable since C10 = ER(C9). Assume that the clause
C0 := (¬x2 ∨ ¬x4) is added to ψ resulting in the unsatisfiable PCNF ψ2. Now
C9 is non-derivable with respect to ψ2 since C0[A1] = ⊥. Further, ψ2 0 C10.

Consider the PCNF ψi+1 = Q̂i+1. φi+1 with φi+1 = φi \ φdeli+1 which is ob-

tained from Q̂i. φi by only deleting the clauses φdeli+1, but not adding any clauses.
If after the clause deletions some variable x does not occur anymore in the re-
sulting PCNF ψi+1, then x is removed from the quantifier prefix of ψi+1 and
from every cube C ∈ γi which was learned when solving the previous PCNF
ψi. Proposition 2 holds for the cleaned up cubes C ′ = C \ {l | v(l) = x} for all
C ∈ γi with respect to ψi+1 and hence C ′ can be added to the ACNF ψ′i+1.

Proposition 3. Let ψ′i := Q̂i. (φi ∧ θi ∨ γi) be the ACNF of the PCNF ψi :=

Q̂i. φi. Let ψi+1 := Q̂i+1. φi+1 be the PCNF resulting from ψi with φi+1 = (φi \
φdeli+1), where the variables V del

i+1 no longer occur in φi+1 and are removed from Q̂i

to obtain Q̂i+1. Given a cube C ∈ γi, let C ′ := C\{l | v(l) ∈ V del
i+1}. Proposition 2

holds for C ′ with respect to Q̂i+1. φi+1: Q̂i+1. φi+1 ≡sat Q̂i+1. (φi+1 ∨ C ′).

Proof (Sketch). By induction on the structure of the derivations of cubes in γi.
Let C ∈ γi be an initial cube due to the assignment A with ψi[A] = >. For

A′ := A \ {l | v(l) ∈ V del
i+1}, we have ψi+1[A′] = > since all the clauses containing

the variables in V del
i+1 were deleted from ψi to obtain ψi+1. Then the claim holds

for the initial cube C ′ = C \ {l | v(l) ∈ V del
i+1} = (

∧
li∈A′ li) since ψi+1 ` C ′.

Let C ∈ γi be obtained from C1 ∈ γi by existential reduction such that
C = ER(C1). Assuming that the claim holds for C ′1 = C1 \ {l | v(l) ∈ V del

i+1}, it
also holds for C ′ = C \ {l | v(l) ∈ V del

i+1} = ER(C ′1) since existential reduction
removes existential literals which are maximal with respect to the prefix ordering.

Let C ∈ γi be obtained from C1, C2 ∈ γi by resolution on variable x with
x ∈ C1, ¬x ∈ C2. Assume that the claim holds for C ′1 = C1 \ {l | v(l) ∈ V del

i+1}
and C ′2 = C2 \ {l | v(l) ∈ V del

i+1}, i.e. Q̂i+1. φi+1 ≡sat Q̂i+1. (φi+1 ∨ C ′1) and

Q̂i+1. φi+1 ≡sat Q̂i+1. (φi+1 ∨ C ′2). If x 6∈ V del
i+1 then the claim also holds for

C ′ = C \ {l | v(l) ∈ V del
i+1} = C ′1 ⊗ C ′2 with x ∈ C ′1, ¬x ∈ C ′2 due to the

correctness of resolution (Proposition 2). If x ∈ V del
i+1 then the claim also holds

for C ′ = C\{l | v(l) ∈ V del
i+1} = (C ′1∧C ′2) since {y,¬y} 6⊆ (C ′1∪C ′2) for all variables

y, which can be proved by reasoning with tree-like models of QBFs [30]. ut

If a variable x no longer occurs in the formula, then cubes where x has been
removed might become non-derivable. However, due to Propositions 2 and 3 it is
sound to keep all the cleaned up cubes (resolution is not inferentially-complete).
Moreover, due to the correctness of resolution and existential reduction, Propo-
sition 2 also holds for new cubes derived from the cleaned up cubes.

In practice, the goal is to keep as many learned constraints as possible be-
cause they prune the search space and can be used to derive further constraints.
Therefore, subsets θi+1 ⊆ θi and γi+1 ⊆ γi of the learned clauses θi and cubes γi
must be selected so that Proposition 2 holds with respect to the initial ACNF
ψ′i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1) of the PCNF ψi+1 to be solved next.

5 Implementing an Incremental QBF Solver

We describe the implementation of our incremental QCDCL-based solver De-
pQBF. Our approach is general and fits any QCDCL-based solver. For incre-
mental solving we do not apply a sophisticated analysis of variable dependencies
by dependency schemes in DepQBF [22]. Instead, as many other QBF solvers, we
use the linear ordering given by the quantifier prefix. We implemented a stack-
based representation of the CNF part of PCNFs based on selector variables and
assumptions. Assumptions were also used for incremental QBF-based BMC of
partial designs [27] and are common in incremental SAT solving [1,11,20,28].

We address the problem of checking which learned constraints can be kept
across different solver runs after the current PCNF has been modified. To this
end, we present approaches to check if a constraint learned from the previous
PCNF is still derivable from the next one, which makes sure that Proposition 2
holds. Similar to incremental SAT solving, selector variables are used to handle
the learned clauses. Regarding learned cubes, selector variables can also be used
(although in a way asymmetric to clauses), in addition to an alternative approach
relying on full derivation DAGs, which have to be kept in memory. Learned cubes
might become non-derivable by the deletion of clauses and superfluous variables,

but still can be kept due to Proposition 3. We implemented a simple approach
which, after clauses have been added to the formula, allows to keep only initial
cubes but not cubes obtained by resolution or existential reduction.

5.1 QBF Solving under Assumptions

Let ψ := Q1B1Q2B2 . . . QnBn. φ be a PCNF. We define a set A := {l1, . . . , lk}
of assumptions as an assignment such that v(li) ∈ B1 for all literals li ∈ A. The
variables assigned by A are from the first block B1 of ψ. Solving the PCNF ψ
under the set A of assumptions amounts to solving the PCNF ψ[A]. The defini-
tion of assumptions can be applied recursively to the PCNF ψ[A]. If A assigns
all the variables in B1, then variables from B2 can be assigned as assumptions
with respect to ψ[A], since B2 is the first block in the quantifier prefix of ψ[A].

We implemented the handling of assumptions according to the literal-based
single instance (LS) approach (in the terminology of [28]). Thereby, the as-
sumptions in A are treated in a special way so that the variables in A are never
selected as pivots in the resolution derivation of a learned constraint according
to QCDCL-based learning. Similar to SAT-solving under assumptions, LS allows
to keep all the constraints that were learned from the PCNF ψ[A] under a set A
of assumptions when later solving ψ[A′] under a different set A′ of assumptions.

5.2 Stack-Based CNF Representation

In DepQBF, the CNF part φ of an ACNF ψ′i = Q̂i. (φi ∧ θi ∨ γi) to be solved
is represented as a stack of clauses. The clauses on the stack are grouped into
frames. The solver API provides functions to push new frames onto the stack, pop
present frames from the stack, and to add new clauses to the current topmost
frame. Each push operation opens a new topmost frame fj . New clauses are
always added to the topmost frame fj . Each new frame fj opened by a push
operation is associated with a fresh frame selector variable sj . Frame selector
variables are existentially quantified and put into a separate, leftmost quantifier
block B0 i.e. the current ACNF ψ′i has the form ψ′i = ∃B0Q̂i. (φi ∧ θi ∨ γi).
Before a new clause C is added to frame fj , the frame selector variable sj of
fj is inserted into C so that in fact the clause C ′ = C ∪ {sj} is added to fj . If
all the selector variables are assigned to false then under that assignment every
clause C ′ = C ∪ {sj} is syntactically equivalent to C.

The purpose of the frame selector variables is to enable or disable the clauses
in the CNF part φi with respect to the push and pop operations applied to
the clause stack. If the selector variable sj of a frame fj is assigned to true
then all the clauses of fj are satisfied under that assignment. In this case, these
satisfied clauses are considered disabled because they can not be used to derive
new learned clauses in QCDCL. Otherwise, the assignment of false to sj does
not satisfy any clauses in fj . Therefore these clauses are considered enabled.

Before the solving process starts, the clauses of frames popped from the stack
are disabled and the clauses of frames still on the stack are enabled by assign-
ing the selector variables to true and false, respectively. The selector variables

are assigned as assumptions. This is possible because these variables are in the
leftmost quantifier block B0 of the ACNF ψ′i = ∃B0Q̂i. (φi∧θi∨γi) to be solved.

The idea of enabling and disabling clauses by selector variables and assump-
tions originates from incremental SAT solving [11]. This approach was also ap-
plied to bounded model checking of partial designs by incremental QBF solv-
ing [27]. In DepQBF, we implemented the push and pop operations related to
the clause stack by selector variables similarly to the SAT solver PicoSAT [5].

In the implementation of DepQBF, frame selector variables are maintained
entirely by the solver. Depending on the push and pop operations, selector vari-
ables are automatically inserted into added clauses and assigned as assumptions.
This approach saves the user the burden of inserting selector variables manually
into the QBF encoding of a problem and assigning them as assumptions via
the solver API. Manual insertion is typically applied in incremental SAT solv-
ing based on assumptions as pioneered by MiniSAT [10,11]. We argue that the
usability of an incremental QBF solver is improved considerably if the selector
variables are maintained by the solver. For example, from the perspective of the
user, the QBF encoding contains only variables relevant to the encoded problem.

In the following, we consider the problem of maintaining the sets of learned
constraints across different solver runs. As pointed out in Section 4, Proposition 2
still holds for learned clauses (cubes) after the addition (deletion) of clauses to
(from) the PCNF. Therefore, we present the maintenance of learned constraints
separately for clause additions and deletions.

5.3 Handling Clause Deletions

A clause C ∈ θi in the current ACNF ψ′i = Q̂i. (φi ∧ θi ∨ γi) might become
non-derivable if its derivation depends on clauses in φdeli+1 which are deleted to
obtain the CNF part φi+1 = (φi \ φdeli+1) ∪ φaddi+1 of the next PCNF ψi+1.

In DepQBF, learned clauses in θi are deleted as follows. As pointed out in
the previous section, clauses of popped off frames are disabled by assigning
the respective frame selector variables to true. Since the formula contains only
positive literals of selector variables, these variables cannot be chosen as pivots
in derivations. Therefore, learned clauses whose derivations depend on disabled
clauses of a popped off frame fj contain the selector variable sj of fj . Hence
these learned clauses are also disabled by the assignment of sj . This approach
to handling learned clauses is also applied in incremental SAT solving [11].

The disabled clauses are physically deleted in a garbage collection phase if
their number exceeds a certain threshold. Variables which no longer occur in the
CNF part of the current PCNF are removed from the quantifier prefix and, by
Proposition 3, from learned cubes in γi to produce cleaned up cubes. We initialize
the set γi+1 of learned cubes in the ACNF ψ′i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1) of
the next PCNF ψi+1 to be solved to contain the cleaned up cubes.

The deletion of learned clauses based on selector variables is not optimal in
the sense of Definition 5. There might be another derivation of a disabled learned
clause C which does not depend on the deleted clauses φdeli+1. This observation
also applies to the use of selector variables in incremental SAT solving.

As illustrated in the context of incremental SAT solving, the size of learned
clauses might increase considerably due to the additional selector variables [1,20].
In the stack-based CNF representation of DepQBF, the clauses associated to a
frame fj all contain the selector variable sj of fj . Therefore, the maximum
number of selector variables in a new clause learned from the current PCNF ψi

is bounded by the number of currently enabled frames. The sequence of push
operations introduces a linear ordering f0 < f1 < . . . < fk on the enabled frames
fi and their clauses in the CNF with respect to the point of time where that
frames and clauses have been added. In DepQBF, we implemented the following
optimization based on this temporal ordering. Let C and C ′ be clauses which
are resolved in the course of clause learning. Assume that si ∈ C and sj ∈ C ′
are the only selector variables of currently enabled frames fi and fj in C and
C ′. Instead of computing the usual Q-resolvent C ′′ := C ⊗ C ′, we compute
C ′′ := (C⊗C ′)\{l | l = si if fi < fj and l = sj otherwise}. That is, the selector
variable of the frame which is smaller in the temporal ordering is discarded from
the resolvent. If fi < fj then the clauses in fi were pushed onto the clause stack
before the clauses in fj . The frame fj will be popped off the stack before fi.
Therefore, in order to properly disable the learned clause C ′′ after pop operations,
it is sufficient to keep the selector variable sj of the frame fj in C ′′. With this
optimization, every learned clause contains exactly one selector variable. In the
SAT solver PicoSAT, an optimization which has similar effects is implemented.

5.4 Handling Clause Additions

Assume that the PCNF ψi := Q̂i. φi has been solved and that all learned
constraints in the ACNF ψ′i = Q̂i. (φi ∧ θi ∨ γi) of ψi are derivable with re-
spect to ψi. The set φaddi+1 of clauses is added to φi to obtain the CNF part

φi+1 = (φi \ φdeli+1) ∪ φaddi+1 of the next PCNF ψi+1 = Q̂i+1. φi+1. For learned

clauses, we can set θi+1 := θi in the ACNF ψ′i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1) of
ψi+1. The following example illustrates the effects of adding φaddi+1 on the cubes.

Example 4. Consider the cube derivation shown in Fig. 1. As illustrated in Ex-
ample 3, the cubes C9 = (x6 ∧ x2 ∧ ¬y8 ∧ ¬x5 ∧ x4) and C10 = (¬y8) are
non-derivable with respect to the PCNF ψ2 obtained from ψ by adding the
clause C0 := (¬x2∨¬x4). The initial cube C11 := (y8∧¬x4∧¬x1∧x5∧x6∧x2)
still is derivable because the underlying model A2 := {y8,¬x4,¬x1, x5, x6, x2}
of ψ is also a model of ψ2. Therefore, when solving ψ2 we can keep the derivable
cubes C11 and C12 = ER(C11). The non-derivable cubes C9 and C10 must be
discarded. Otherwise, QCDCL might produce the cube resolution proof shown
in Fig. 1 when solving the unsatisfiable PCNF ψ2, which is incorrect.

We sketch an approach to identify the cubes in a cube derivation DAG G
which are non-derivable with respect to the next PCNF ψi+1 = Q̂i+1. φi+1.
Starting at the initial cubes, G is traversed in a topological order. An initial
cube C is marked as derivable if ψi+1[C] = >, otherwise if ψi+1[C] 6= > then C
is marked as non-derivable. This test can be carried out syntactically by checking

whether every clause of ψi+1 is satisfied under the assignment given by C. A cube
C obtained by existential reduction or cube resolution is marked as derivable if
all its predecessors in G are marked as derivable. Otherwise, C is marked as
non-derivable. Finally, all cubes in G marked as non-derivable are deleted.

The above procedure allows to find a subset γi+1 ⊆ γi of the set γi of cubes
in the solved ACNF ψ′i = Q̂i. (φi ∧ θi ∨ γi) so that all cubes in γi+1 are derivable

and Proposition 2 holds for the next ACNF ψ′i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1).
However, this procedure is not optimal because it might mark a cube C ∈ G as
non-derivable with respect to the next PCNF ψi+1 although ψi+1 ` C.

Example 5. Given the satisfiable PCNF ψ := ∃x1∀y8∃x5, x2, x6, x4. φ, where
φ :=

∧
i:=1,...,5 Ci with the clauses Ci from Example 1 where C1 := (y8 ∨ ¬x5),

C2 := (x2 ∨ ¬x6), C3 := (¬x1 ∨ x4), C4 := (¬y8 ∨ ¬x4), C5 := (x1 ∨ x6).
Consider the model A3 := {¬x1, y8,¬x5, x2, x6,¬x4} of ψ and the initial cube
C15 := (¬x1∧y8∧¬x5∧x2∧x6∧¬x4) generated from A3. Existential reduction
of C15 produces the cube C16 := ER(C15) = (¬x1 ∧ y8). Assume that the clause
C0 := (x4∨x5) is added to ψ to obtain the PCNF ψ3. The initial cube C15 is non-
derivable with respect to ψ3 since C0[A3] 6= >. However, for the cube C16 derived
from C15 it holds that ψ3 ` C16. The assignment A4 := {¬x1, y8, x5, x2, x6,¬x4}
is a model of ψ3. Let C17 := (¬x1 ∧ y8 ∧ x5 ∧ x2 ∧ x6 ∧ ¬x4) be the initial cube
generated from A4. Then C16 = ER(C17) is derivable with respect to ψ3.

In practice, QCDCL-based solvers typically store only the learned cubes,
which might be a small part of the derivation DAG G, and no edges. Therefore,
checking the cubes in a traversal of G is not feasible. Even if the full DAG G
is available, the checking procedure is not optimal as pointed out in Example 5.
Furthermore, it cannot be used to check cubes which have become non-derivable
after cleaning up by Proposition 3. Hence, it is desirable to have an approach to
checking the derivability of individual learned cubes which is independent from
the derivation DAG G. To this end, we need a condition which is sufficient to
conclude that some arbitrary cube C is derivable with respect to a PCNF ψ,
i.e. to check whether ψ ` C. However, we are not aware of such a condition.

As an alternative to keeping the full derivation DAG in memory, a fresh
selector variable can be added to each newly learned initial cube. Similar to
selector variables in clauses, these variables are transferred to all derived cubes.
Potentially non-derivable cubes are then disabled by assigning the selector vari-
ables accordingly. However, different from clauses, it must be checked explicitly
which initial cubes are non-derivable by checking the condition in Definition 1
for all initial cubes in the set γi of learned cubes. This amounts to an asym-
metric treatment of selector variables in clauses and cubes. Clauses are added
to and removed from the CNF part by push and pop operations provided by
the solver API. This way, it is known precisely which clauses are removed. In
contrast to that, cubes are added to the set of learned cubes γi on the fly during
cube learning. Moreover, the optimization based on the temporal ordering of
selector variables from the previous section is not applicable to generate shorter
cubes since cubes are not associated to stack frames.

Due to the complications illustrated above, we implemented the following
simple approach in DepQBF to keep only initial cubes. Every initial cube com-
puted by the solver is stored in a linked list L of bounded capacity, which is
increased dynamically. The list L is separate from the set of learned clauses.
Assume that a set φaddi+1 of clauses is added to the CNF part φi of the current
PCNF to obtain the CNF part φi+1 = (φi \ φdeli+1) ∪ φaddi+1 of the next PCNF

ψi+1 = Q̂i+1. φi+1. All the cubes in the current set γi of learned cubes are dis-
carded. For every added clause C ∈ φaddi+1 and for every initial cube C ′ ∈ L, it
is checked whether the assignment A given by C ′ is a model of the next PCNF
ψi+1. Initial cubes C ′ for which this check succeeds are added to the set γi+1 of
learned cubes in the ACNF ψ′i+1 of the next PCNF ψi+1 after existential reduc-
tion has been applied to them. If the check fails, then C ′ is removed from L. It
suffices to check the initial cubes in L only with respect to the clauses C ∈ φaddi+1 ,
and not the full CNF part φi+1, since the assignments given by the cubes in L
are models of the current PCNF ψi. In the end, the set γi+1 contains only initial
cubes all of which are derivable with respect to the ACNF ψ′i+1. If clauses are
removed from the formula, then by Proposition 3 variables which do not occur
anymore in the formula are removed from the initial cubes in L.

In the incremental QBF-based approach to BMC for partial designs [26,27],
all cubes are kept across different solver calls under the restriction that the
quantifier prefix is modified only at the left end. This restriction does not apply
to incremental solving of PCNF where the formula can be modified arbitrarily.

5.5 Incremental QBF Solver API

The API of DepQBF [23] provides functions to manipulate the prefix and the
CNF part of the current PCNF. Clauses are added and removed by the push and
pop operations described in Section 5.2. New quantifier blocks can be added at
any position in the quantifier prefix. New variables can be added to any quantifier
block. Variables which no longer occur in the formula and empty quantifier blocks
can be explicitly deleted. The quantifier block B0 containing the frame selector
variables is invisible to the user. The solver maintains the learned constraints as
described in Sections 5.3 and 5.4 without any user interaction.

The push and pop operations are a feature of DepQBF. Additionally, the API
supports the manual insertion of selector variables into the clauses by the user.
Similar to incremental SAT solving [11], clauses can then be enabled and disabled
manually by assigning the selector variables as assumptions via the API. In this
case, these variables are part of the QBF encoding and the optimization based
on the frame ordering presented in Section 5.3 is not applicable. After a PCNF
has been found unsatisfiable (satisfiable) under assumptions where the leftmost
quantifier block is existential (universal), the set of relevant assumptions which
were used by the solver to determine the result can be extracted.3

3 This is similar to the function “analyzeFinal” in MiniSAT, for example.

QBFEVAL’12-SR
discard LC keep LC diff.(%)

a: 29.37 × 106 26.18 × 106 -10.88
ã: 3,833,077 2,819,492 -26.44

b: 139,036 116,792 -16.00

b̃: 8,243 6,360 -22.84

t: 99.03 90.90 -8.19
t̃: 28.56 15.74 -44.88

QBFEVAL’12-SR-Bloqqer
discard LC keep LC diff.(%)

a: 39.75 × 106 34.03 × 106 -14.40
ã: 1.71 × 106 1.65 × 106 -3.62

b: 117,019 91,737 -21.61

b̃: 10,322 8,959 -13.19

t: 100.15 95.36 -4.64
t̃: 4.18 2.83 -32.29

Table 1. Average and median number of assignments (a and ã, respectively), back-
tracks (b, b̃), and wall clock time (t, t̃) in seconds on sequences S = ψ0, . . . , ψ10 of
PCNFs which were fully solved by DepQBF both if all learned constraints are dis-
carded (discard LC) and if constraints which are correct in the sense of Propositions 2
and 3 are kept (keep LC). Clauses are added to ψi to obtain ψi+1 in S.

QBFEVAL’12-SR
discard LC keep LC diff.(%)

a: 5.48 × 106 0.73 × 106 -86.62
ã: 186,237 15,031 -91.92

b: 36,826 1,228 -96.67

b̃: 424 0 -100.00

t: 21.94 4.32 -79.43
t̃: 0.75 0.43 -42.66

QBFEVAL’12-SR-Bloqqer
discard LC keep LC diff.(%)

a: 5.88 × 106 1.29 × 106 -77.94
ã: 103,330 8,199 -92.06

b: 31,489 3,350 -89.37

b̃: 827 5 -99.39

t: 30.29 9.78 -67.40
t̃: 0.50 0.12 -76.00

Table 2. Like Table 1 but for the reversed sequences S′ = ψ9, . . . , ψ0 of PCNFs after
the original sequence S = ψ0, . . . , ψ9, ψ10 has been solved. Clauses are deleted from ψi

to obtain ψi−1 in S′.

6 Experimental Results

To demonstrate the basic feasibility of general incremental QBF solving, we eval-
uated our incremental QBF solver DepQBF based on the instances from QBFE-
VAL’12 Second Round (SR) with and without preprocessing by Bloqqer.4 We
disabled the sophisticated dependency analysis in terms of dependency schemes
in DepQBF and instead applied the linear ordering of the quantifier prefix in the
given PCNFs. For experiments, we constructed a sequence of related PCNFs
for each PCNF in the benchmark sets as follows. Given a PCNF ψ, we divided
the number of clauses in ψ by 10 to obtain the size of a slice of clauses. The
first PCNF ψ0 in the sequence contains the clauses of one slice. The clauses
of that slice are removed from ψ. The next PCNF ψ1 is obtained from ψ0 by
adding another slice of clauses, which is removed from ψ. The other PCNFs in
the sequence S = ψ0, ψ1, . . . , ψ10 are constructed similarly so that finally the
last PCNF ψ10 contains all the clauses from the original PCNF ψ. In our tests,
we constructed each PCNF ψi from the previous one ψi−1 in the sequence by
adding a slice of clauses to a new frame after a push operation. We ran DepQBF

4 http://www.kr.tuwien.ac.at/events/qbfgallery2013/benchmarks/.

http://www.kr.tuwien.ac.at/events/qbfgallery2013/benchmarks/

on the sequences of PCNFs constructed this way with a wall clock time limit of
1800 seconds and a memory limit of 7 GB.

Tables 1 and 2 show experimental results5 on sequences S = ψ0, . . . , ψ10 of
PCNFs and on the reversed ones S′ = ψ9, . . . , ψ0, respectively. To generate S′,
we first solved the sequence S and then started to discard clauses by popping
the frames from the clause stack of DepQBF via its API. In one run (discard
LC), we always discarded all the constraints that were learned from the previous
PCNF ψi so that the solver solves the next PCNF ψi+1 (ψi−1 with respect to
Table 2) starting with empty sets of learned clauses and cubes. In another run
(keep LC), we kept learned constraints as described in Sections 5.3 and 5.4.
This way, 70 out of 345 total PCNF sequences were fully solved from the set
QBFEVAL’12-SR by both runs, and 112 out of 276 total sequences were fully
solved from the set QBFEVAL’12-SR-Bloqqer.

The numbers of assignments, backtracks, and wall clock time indicate that
keeping the learned constraints is beneficial in incremental QBF solving despite
the additional effort of checking the collected initial cubes. In the experiment
reported in Table 1 clauses are always added but never deleted to obtain the next
PCNF in the sequence. Thereby, across all incremental calls of the solver in the
set QBFEVAL’12-SR on average 224 out of 364 (61%) collected initial cubes were
identified as derivable and added as learned cubes. For the set QBFEVAL’12-
SR-Bloqqer, 232 out of 1325 (17%) were added.

Related to Table 2, clauses are always removed but never added to obtain the
next PCNF to be solved, which allows to keep learned cubes based on Proposi-
tion 3. Across all incremental calls of the solver in the set QBFEVAL’12-SR on
average 820 out of 1485 (55%) learned clauses were disabled and hence effectively
discarded because their Q-resolution derivation depended on removed clauses.
For the set QBFEVAL’12-SR-Bloqqer, 704 out of 1399 (50%) were disabled.

7 Conclusion

We presented a general approach to incremental QBF solving which integrates
ideas from incremental SAT solving and which can be implemented in any
QCDCL-based QBF solver. The API of our incremental QBF solver DepQBF
provides push and pop operations to add and remove clauses in a PCNF. This
increases the usability of our implementation. Our approach is application-
independent and applicable to arbitrary QBF encodings.

We illustrated the problem of keeping the learned constraints across different
calls of the solver. To improve cube learning in incremental QBF solving, it
might be beneficial to maintain (parts of) the cube derivation in memory. This
would allow to check the cubes more precisely than with the simple approach
we implemented. Moreover, the generation of proofs and certificates [2,14,29] is
supported if the derivations are kept in memory rather than in a trace file.

Dual reasoning [15,16,19,35] and the combination of preprocessing and cer-
tificate extraction [18,26,31] are crucial for the performance and applicability

5 Experiments were run on AMD Opteron 6238, 2.6 GHz, 64-bit Linux.

of CNF-based QBF solving. The combination of incremental solving with these
techniques has the potential to further advance the state of QBF solving.

Our experimental analysis demonstrates the feasibility of incremental QBF
solving in a general setting and motivates further applications, along with the
study of BMC of partial designs using incremental QBF solving [27]. Related ex-
periments with conformant planning based on incremental solving by DepQBF
showed promising results [12]. Further experiments with problems which are in-
herently incremental can provide more insights and open new research directions.

References

1. Audemard, G., Lagniez, J.M., Simon, L.: Improving Glucose for Incremental SAT
Solving with Assumptions: Application to MUS Extraction. In: Järvisalo, M.,
Van Gelder, A. (eds.) SAT. LNCS, vol. 7962, pp. 309–317. Springer (2013)

2. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal
Methods in System Design 41(1), 45–65 (2012)

3. Becker, B., Ehlers, R., Lewis, M.D.T., Marin, P.: ALLQBF Solving by Computa-
tional Learning. In: Chakraborty, S., Mukund, M. (eds.) ATVA. LNCS, vol. 7561,
pp. 370–384. Springer (2012)

4. Benedetti, M., Mangassarian, H.: QBF-Based Formal Verification: Experience and
Perspectives. JSAT 5, 133–191 (2008)

5. Biere, A.: PicoSAT Essentials. JSAT 4(2-4), 75–97 (2008)
6. Bloem, R., Könighofer, R., Seidl, M.: SAT-Based Synthesis Methods for Safety

Specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI. LNCS, vol. 8318, pp. 1–20.
Springer (2014)

7. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for Quantified Boolean For-
mulas. Inf. Comput. 117(1), 12–18 (1995)

8. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An Algorithm to Eval-
uate Quantified Boolean Formulae and Its Experimental Evaluation. J. Autom.
Reasoning 28(2), 101–142 (2002)

9. Cashmore, M., Fox, M., Giunchiglia, E.: Planning as Quantified Boolean Formula.
In: Raedt, L.D., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F.,
Lucas, P.J.F. (eds.) ECAI. Frontiers in Artificial Intelligence and Applications,
vol. 242, pp. 217–222. IOS Press (2012)

10. Eén, N., Sörensson, N.: An Extensible SAT-Solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT. LNCS, vol. 2919, pp. 502–518. Springer (2003)

11. Eén, N., Sörensson, N.: Temporal Induction by Incremental SAT Solving. Electr.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

12. Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant Planning as a Case
Study of Incremental QBF Solving. CoRR abs/1405.7253 (2014)

13. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term Resolution and Learn-
ing in the Evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res. (JAIR)
26, 371–416 (2006)

14. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A Uniform Approach for Generating
Proofs and Strategies for Both True and False QBF Formulas. In: Walsh, T. (ed.)
IJCAI. pp. 546–553. IJCAI/AAAI (2011)

15. Goultiaeva, A., Bacchus, F.: Recovering and Utilizing Partial Duality in QBF. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT. LNCS, vol. 7962, pp. 83–99. Springer
(2013)

16. Goultiaeva, A., Seidl, M., Biere, A.: Bridging the Gap between Dual Propaga-
tion and CNF-based QBF Solving. In: Macii, E. (ed.) DATE. pp. 811–814. EDA
Consortium San Jose, CA, USA / ACM DL (2013)

17. Hillebrecht, S., Kochte, M.A., Erb, D., Wunderlich, H.J., Becker, B.: Accurate
QBF-Based Test Pattern Generation in Presence of Unknown Values. In: Macii,
E. (ed.) DATE. pp. 436–441. EDA Consortium San Jose, CA, USA / ACM DL
(2013)

18. Janota, M., Grigore, R., Marques-Silva, J.: On QBF Proofs and Preprocessing. In:
McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.) LPAR. LNCS, vol. 8312, pp.
473–489. Springer (2013)

19. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A Non-prenex, Non-clausal QBF
Solver with Game-State Learning. In: Strichman, O., Szeider, S. (eds.) SAT. pp.
128–142. LNCS, Springer (2010)

20. Lagniez, J.M., Biere, A.: Factoring Out Assumptions to Speed Up MUS Extrac-
tion. In: Järvisalo, M., Van Gelder, A. (eds.) SAT. LNCS, vol. 7962, pp. 276–292.
Springer (2013)

21. Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX. LNCS, vol. 2381, pp.
160–175. Springer (2002)

22. Lonsing, F., Biere, A.: Integrating Dependency Schemes in Search-Based QBF
Solvers. In: Strichman, O., Szeider, S. (eds.) SAT. pp. 158–171. LNCS, Springer
(2010)

23. Lonsing, F., Egly, U.: Incremental QBF Solving by DepQBF (Extended Abstract).
In: The 4th International Congress on Mathematical Software, ICMS 2014, Seoul,
Korea, August 2014. Proceedings. LNCS, vol. 8592. Springer (2014), to appear.

24. Lonsing, F., Egly, U., Van Gelder, A.: Efficient Clause Learning for Quanti-
fied Boolean Formulas via QBF Pseudo Unit Propagation. In: Järvisalo, M.,
Van Gelder, A. (eds.) SAT. LNCS, vol. 7962, pp. 100–115. Springer (2013)

25. Mangassarian, H., Veneris, A.G., Benedetti, M.: Robust QBF Encodings for Se-
quential Circuits with Applications to Verification, Debug, and Test. IEEE Trans.
Computers 59(7), 981–994 (2010)

26. Marin, P., Miller, C., Becker, B.: Incremental QBF Preprocessing for Partial Design
Verification - (Poster Presentation). In: Cimatti, A., Sebastiani, R. (eds.) SAT.
LNCS, vol. 7317, pp. 473–474. Springer (2012)

27. Marin, P., Miller, C., Lewis, M.D.T., Becker, B.: Verification of Partial Designs
using Incremental QBF Solving. In: Rosenstiel, W., Thiele, L. (eds.) DATE. pp.
623–628. IEEE (2012)

28. Nadel, A., Ryvchin, V.: Efficient SAT Solving under Assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT. LNCS, vol. 7317, pp. 242–255. Springer (2012)

29. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-Based Cer-
tificate Extraction for QBF - (Tool Presentation). In: Cimatti, A., Sebastiani, R.
(eds.) SAT. LNCS, vol. 7317, pp. 430–435. Springer (2012)

30. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F.
(ed.) CP. LNCS, vol. 4204, pp. 514–529. Springer (2006)

31. Seidl, M., Könighofer, R.: Partial witnesses from preprocessed quantified Boolean
formulas. In: DATE. pp. 1–6. IEEE (2014)

32. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability,
FAIA, vol. 185, pp. 131–153. IOS Press (2009)

33. Staber, S., Bloem, R.: Fault Localization and Correction with QBF. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT. LNCS, vol. 4501, pp. 355–368. Springer (2007)

34. Sülflow, A., Fey, G., Drechsler, R.: Using QBF to Increase Accuracy of SAT-Based
Debugging. In: ISCAS. pp. 641–644. IEEE (2010)

35. Van Gelder, A.: Primal and Dual Encoding from Applications into Quantified
Boolean Formulas. In: Schulte, C. (ed.) CP. LNCS, vol. 8124, pp. 694–707. Springer
(2013)

36. Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts
in Quantified Boolean Formula Evaluation. In: Hentenryck, P.V. (ed.) CP. LNCS,
vol. 2470, pp. 200–215. Springer (2002)

	Incremental QBF Solving

