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Abstract. Bounded Max-Sum is a message-passing algorithm for solving Dis-
tributed Constraint Optimization Problems (DCOP) able to compute solutions
with a guaranteed approximation ratio. In this paper we show that the introduc-
tion of an intermediate step that decomposes functions may significantly improve
its accuracy. This is especially relevant in critical applications (e.g. automatic
surveillance, disaster response scenarios) where the accuracy of solutions is of
vital importance.

Introduction

Bounded Max-Sum (BMS) [11] approximately solves Distributed Constraint Optimiza-
tion Problems (DCOP) with very little computation and communication demands. Ar-
guably, its most interesting feature is that it comes with a guarantee approximation
ratio, meaning that its approximate solution has a utility which is no more than a fac-
tor away from the optimum. The algorithm has been recently revisited and enhanced,
producing two improved versions: IBMS [12] and RN-BMS [9], with tighter upper and
lower bounds, respectively.

All the BMS algorithms have a relaxation phase in which some functions are re-
placed by smaller arity functions. In general, such replacement introduces some error,
which prevents the algorithms from computing the true optimal solution. In this pa-
per we study the possibility of an exact decomposition in which those binary functions
are replaced by pairs of unary functions which faithfully capture the same information.
Since, in the general case, functions do not have an exact decomposition, we consider
approximate decompositions in which the error introduced is minimized. We theoreti-
cally prove that our approach improves the upper bound obtained by IBMS and show
its performance in a set of graph coloring problems.

Preliminaries

In this Section we review the main elements to contextualize our work. Definitions
and notation are borrowed almost directly from [11]. We urge the reader to visit that
reference for more details and examples.



DCOP

A Distributed Constraint Optimization Problem (DCOP) is a tuple P = (A, X, D, F),
where A = {Ay,..., A} is a set of agents, and X = {z1,...,z,} and D =
{di,...,d,} are variables and domains. F = {f1,..., f.} is a set of cost functions.
The objective function is F(z) = >°5_, fj(27) where 27 C X is the scope of f;.
A solution is a complete assignment x. An optimal solution is a complete assignment
x* such that Vx, F(x*) > F(x). The usual task of interest is to find x* through the
coordination of the agents.

In the applications under consideration, the agents search for the optimum via de-
centralized coordination. We assume that each agent can control only its local vari-
able(s) and has knowledge of, and can directly communicate with, a few neighboring
agents. Two agents are neighbors if there is a relationship connecting variables and
functions that the agents control.

The structure of a DCOP problem P = (A, X, D, F) can be transformed into a
factor graph. A factor graph is a bipartite graph having a variable node for each variable
x; € X, a factor node for each local function f; € F, and an edge connecting variable
node x; to factor node f; if and only if x; is an argument of f;.

Bounded Max-Sum Algorithms

The BMS algorithm [11] and its improved versions IBMS [12] and RN-BMS [9] are
approximation methods built on Max-Sum [4, 1]. From a possibly cyclic problem P, the
idea is to remove cycles in its factor graph by ignoring dependencies between functions
and variables, producing a new acyclic problem. Then, Max-Sum is used to optimally
solve the acyclic problem while simultaneously computing the approximation ratio.

Here, for simplicity purposes, we restrict ourselves to IBMS, which was proven to
be always superior to BMS and usually superior to RN-BMS. For the sake of simplicity,
we will restrict ourselves to the case of binary functions f;(x;, xy). The extension to
general functions is direct.

IBMS works in three phases:

— Relaxation Phase: First, the algorithm assigns a weight w;; to each edge (¢, j) of
the original factor graph. Then, it finds a maximum spanning tree with respect to the
weights. Next, the original problem P is transformed into an acyclic one P having
the spanning tree as factor graph as follows: For each edge (i,7) in the original
graph that does not belong to the tree, the cost function f;(z;, zy) is transformed
into another function E(xk) = max,, {f;j(z;, zx)}.

Let T" denote the set of functions that have not been simplified. The objective func-

tion of P is B B
F(z) = fi(zi,zn) + Y fi(x)
jET J¢T

— Solving Phase: IBMS solves P with Max-Sum. Let X be the solution given by
IBMS. Since the factor graph of P is acyclic, X is optimal for P. IBMS returns x
as a sub-optimal solution for P.
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Fig. 1. Example of a binary function f; that can be exactly decomposed into two unary functions
hj (l‘k) and gj (xl)

— Bounding Phase: IBMS computes a guarantee approximation ratio as follows.
Note that F'(X) is an obvious lower bound of the the optimal (F(X) < F(x*)).
Moreover, it can be shown that F'(X) is an upper bound of the optimal (F'(X) >

F(x*)). Therefore, p = % is a guarantee approximation ratio for IBMS.

Decomposition

The IBMS algorithm relaxes the problem by replacing some binary functions f;(z;, zx)

by unary functions fj (z). Clearly, the relaxed problem is in general not equivalent to
the original one because the transformation introduces an error.

Exact Decomposition

The idea of exact decomposition is to replace the binary function f;(xy,z;) by two
unary functions h;(z) and g;(x;) such that there is no loss of information. Formally,
given a binary function f;(z;, z)) we can set a system of linear equations,

Voo an fi(@is k) = hj(ar) + g5 (w;)

such that Vzy, h;(xr) > 0 and Vz;, g;j(z;) > 0, where each entry of the unary func-
tions is a variable of the system. If the system has a solution, that solution is an exact
decomposition. Replacing the binary function by the two unary functions modifies the
factor graph without introducing any error. The system of linear equations can be solved
very efficiently with one of the many Integer Programming toolkits available.

As an example, consider the binary cost function f;(z;, ), and the two unary
functions h;(zx) and g;(z;) in Figure 1, respectively. Observe that the combination
of the two unary functions is equivalent to the binary one. The reason being that the
following equations are satisfied,

hj(a) + gj(a) = f;(a,a) hj(b) + gj(a) = f;(a,b)
hj(a) + g;(b) = f;(b,a) hj(b) + g;(b) = f;(b,b)

Therefore, in this case, exact decomposition could be achieved.
The natural application of the previous idea constitutes our first algorithm called
exact decomposition-based IBMS (ED-IBMS). It differs from the previous ones only in



the relaxation phase. Before computing each fj(xk), ED-IBMS attempts an exact de-
composition. Let D be the set of functions in which exact decomposition was achieved.
The resulting objective function is

Fop(z) =Y filzizn) + Y (gi(@) + hi(z) + > filaw)

jeT jeb j¢TUD

It is easy to see that the cost of any solution in the relaxed problem with exact
decomposition is smaller than or equal to its cost in the relaxed problem without exact
decomposition. In other words, ED-IBMS always obtains upper bounds tighter than
IBMS. Formally, F(z) < Fgp(x) < F(z) holds.

Approximate Decomposition

Note that exact decompositions do not exist in general. In a preliminary set of experi-
ments we observed that exact decomposition occurs very rarely which makes, in prac-
tice, IBMS and ED-IBMS behave identically. When we looked into the details, we
observed that very often exact decomposition was almost achievable, which leaded us
to approximate decomposition.
The idea of approximate decomposition is to replace a given binary function f;(z;, zx)

by the combination of two unary functions h;(xy) and g;(z;), and a binary function
rj(2;, xr). Formally,

Vaiaow [i (@i, o) = hj(xr) + gj(2:) + 15 (24, 21) (D

such that ¥, 4, ,7;(x;, xx) > 0, Vi, hj(xk) > 0, and Va;, gj(z;) > 0. As before,
this expression can be seen as a system of linear equations where each entry in the
unary functions and in the binary function r(x;, xy) is a variable of the system. Note
that g;(«;) and h;(x) represent the part of the utility function f;(x;, x) that has been
decomposed, while 7;(x;, z)) represents the part that has not been decomposed (the
residual utility function).

Moreover, we want to ensure that the decomposition improves the upper bound on
the original problem. In other words, the optimum of the relaxed problem with approx-
imate decomposition must be tighter than the optimum of the relaxed problem without
approximate decomposition. Formally,

Vo, mac{r(as, 1)} + g(:) + hlx) < max{f(i, 2)) @)
This inequality can be rewritten using Expression 1 as,
Vors,ap max{r(zi, o)} < max{f(zi, 2x)} = f(@i 2x) +r(zi, z5)

Each inequality can be transformed into a set of inequalities without the max operator
over function r(z;, z;) as follows,

vxi,mk,va#zmr(au (Ek:) S Iriax{f(xz,xk)} - f(xlvxk) + r(xiaxk) (3)

As an example, consider function f;(x;, x;) in Figure 2. The system of linear equa-
tions required to approximatelly decompose that function is,



rj (ach xk)

gj(a) + hj(a) +rj(a,a) =20 rj(b,a) < max{20,10} — 20 + r;(a, a)
hj(a)+ g;(b) +7;(a,b) =30 ri(a,a) < max{20,10} — 10+ r;(b, a)
hj(b) + g;(a) +7;(b,a) =10 r;(b,b) < max{30,25} — 30 + r;(a,b)
hj(b) + g;(b) +1;(b,b) =25 rj(a,b) < max{30,25} — 25+ r;(b,b)
subject to,
hj(a) >0 gj(a) >0 rj(a,a) >0 7rj(b,a) >0
hj(b) > 0 gj<b) > 0 ’I"j(@,b) > 0 T‘j(b, b) > 0

where h;(-), g;(-), and r;(-,-) are the variables of the system. Figure 2 shows one
solution to the previous system.

Any solution to the system of linear equations from Expression 1 and Expression 3
is an approximate decomposition. Some solutions may be better than other. The worst
decomposition would be one in which h; and g; are zero because no decomposition
would have been achieved. In general, one may prefer those decompositions that mini-
mize in one way or another the residuals (note that exact decomposition coincides with
zero residuals). We consider two possibilities:

- Minimize the maximum residual: min maxg, 4, 7;(x;, Tx).
— Minimize the average residual: min»_ = 7;(z;, xx).

Such objective functions can easily be added to the system of equations and subse-
quently solved with an Integer Programming toolkit.

Approximate decompositions introduce a new family of IBMS algorithms called
AD-IBMS. The idea is to compute an approximate decomposition of function f; (;, z)
before its relaxation. Then, the relaxation is performed not over the original function f;,
but over the residual r; (i.e., 7;(xx) = maxy,{r;(x;, xx)}). Thus, the objective func-
tion of the relaxed problem is,

Fap(x)= Y filwsa)+ > (gi(@) + hyla) +75(zn)
(4,3),(k,J)ET (1,5)¢T

Since the system of linear equations enforce Expression 2, it is easy to see that AD-
IBMS always obtains tighter upper bounds than IBMS. Formally, F'(z) < Fap(z) <

F(z) holds.
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Fig. 3. Percentage error of the upper (left) and lower bound (right) obtained by AD-IBMS mini-
mizing the maximum residual (L1) and minimizing the average residual (L°°).

Empirical Evaluation

The purpose of the experiments is to compare IBMS with respect to AD-IBMS. In
particular, we want to evaluate the improvement of the bounds and approximation ratio
of the IBMS algorithm using approximate decomposition. For the sake of completeness,
we will also report the results for standard BMS and RN-BMS. The percentage error of
a value Vgppro (i.€., upper or lower bound) is computed as W x 100 where v
is the optimum of the problem.

We consider the same set of problems from the ADOPT repository' used in [11].
These problems represent graph coloring problems with two different link densities
(i.e., the average connection per agent) and different number of nodes. Each agent
controls one node (i.e., variable), with domain |d;| = 3, and each edge of the graph
represents a pairwise constraint between two agents. Each edge is associated with a
random payoff matrix, specifying the payoff that both agents will obtain for every pos-
sible combination of their variables’ assignments. Each entry of the payoff matrix is a
real number sampled from two different distributions: a gamma distribution with « = 9
and 8 = 2, and a uniform distribution with range (0, 1). For each configuration, we
report average values over 25 repetitions. For the sake of comparison, we compute the
optimal utility with a complete centralized algorithm.

First, we evaluate if the accuracy of AD-IBMS depends on the way the residuals are
minimized. Figure 3 shows the percentage relative error of the upper bound (left) and
lower bound (right) obtained by AD-IBMS minimizing the maximum residual (L') and
minimizing the average residual (L°°). We only report the results on gamma distribution
with link density 2 because the behavior pattern is very similar on the other classes of
problems. Although theoretically incomparable, L is always superior to L' across all
instances. Thus, in the following, AD-IBMS refers to the L*° case.

In our second experiment, we compare the bounds obtained by standard BMS, RN-
BMS, IBMS, and AD-IBMS. Figure 4 (first two rows) shows the percentage relative

! http://teamcore.usc.edu/dcop
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Fig. 4. Percentage error of the upper (first two rows) and lower bound (last two rows) obtained by
BMS, IBMS, RN-BMS and AD-IBMS minimizing the maximum residual.



error of the upper bound obtained by each algorithm. The behavior of all algorithms is
very similar across all link densities and payoff distributions. As theoretically proved,
AD-IBMS always computes the tightest upper bound. Figure 4 (last two rows) shows
the percentage relative error of the lower bound obtained by the previous set of al-
gorithms. In general, AD-IBMS obtains more accurate lower bounds than BMS and
IBMS. In some cases, AD-IBMS is also superior to RN-BMS. Note that this improve-
ment is very relevant. On the one hand, recall that this class of algorithms are being
developed for applications in which the accuracy of the solution is extremely important.
On the other hand, since BMS, IBMS and specially RN-BMS are already very accurate
on this type of problems, one cannot expect dramatic improvements. This improvement
leads AD-IBMS to obtain very tight approximation ratios. Moreover, the computation
time of AD-IBMS is always smaller than twice the computation time of IBMS.

The maximum 95% confidence interval for the gamma and uniform payoff distri-
butions is smaller than 5.5 for the upper bound and smaller than 1 for the lower bound.
This small confidence interval shows that 25 repetitions provide, for our experimental
setting, a good sample size to assess the statistical significance of the results.

Finally, note that in [12] IBMS was shown to be superior to BMS and to two region-
optimal criteria introduced in [13] and [14], which were shown to produce tighter ap-
proximation ratios than the approach in [6]. Moreover, in [11] BMS was shown to pro-
duce tighter approximation ratios than the approach in [2].

Discussion

The idea of exactly decomposing functions into smaller arity ones is far from new. In
the field of probabilistic graphical models [7], where functions are (conditional) prob-
ability distributions, exact decomposition is a central issue and can be achieved when
the probabilistic variables are (conditionally) independent. In the field of constraint sat-
isfaction, where functions are relations, exact decomposition has been studied at least
in [10]. The goal there was to compute the minimal network (i.e, transforming large
arity relations into sets of equivalent binary ones). More recently, [5] have studied the
power of decomposition in the context of combinatorial optimization graphical models.
The goal there was to avoid large arity functions in order to boost local consistency
enforcement.

Regarding approximate decomposition, the Mini-Bucket Elimination (MBE) algo-
rithm [3] is the closest to ours. MBE is a dynamic-programming approximation algo-
rithm that decomposes large functions into smaller arity ones in order to keep the space
complexity manageable. The algorithm is very general and leaves several aspects unde-
fined. [8] proposed an implementation that decomposes the functions while minimizing
the error of the decomposition. One of the main differences wrt our approach is the
system of linear equations solved.
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