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Abstract. Conflict-Driven Clause-Learning (CDCL) SAT solvers can automat-
ically solve very large real-world problems. To go beyond, and in particular in
order to solve and optimize problems involving linear arithmetic constraints, here
we introduce IntSat, a generalization of CDCL to Integer Linear Programming
(ILP). Our simple 1400-line C++ prototype IntSat implementation already shows
some competitiveness with commercial solvers such as CPLEX or Gurobi. Here
we describe this new IntSat ILP solving method, show how it can be implemented
efficiently, and discuss a large list of possible enhancements and extensions.

1 Introduction

Conflict-Driven Clause-Learning (CDCL) propositional SAT solving technology can
automatically solve hard real-world industrial and scientific problem instances involv-
ing large numbers of binary variables and constraints (i.e., clauses). SAT is the par-
ticular case of ILP where all variables are binary (0/1) and constraints have the form
x1 + . . . + xm − y1 . . . − yn > −n, written as clauses x1 ∨ . . .∨ xm ∨y1 ∨ . . .∨yn, i.e., sets (dis-
junctions) of literals. Given a partial assignment A, seen as a set of (non-contradictory)
literals, a clause C is true in A if A ∩ C , ∅, it is false or a conflict if l ∈ A for every
literal l in C, and it is undefined otherwise. All essential CDCL features are described
in the following 14-line algorithm, where A is seen as an (initially empty) stack:

1. Propagate: while possible and no conflict appears, if, for some clause l∨C, C is
false in A and l is undefined, push l onto A, associating to l the reason clause C.

2. if there is no conflict
if all variables are defined in A, output “solution A” and halt.
else Decide: push some undefined literal l, marked as a decision, and goto step 1.

3. If A contains no decisions, output “unsatisfiable” and halt.
4. Use a clause data structure C. Initially, let C be any conflict.

– Conflict analysis: Invariant: C is false in A, that is, if l ∈ C then l ∈ A.
If l is the literal of C whose negation is topmost in A, and D is the reason clause
of l, then replace C by (C \ {l}) ∪ D. Repeat this until there is only one literal
ltop in C such that ltop is, or is above, A’s topmost decision.

– Backjump: pop literals from A until either there are no decisions in A or, for
some l in C with l , ltop, there are no decisions above l in A.

– Learn: add the final C as a new clause, and go to 1 (where C propagates ltop).

Note that replacing C by (C \{l})∪D is in fact an inference by resolution between C and
D∨ l. Essentially all state-of-the-art CDCL SAT solvers use this (so called 1UIP conflict
analysis-based) algorithm, with efficient data structures for propagation, heuristics that
select recently active literals as decisions, periodically forgetting (removing) the least
useful learned clauses, and using clause simplification and other inprocessing methods
(see, e.g., [16, 4] for more details and further references).



Given CDCL’s enormous success for SAT, for decades researchers (e.g., from the
SAT community, but not only) have tried to produce an effective CDCL-like method
for ILP. However, due to a number of obstacles (see, e.g., Example 3 below), the re-
sults of such attempts were always orders of magnitude slower than the state-of-the-art
commercial MIP/ILP solvers such as CPLEX or Gurobi, based on LP relaxations, sim-
plex, and branch-and-cut (see, e.g., the “mip basics” at www.gurobi.com). Typical at-
tempts to generalize CDCL from SAT to ILP are in the following sense, where (possibly
subindexed) letters a denote integer coefficients:

SAT ILP
clause l1 ∨ . . .∨ ln linear constraint a1x1 + · · · + anxn � a0

0/1 variable x integer variable x
positive literal x lower bound a� x
negative literal x upper bound x�a

propagation bound propagation
resolution inference cut inference

Example 1. By bound propagation, from the lower bound 1� x, the upper bound y�2,
and the constraint x − 2y + 5z � 5, we infer that 1 − 4 + 5z � 5, so 5z � 8, and hence
z � 8/5, which is rounded, propagating a new bound z � 1. Note that any 1-variable
constraint propagates a bound by itself, e.g., from −7x � 3 we have −3 � 7x, and hence
−3/7 � x, which after rounding propagates the lower bound 0� x. ut

Example 2. From 4x + 4y + 2z � 3 and −10x + y − z � 0, by multiplying the former
by 5 and the latter by 2 and adding them up, we obtain the cut 22y + 8z � 15. Here
the variable x is eliminated, which can always be achieved if in the two premises x has
coefficients a and b such that a · b < 0. The result 22y + 8z � 15 can be normalized
dividing by gcd(22, 8) = 2, giving 11y + 4z � 15/2 and, by rounding, 11y + 4z � 7. ut

Example 3. An important problem for extending CDCL to ILP is the following, which
we will call the rounding problem. Assume we have the two constraints x + y + 2z � 2
and x + y − 2z � 0 and we take the decision 0� x, which propagates nothing, and later
on another decision 1�y, which due to x + y + 2z � 2 propagates z�0 (since 1 + 2z � 2,
and hence 2z � 1 and by rounding z�1/2 we get z�0). Then x + y − 2z � 0 becomes a
conflict: it is false in the current partial assignment A = { 0� x, 1�y, z�0 } .

Now let us attempt a straightforward generalization of the CDCL algorithm: since
z�0 is the topmost (last propagated) bound, a cut inference eliminating z between both
constraints would be needed, generating the new constraint C which is 2x + 2y � 2, or
equivalently, x+y � 1. Then conflict analysis is over because there is only one bound in
A at, or above, the last decision relevant for C, namely 1�y. But unfortunately the new
constraint x + y � 1 is not false in A, breaking (what should be) the invariant. Hence
it does not propagate the negation of 1 � y (which is y � 0) and is too weak to force a
backjump. This problem is due to the rounding that takes place when propagating z. ut

The rounding problem illustrated in Example 3 was solved in a very ingenious way
by Jovanovic and de Moura in their cutsat procedure [14], where a decision can only



make a variable equal to its current upper or lower bound, which permits, at each con-
flict caused by bound propagations with rounding, to compute tightly propagating con-
straints that justify the same propagations without rounding, and to do conflict analysis
using tightly propagating constraints only. This makes the learning scheme of [14] sim-
ilar to the SAT one of doing resolutions until reaching a clause built from decisions
only, which is well known to perform significantly worse than 1UIP.

Here we introduce IntSat, a new completely different method for ILP. It admits
arbitrary new bounds as decisions and guides the search exactly as with the 1UIP ap-
proach in CDCL-based SAT solving, and still it overcomes the rounding problem. The
key ideas behind IntSat are as follows. Given a partial assignment A, a set (stack) of
bounds, each time a constraint C and a set of bounds R with R ⊆ A propagate a new
bound B, this bound is pushed onto A, associating to B not only its reason constraint C
but also its reason set R. Conflict analysis and cuts performed are both guided by suc-
cessive refinements of a so-called Conflicting Set of bounds CS ⊆ A that is infeasible
along with the current set of constraints. After each conflict, always a backjump takes
place and a new constraint is learned.

This paper is structured as follows. The basic IntSat procedure is introduced in Sec-
tion 2, its termination, correctness and completeness stated, and extensions are given
for, e.g., optimization. In Section 3 we give some details about the efficient imple-
mentability of IntSat, and further work on IntSat is discussed in Section 4. Section 5
provides experimental results and in Section 6 we describe related work and conclude.

2 The basic IntSat procedure

In a first basic version of IntSat we deal with integer coefficients only and decide the
existence of integer solutions, i.e., feasibility problems only, and no optimization yet
(extensions are handled later on). Let X be a finite set of variables {x1 . . . xn}. An (inte-
ger linear) constraint over X is an expression of the form a1x1 + · · ·+ anxn � a0 where,
for all i in 0 . . . n, the coefficients ai are integers. Below, variables are always denoted
by (possibly sub-indexed or primed) lowercase x, y, z and coefficients by a, b, c, respec-
tively. An Integer Program (IP) over X is a set S of integer linear constraints over X.
A solution for an IP S over X is a function sol: X → Z that satisfies every constraint
a1x1 + · · · + anxn � a0 in S , that is, a1 · sol(x1) + · · · + an · sol(xn) ≤Z a0. A bound is
a one-variable constraint a1x � a0. Any bound can equivalently either be written as a
lower bound a� x or as an upper bound x�a. For a constraint a1x1 + . . . + anxn � a0,
each aixi is called a monomial of it, and the monomial is positive (negative) if ai is.

Bound propagation: Let C be a constraint of the form P + ax ≤ a0, where P is a sum
of positive monomials { b1y1, . . . , bpyp } and negative monomials { c1z1, . . . , cqzq }. Let
R be a set of bounds { lb1 � y1, . . . , lbp � yp, z1 �ub1, . . . , zq �ubq }. Let E denote the
expression a0 − b1lb1 − . . . − bplbp − c1ub1 − . . . − cqubq. If a < 0 then then C and R
propagate dE/ae� x. If a > 0 then then C and R propagate x�bE/ac.

Cuts and constraint normalization: In what follows we assume all constraints to be
eagerly normalized: any constraint a1x1 + . . . + anxn � a0 with d = gcd(a1, . . . , an) > 1
is eagerly replaced by a1/d x1 + . . . + an/d xn � ba0/dc. From constraints



a1x1 + · · · + anxn � a0 and b1x1 + · · · + bnxn � b0, and natural numbers c and d, a new
constraint c1x1 + · · ·+cnxn � c0 called a cut can be obtained where ci = cai +dbi for i in
0 . . . n. If some ci = 0 then we say that xi is eliminated in this cut. Note that if aibi < 0,
then one can always choose c and d such that xi is eliminated. See [13, 7, 23] for further
discussions and references about Chvátal-Gomory cuts and their applications to ILP.

Let A be a set of bounds. A variable x is defined to a in A if {a� x, x � a} ⊆ A for
some a. We call two bounds a � x and x � a′ contradictory if a > a′. Note that if all
variables of X are defined and there are no contradictory bounds in A then A can be seen
as a total assignment A: X → Z. A bound a� x is new in A if there is no a′� x in A with
a′ ≥ a. Similarly, x�a is new if there is no x�a′ with a′ ≤ a. A bound is fresh in A if
it is new in A and contradictory with no bound in A.

False constraint (conflict) in A: If C is a constraint a1x1 + . . .+ anxn � a0 with positive
monomials { b1y1, . . . , bpyp }, negative monomials { c1z1, . . . , cqzq } and there is a subset
of bounds { lb1�y1, . . . , lbp � yp, z1�ub1, . . . , zq�ubq } ⊆ A with b1lb1 +. . .+bplbp +

c1ub1 + . . . + cqubq > a0 then C is false or a conflict in A.

The basic IntSat algorithm: In the following IntSat algorithm, A is seen as an (initially
empty) stack of bounds:

1. Propagate: while possible and no conflict appears, if C and R propagate some fresh
bound B, for some constraint C and set of bounds R with R ⊆ A, then push B onto
A, associating to B the reason constraint C and the reason set R.

2. if there is no conflict
if all variables are defined in A, output “solution A” and halt.
else Decide: push some fresh bound B, marked as a decision, and go to 1.

3. If A contains no decisions, output “infeasible” and halt.
4. Use data structures C, a constraint, and CS , the Conflicting Set of bounds. Initially,

C is any conflict and CS is the subset of bounds of A causing the falsehood of C.
– Conflict analysis: Invariants: CS ⊆ A and if S is the current set of constraints,

then S ∪CS is infeasible (has no solution). Repeat the following three steps:
• If B is the bound in CS that is topmost in A, and R is the reason set of B,

then let CS be (CS \ {B}) ∪ R.
• If a cut eliminating B’s variable exists between C and B’s reason constraint

then replace C by that cut.
• Early Backjump: If for some maximal k ∈ N, after popping k bounds the

last one being a decision, C propagates some new bound in the resulting
A, then pop k bounds, learn C as a new constraint, and go to 1.

until CS contains a single bound Btop that is, or is above, A’s topmost decision.
– Backjump: Pop bounds from A until either there are no decisions in A or, for

some B in CS with B , Btop, there are no decisions above B in A. Then push
Btop with associated reason constraint C and reason set CS \ {Btop}.

– Learn: add the final C as a new constraint, and go to 1.

Note that in the 2nd step of conflict analysis indeed sometimes no cut eliminating B’s
variable exists between C and B’s reason constraint; this can be because that variable
does not occur in C, or it occurs with the same sign.



Example 4. We apply IntSat to Example 3: there are two constraints x + y + 2z � 2
and x + y − 2z � 0 and we take the decision 0� x, which propagates nothing, and later
on another decision 1 � y, which due to x + y + 2z � 2 propagates z � 0, which is
pushed with associated reason constraint x + y + 2z � 2 and reason set { 0� x, 1� y }.
Conflict analysis: Initially, x + y − 2z � 0 is the conflict C and CS is the set of bounds
{ 0 � x, 1 � y, z � 0 } ⊆ A causing the falsehood C. In the first iteration, in CS we
replace z�0 by its reason set { 0� x, 1� y }. The resulting CS is { 0� x, 1� y }. A cut
eliminating z exists (see Example 3) and C becomes x + y � 1. Then conflict analysis
is over because the CS contains exactly one bound Btop, which is 1�y, at or above A’s
topmost decision. Backjump: We pop bounds until for some B in CS with B , Btop,
there are no decisions above B in A, in this case, until there are no decisions above 0� x
in A, and then push Btop, which is y � 0, with reason set { 0 � x }, and with reason
constraint x + y � 1. Note that this reason constraint is not a “good” reason, i.e., it does
not propagate y�0, but still y�0 is a valid consequence of the set of constraints together
with its reason set { 0� x }. Learn: The final C, which is x + y � 1, is learned. ut

Example 5. Consider the initial constraints

C0 : x −3y −3z � 1
C1 : −2x +3y +2z � −2
C2 : 3x −3y +2z � −1

Below we depict the stack with some initial bounds after doing their propagations and
taking and propagating two decisions:

2�y { 1� x, z�−2 } C0

x�1 { y�2, z�−2 } C0

z�−2 decision
z�−1 { x�2, 1�y } C1

x�2 decision
z�0 { x�3, 1�y } C1

y�2 { x�3, −2�z } C1

1� x { 1�y, −2�z } C1

z�2 initial
−2�z initial
y�4 initial
1�y initial
x�3 initial
−2� x initial
bound reason set reason constraint

Now C1 is a conflict. The initial CS is { −2� z, x� 1, 2� y }, with two bounds above
the last decision. In the first conflict analysis step, we replace 2 � y by its reason set
{ 1� x, z�−2 } obtaining the new CS { −2� z, 1� x, z�−2, x� 1 } which still has
two bounds at or above the last decision. Now a cut eliminating y is attempted between



the initial C, which is C1, and the reason constraint of 2� y, which is C0. Here this cut
exists, with c = d = 1, and we obtain and learn the new constraint C3 : −x − z�−1.
It allows us to perform an early backjump to before the second decision, since there it
propagates 2 � x with reason set { z � −1 } and reason constraint C3. Then, after two
more propagations, we obtain

2�y { 2� x, z�−1 } C0

−1�z { x�2 } C3

2� x { z�−1 } C3

z�−1 { x�2, 1�y } C1

x�2 decision
z�0 { x�3, 1�y } C1

y�2 { x�3, −2�z } C1

1� x { 1�y, −2�z } C1

z�2 initial
. . . . . .

−2� x initial

and again C1 is a conflict, with the initial CS being { x � 2, −1 � z, 2 � y }. After
the first conflict analysis step (replacing 2 � y) the CS becomes { x � 2, z � −1, 2 �
x, −1 � z }. As before, the cut eliminates y, between C1 and C0 (the initial C and the
reason constraint of 2 � y), obtaining −x − z � −1. After the following step (replacing
−1 � z), the CS becomes { x � 2, z � −1, 2 � x }. The C does not change because
no cut eliminating z exists with C3. In the next step (replacing 2� x), the CS becomes
{ x� 2, z�−1 }. Again no cut eliminating z exists with C3. In another step (replacing
z�−1), the CS becomes { 1� y, x� 2 }. Since there is only one bound at or after the
last decision, we backjump, in this case to before the first decision, and add there the
negation of x�2, which is 3� x.

The result of the cut on C with C1 eliminating z gives us −4x + 3y � −4. The
backjump with this cut (C4) can also take us to before the first decision, but propagating
2� x. Since this is weaker than the bound 3� x obtained from the CS , here we choose
the CS one. After one further propagation, the procedure returns “infeasible” since the
conflict C2 appears and there are no decisions in the stack:

−1�z { 3� x, y�2 } C0

3� x { 1�y } C4

z�0 { x�3, 1�y } C1

y�2 { x�3, −2�z } C1

1� x { 1�y, −2�z } C1

z�2 initial
. . . . . .

−2� x initial



Theorem 1. The basic IntSat algorithm, when given as input a finite set of constraints
S including for each variable xi a lower bound lbi � xi and an upper bound xi � ubi,
always terminates, finding a solution if, and only if, there exists one, and returning
“infeasible” if, and only if, S is infeasible.

The previous theorem holds even if no cuts are performed and no new constraints are
learned (although practical performance depends crucially on these). Its proof follows
essentially the same scheme as our termination, soundness and completeness results for
SAT and SAT Modulo Theories (SMT) [20]. For termination (from which soundness
and completeness are not hard to establish), we define a well-founded ordering � on
the states of the stack A, as follows. For a given A, the number of possible values a
variable xi can still take is vi(A) = ubi − lbi + 1, where lbi � xi and xi � ubi are its
topmost lower and upper bounds in A, and the total number of values for all n variables
is v(A) = v1(A) + . . . vn(A). Let Ai, for i ≥ 1 denote the bottom part of A, below (and
without) the i-th decision. We define a stack A to be larger (i.e., less advanced, search-
wise) than a stack A′, written A � A′, if 〈v(A1), . . . , v(Am)〉 >lex 〈v(A′1), . . . , v(A′m)〉
where m is the maximal number of decisions the stack can contain, at most n · v(A) for
the initial A. It is easy to see that this lexicographic ordering � is well-founded and that
all steps of the algorithm either halt it or transform A into an A′ with A � A′.

More general constraints: It is obvious that a constraint a1x1 + . . . + anxn � a0 can be
expressed as −a1x1 − . . . − anxn � −a0, that a1x1 + . . . + anxn = a0 can be replaced by
the two constraints a1x1 + . . . + anxn � a0 and a1x1 + . . . + anxn � a0, and that rational
non-integer coefficients a/b can be removed by multiplying the constraint by b.

Optimization is also possible in a standard way, since, unlike what happens in SAT,
linear constraints are first-class citizens (i.e., belong to the core language). For finding a
solution that minimizes a linear expression a1x1 + . . .+anxn (or maximizes −a1x1− . . .−
anxn), in our current implementation this is done in a completely straightforward way:
first an arbitrary solution A is found and then, each time a new solution A is found, it is
attempted to improve it by re-running with the additional constraint a1x1 + . . .+ anxn �

a0 where a0 is a1A(x1) + . . . + anA(xn) − 1. This is done until the problem becomes
infeasible. Bound propagations from these successively stronger constraints are indeed
very effective for pruning (bounding) the resulting branch-and-bound search.

Handling unbounded variables. Up to now we have assumed that for each variable
there is an initial lower bound and an upper bound, or, equivalently, initial constraints
propagating such bounds. Although this is common in practical applications, some
problems do have unbounded variables. In theory, any ILP can be converted into an
equivalent fully bounded one [23], but these bounds are too large to be useful in prac-
tice. One solution is to introduce a fresh auxiliary variable z, with lower bound 0�z, and
for each variable x without lower bound add the constraint −z� x, and similarly if it has
no upper bound add x� z. Then one can re-run the IntSat procedure with successively
larger upper bounds z� ub for z, thus guaranteeing completeness for finding (optimal)
solutions. Further practical solutions are subject of current work, also for handling the
well-known fact that with unbounded variables bound propagation may not terminate
in unfeasible problems: consider, e.g., C1 : x − y � 0 and C2 : −x + y + 1 � 0 and the
bound 0� x, which makes C1 propagate 0�y; then C2 propagates 1� x, and so on.



3 Implementation

Here we describe some details of our current prototype IntSat implementation. It cur-
rently consists of 1400 lines of simple C++ code that make heavy use of standard STL
data structures (this source code can be downloaded from [19]). For instance, a con-
straint is an STL vector of monomials (pairs of two ints: the variable number and the
coefficient), sorted by variable number, plus some additional information (independent
term, activity). Coefficients are never larger than 230, and cuts producing any coefficient
larger than 230 are simply not performed, which is a straightforward way of guaran-
teeing that no overflow occurs if bound propagation, cuts, normalization, etc., are done
using 64-bit integers for intermediate results. During conflict analysis, the CS is imple-
mented simply as an STL set of ints, the heights in the stack of the bounds in the CS .
A very large source of inefficiency of conflict analysis is our current implementation
of Early Backjumps, which, after each cut giving a new C, naively checks, at all (fre-
quently thousands of) prefixes of the stack below a decision, whether C propagates any
new bound at that prefix.

The current assignment There is an array, the Bounds Array, indexed by variable num-
ber, that can return in constant time the current upper and lower bounds for that variable.
It always stores, for each variable xi, the positions pli and pui in the stack of its current
(strongest) upper bound and lower bound, respectively, with pli = 0 (pui = 0) if xi

has no current lower (upper) bound. The stack itself is another array containing at each
position three data fields: a bound, a natural number pos, and an info field containing,
among other information, (pointers to) the reason set and the reason constraint. The
value pos is always the position in the stack of the previous bound of the same type
(lower or upper) for this variable, with pos = 0 for initial bounds. When pushing or
popping bounds, these properties are easy to maintain in constant time.

Example of
bounds array

and stack:

Height in stack of
current bound
lower: upper:

x1 1 2
x2 0 0

...
...

x7 40 31
...

...

...

40 5� x7 23 info
...

31 x7�6 14 info
...

23 2� x7 13 info
...

14 x7�9 0 info
13 0� x7 0 info

...
2 x1�8 0 info
1 0� x1 0 info

Bound propagation using filters: Affordably efficient bound propagation is crucial for
performance. In our current implementation, for each variable x, there are two occurs



lists. The positive occurs list for x contains all pairs (IC , a) s.t. C is a linear constraint
where x occurs with positive coefficient a, and the negative one contains the same for
occurrences with a negative coefficient a. Here IC is an index to the constraint header of
C in an array of constraint headers. Each constraint header contains an integer FC called
a filter, and (a pointer to) the constraint C itself. The filter FC is maintained cheaply,
and one can guarantee that C does not propagate anything as long as FC ≤ 0, thus
avoiding many useless (cache-) expensive visits to the actual constraint C. This is done
as follows.

Let C be a constraint of the form a1x1 + · · · + anxn � a0. Let lbi� xi and xi�ubi be
the current lower and upper bounds (if any) for xi. Each monomial aixi in C can have a
minimal value mi, which is ai · lbi if ai ≥ 0, and ai · ubi otherwise. Here mi is undefined
if there is no such bound lbi (or ubi). Initially, if some mi is undefined, then FC is set
to a special value ⊥, and otherwise to −a0 + m1 + · · · + mn + maxi { |ai(ubi − lbi)| }.
In the latter case, FC is said to be precise: the constraint C propagates if, and only if,
⊥ , FC > 0. At all time points, FC = ⊥ or FC is an upper approximation of the precise
one, so C can only propagate (or be false) if FC > 0.

To preserve this property, these filters need to be updated when new bounds are
pushed onto the stack (and each update needs to be undone when popped, for which
other data structures exist). Assume a new lower bound k� x is pushed onto the stack.
Let the previous lower bound for x (if any) be k′� x. For each pair (IC , a) in the positive
occurs list of x, using IC we access the FC and increase it by |a(k − k′)|. If there was
no previous lower bound, then FC was ⊥ and is now set to 1. If FC becomes positive,
the constraint C is visited because it may propagate some new bound. After each time
a constraint C is visited, FC is set to its precise value. If a new upper bound x � k is
pushed on the stack, exactly the same is done, where x�k′ is the previous upper bound
for x (if any), and using the negative occurs list.

4 Further work

Both from a theoretical as a practical point of view, a large amount of further ideas
around IntSat arise to be explored. From the implementation point of view, aspects such
as special treatments for binary variables and for specific types of constraints should be
worked out. Our current implementation in fact mimics several ideas from CDCL SAT
solving without having tested them thoroughly.

Decision heuristics. For instance, our current heuristics for selecting the variable of the
next decision bound are based on recent activity: the variable with the highest activity
score is picked (for this there is a priority queue). The activity score of a variable x is
increased each time a bound containing x appears in the CS during conflict analysis,
and to reward recent activity the amount of increment grows in time. Once a variable is
picked, one has to decide the actual decision bound: whether it is lower or upper, and
how to divide the interval between the current lower and upper bounds. Another idea is
to try to mimic the last-phase polarity heuristic from SAT [22], which would translate
into picking some recent upper/lower bound and value for the selected variable.



Restarts and cleanups. Something similar happens with the periodic restarts that SAT
solvers apply. We currently follow a rather conservative restart policy based on increas-
ing intervals based on the number of conflicts. Another basically non-tested aspect is the
cleanup policy for the constraint database; at each cleanup, we remove all non-initial
constraints with more than two monomials and activity counter equal to 0. This activ-
ity counter is increased each time the constraint is a conflicting or reason constraint at
conflict analysis, and is divided by 2 at each cleanup. Cleanups are done periodically,
in such a way that the constraint database grows rather slowly over time.

Early backjump and conflict analysis. Performing early backjumps is in fact optional.
When omitted (or not done whenever possible), the price to be paid is the loss of an
invariant of the stack: it is no longer true that before each decision all bounds are ex-
haustively propagated. A slight modification of conflict analysis suffices to handle this:
before starting conflict analysis, pop bounds from the stack until the initial CS contains
at least one bound at or above the topmost decision. We have not done any thorough ex-
periments yet evaluating this option. One could, for example, do, or attempt to do, early
backjump with the intermediate conflicting constraint C if it is false in the current stack,
or only if it is promising (e.g., short) according to some heuristic. In any case, further
work on the implementation should probably cover a much better implementation for
early backjumping, which is currently a black hole for efficiency.

Several other improvements exist for conflict analysis. For example, the quality of
backjumps and the strength of the reason sets can be improved by doing some more
work: the CS can be simplified by removing bounds that are subsumed by stronger
ones, and also, instead of using the pre-stored reason sets R, one can re-compute them
on the fly during conflict analysis with similar aims. One can also do a bit of search
during conflict analysis, e.g., by trying to remove non-topmost bounds and do cuts with
these, with the aim of finding good early backjump cuts.

Optimization. For optimization many further ideas exist: heuristics for finding a first
solution quickly (which helps bounding the search dramatically), heuristics for choos-
ing the decision bound in a “first-succeed” manner (i.e., steering it towards minimizing
the cost function). For problems of a more numerical nature with many solutions, one
could also search for the optimal solution with binary search instead of decreasing the
objective one by one.

Pre– and in-processing, arithmetic. For some problems currently too many cuts are
discarded because of coefficients larger than 230. One can look for solutions from the
implementation point of view, e.g., by using large integer arithmetic, or using floating
point arithmetic, but it might also be the case that more constraint simplification pre-
and in-processing techniques can be helpful (and not only for this purpose). For propo-
sitional SAT, the so-called lemma shortening techniques introduced in MiniSAT [12]
have turned out to be essential for modern SAT solvers and (in fact, several extensions
of them) can be applied to IntSat as well. Modern SAT solvers such as lingeling [3]
heavily apply different inprocessing techniques to keep the constraint database small
but strong.

MIPs. Finally, it needs to be worked out how to apply IntSat in order to solve MIP
instances, i.e., where not all variables are subject to integrality. One can decide on the



integer variables as it is done now, and at any desired point one can run an LP solver
to optimize the values for the rational variables. The inclusion of lower bounding tech-
niques, well-known from modern MIP solvers, also needs to be considered.

5 Experiments

All experiments described in this section were carried out on a standard 2.66GHz 4-core
Intel i5 750 desktop. The reader can easily verify these results; in particular our pro-
totype IntSat implementation including source code and all benchmarks can be down-
loaded from [19].

CPLEX and Gurobi. We compare with the newest versions of the commercial solvers
CPLEX (v.12.6) and Gurobi (v.5.6.2). Both use all four processor cores (while IntSat
uses only one!). Both are well-known to outperform, in general by far, the existing non-
commercial solvers. The technology behind these solvers is extremely mature, after
decades of improvements: according to [5], between 1991 and 2012 they have seen a
475000 times speedup from algorithmic improvements only (i.e., not counting another
2000 times from hardware improvements)!.

Rather than using a single method, these solvers apply a large variety of techniques,
including, e.g., specialized cuts (Gomory, knapsack, flow and GUB covers, MIR, clique,
zerohalf, mod-k, network, submip,etc.), heuristics (rounding, RINS, solution improve-
ment, feasibility pump, diving, etc.) and variable selection techniques (pseudo costs,
strong branching, reliability branching, etc.).

They also apply sophisticated presolve methods to reduce in advance the size of
the problem and to tighten its formulation. Since we have no special-purpose presolve
implementation for IntSat (yet), unfortunately here we had to use Gurobi’s one, and for
fairness, we used Gurobi to presolve and output all instances (which took essentially
negligible time) and ran all three solvers on these Gurobi-presolved instances.

Other classes of solvers. It is well known that SAT Modulo Theories (SMT) [20]
solvers such as Mathsat5 [8], Yices [11], Z3 [10] or our own Barcelogic solver [6]
mostly focus on efficiently handling the arbitrary Boolean structure on top of the LIA
constraints. Their Theory Solver component, the one that handles conjunctions of con-
straints (our aim here), is rather basic, and we do not compere here with SMT solvers
since on conjunctive problems they are indeed in general orders of magnitude worse
than CPLEX or Gurobi.

Concerning SAT and Lazy Clause Generation (LCG) [21], from our own work (see
among many others [1]), we also know too well that solvers that (lazily) encode lin-
ear constraints into SAT can be competitive as long as problems are rather Boolean,
without a heavy ILP/optimization component. Also CSP solvers such as Sugar [24],
which heavily focus on their rich constraint language, are in general very far from the
commercial OR solvers on the typical hard pure ILP optimization problems.

Also, most of these SAT/SMT/LCG solvers cannot optimize or are rather bad at it.
Cutsat [14] cannot optimize either.



Random optimization instances. We used a random generator to create 100 optimiza-
tion instances with 600 variables (about half of them non-binary) and 750 constraints
(instances and generator are available at [19]). Then we discarded the 51 “too easy” in-
stances (for which all three solvers could find an optimal solution and prove optimality
in less than 2s).

The first columns (I, C, G) in the table below show runtimes in seconds of, respec-
tively, IntSat, CPLEX and Gurobi to prove optimality, and no time indicates timeout
after 10s, which happens 17 times for IntSat, 19 times for CPLEX and 9 times for
Gurobi.

Since finding good solutions quickly is perhaps as important as proving optimality,
the following columns show the cost of the optimal solution (“opt”), and the best solu-
tions found after 10s, only when different from the optimal one. The reader can check
that IntSat fails 8 times to find the optimal solution, CPLEX 13 times, and Gurobi 7
times, and that the total sum of distances to the optimal solutions in these cases are
22, 39 and 17, respectively. When given longer runtimes, the commercial solvers tend
to behave better on these instances than the current version of IntSat. However, this
should of course be re-evaluated after a more mature implementation, heuristics, and
pre- and inprocessing, etc., become available for IntSat.

I C G opt I C G
01.lp -7 -5 . -4
03.lp 7.76 5.41 -7 . . .
05.lp 1.85 1.08 4.19 -4 . . .
06.lp 2.50 -13 . -7 10
07.lp 1.06 2.98 3.94 -7 . . .
10.lp 4.21 0.17 0.07 -11 . . .
12.lp 9.80 -9 . . .
14.lp 0.77 5.78 3.16 -14 . . .
15.lp 1.43 2.56 0.21 -10 . . .
16.lp 5.02 -9 . -8 .
20.lp -8 -6 -4 -6
21.lp 0.71 0.19 -7 -5 . .
23.lp -8 . . .
24.lp 2.85 0.08 0.05 -4 . . .
26.lp 1.04 2.93 -11 . -7 .
27.lp 2.71 6.32 -2 . . .
28.lp 2.16 -9 . -7 -8
31.lp -6 . -3 -3
33.lp 2.79 6.38 2.92 -6 . . .
34.lp 2.62 1.86 0.30 -13 . . .
36.lp 6.58 1.53 5.23 -9 . . .
40.lp 2.02 3.10 0.05 -18 . . .
44.lp 4.76 7.47 8.54 -10 . . .
49.lp 2.77 0.47 0.09 -8 . . .
50.lp 0.22 -12 -8 -11 .

I C G opt I C G
53.lp 2.47 3.05 -13 -7 . .
60.lp 1.69 2.19 -9 . -8 .
61.lp 1.47 1.14 -16 . . -15
62.lp 2.58 0.53 0.02 -3 . . .
63.lp 4.55 -12 . . .
64.lp 1.56 6.33 2.60 -4 . . .
65.lp 3.26 0.80 0.81 -8 . . .
66.lp 1.32 9.23 4.47 -5 . . .
68.lp -9 . . .
69.lp 5.91 1.20 0.13 -14 . . .
70.lp 8.33 0.24 0.09 -6 . . .
73.lp 4.75 -11 -9 -9 .
76.lp 0.74 2.89 0.40 -11 . . .
78.lp -8 -5 -2 -4
79.lp 8.26 0.36 0.06 -4 . . .
80.lp 7.54 2.59 0.13 -7 . . .
81.lp 0.86 4.71 4.78 -9 . . .
84.lp 2.93 6.40 -12 . -5 .
87.lp -10 . -8 .
88.lp 9.67 -5 -4 -4 .
91.lp 2.38 2.96 -9 . . .
93.lp 2.98 3.03 0.45 -9 . . .
95.lp 1.51 3.13 0.14 -10 . . .
99.lp 0.62 2.00 4.92 -7 . . .



5.1 MIPLIB instances

From the MIPLIB 2010 Mixed Integer Problem Library, a well-known “standard test
set” to compare optimizer performance for the Operations Research (OR) community,
cf. miplib.zib.de, we considered all 30 ILP instances (i.e., with integer and binary
variables only) and discarded the 11 instances lacking initial lower and upper bounds
for some variable.

For the remaining 19 ones, the next table below indicates runtimes (in s) needed to
prove feasibility (as recommended for the commercial solvers, the objective function
was replaced by 0). The table also includes some statistics on number of constraints,
total number of variables, and among these, the number of binary variables.

We ran IntSat with no presolving, as Gurobi’s presolve was harmful for it in some
cases. Here we also compare with the Cutsat implementation of [14], which currently
can only handle feasibility, and no optimization.

Feasibility (s) Problem statistics
IntSat CPLEX Gurobi Cutsat #constr. total #vars. #0/1-vars.

30n20b8 20.14 0.83 0.41 >300 666 18380 11036
d10200 10.00 0.20 0.22 >300 1147 2000 733
d20200 0.55 0.34 1.15 >300 1702 4000 3181
lectsched-1 1.11 7.75 39.73 64.84 51608 28718 28236
lectsched-1-obj 1.09 145.25 11.71 45.77 51608 28718 28236
lectsched-2 0.60 3.50 1.14 5.39 31775 17656 17287
lectsched-3 0.99 6.94 6.82 18.43 46615 25776 25319
lectsched-4-obj 0.25 0.15 0.38 0.86 14760 7901 7665
mzzv11 1.27 0.04 1.26 0.08 12871 10240 9989
neos-1224597 0.20 0.11 0.15 >300 3682 3605 3150
neos16 0.09 9.74 16.54 >300 1028 377 336
neos-555424 0.07 0.07 0.07 18.53 2746 3815 3800
neos-686190 1.98 0.44 0.27 >300 3785 3660 3600
ns1854840 3.21 3.31 1.57 3.75 151216 135754 135280
rococoB10-011000 0.06 0.05 0.06 0.06 3063 4456 4320
rococoC10-001000 0.05 0.04 0.05 4.45 2298 3117 2993
rococoC11-011100 0.10 0.16 0.10 0.05 4403 6491 6325
rococoC12-111000 0.16 0.15 0.27 >300 13181 8619 8432
sp98ir 0.16 0.15 0.28 0.92 1531 1680 871

5.2 Optimizing the MIPLIB instances

We also considered optimizing these same 16 MIPLIB instances (lectsched-1, -2 and
-3 are feasibility ones), using all three applicable solvers (IntSat,CPLEX,Gurobi) with
a timelimit of 600s.

30n20b8 and lectsched-4-obj: For these two instances, all three solvers find the opti-
mal solution and prove optimality in less than 10 seconds. For 30n20b8, in 1.03s, 3.59s
and 4.18s, respectively for IntSat, CPLEX, and Gurobi (optimal solution has cost 302)
and for lectsched-4-obj, in 0.43s, 3.37s, and 1.61s respectively (optimal is 4). Note that



on both instances IntSat is fastest. IntSat is currently not able to prove optimality for
any of the other 14 MIPLIB optimization instances in less than 600s.

neos16 and neos-1224597: IntSat does find optimal solutions quickly for these two
problems. For neos16, none of the three solvers proves optimality in less than 600s, but
IntSat finds the optimal solution (cost 446) in 13.1s, whereas CPLEX needs 39.2s and
Gurobi needs 45s. For neos-1224597, all three solvers find the optimal solution (cost
-448) in around 1s., but CPLEX and Gurobi moreover prove optimality.

The other 12 instances: CPLEX and Gurobi also prove optimality for five other in-
stances, the same ones for both solvers, given in the first table below.

Results and best found solutions for the remaining seven instanes are given in
the second table below. Out of these seven, two (d10200, rococoC11) are catalogized
in the MIPLIB as “hard” and three further instances (d20200, lectsched-1-obj, and
ns1854840) are “open”, as their optimal cost is unknown. IntSat is the best solver by
far on the open problem ns1854840, even though IntSat’s 600s refer to runtime on one
core only, whereas the other solvers run 600s on all four cores. In fact, for this instance
Gurobi only finds an initial “heuristic” solution that is more than 100 times worse than
the one found by IntSat; this happens because Gurobi’s root simplex times out after
600s. Of the other “open” problems, IntSat is also better than CPLEX on two other
problems: lectsched-1-obj and rococoC11-011100.

In some cases IntSat appears to be quite improvable still, e.g., due to its too naive
handling of very large input problems. Sometimes also better optimization heuristics
will to be useful on instances with a very numerical nature and slowly decreasing values
of the objective function.

Best solutions found
IntSat (600s) optimal time CPLEX time Gurobi

mzzv11 -18368 -21718 16.64s 21.73s
neos-555424 1369300 1324300 4.72s 2.16s
neos-686190 11380 6730 28.95s 24.21s
rococoC10-001000 13402 11460 49.89s 436.31s
sp98ir 279007104 219676790 24.17s 33.07s

Best solutions found after 600s
IntSat CPLEX Gurobi

d10200 12809 12441 12438
d20200 13619 12279 12262
lectsched-1-obj 92 93 85
ns1854840 288000 392000 4272000
rococoB10-011000 21462 19449 19810
rococoC11-011100 21427 21800 20957
rococoC12-111000 57118 36988 35845



6 Related Work and Conclusions

We already mentioned the work on Cutsat [14]. The idea of applying conflicting sets
is not only reminiscent to the conflict analysis of SAT, but also of SAT Modulo Theo-
ries (SMT) [20, 2] for the theory of linear arithmetic, with the main difference, among
others, that here new ILP constraints are obtained by cut inferences, normalized and
learned, and not only new Boolean clauses that are disjunctions of literals representing
bounds (usually only those that occur in the input formula). Other SAT/SMT related
work, but for rational arithmetic is [17, 15, 9].

It is also worth mentioning that there may be some possible theoretical and prac-
tical consequences of the fact that IntSat’s underlying cutting planes proof system is
stronger than CDCL’s resolution proof system: could IntSat outperform SAT solvers on
certain SAT problems for which no short resolution proofs exist? E.g., pigeon-hole-like
situations do occur in practical problems (think of timetabling or scheduling). A similar
question applies to the current SMT solvers, which are based on resolution as well [18].

It seems unlikely that for ILP or MIP solving one single technique can dominate
the others; the best solvers will probably continue combining different methods from a
large toolbox, which perhaps will also include IntSat at some point. Still, IntSat by itself
already appears to be the first alternative method for ILP that uses no LP relaxations and
no simplex that is competitive on certain hard optimization problems, and moreover it
still has an enormous potential for enhancement. We expect that this work will trigger
quite some further activity on all the improvements mentioned in Section 4.
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