
ar
X

iv
:1

40
1.

53
41

v1
 [

cs
.A

I]
 2

1
Ja

n
20

14

Domain Views for Constraint Programming

P. Van Hentenryck1 and L. Michel2

1 NICTA, Australia, RI 02912
2 University of Connecticut, Storrs, CT 06269-2155

Abstract. Views are a standard abstraction in constraint programming:
They make it possible to implement a single version of each constraint,
while avoiding to create new variables and constraints that would slow
down propagation. Traditional constraint-programming systems provide
the concept of variable views which implement a view of the type y =
f(x) by delegating all (domain and constraint) operations on variable
y to variable x. This paper proposes the alternative concept of domain

views which only delegate domain operations. Domain views preserve the
benefits of variable views but simplify the implementation of value-based
propagation. Domain views also support non-injective views composi-
tionally, expanding the scope of views significantly. Experimental results
demonstrate the practical benefits of domain views.

1 Introduction

Constraint programming systems provide rich libraries of constraints, each of
which models some specific structure useful across a wide range of applications.
These constraints are important both from a modeling standpoint, as they make
it possible to state problems at a high level of abstraction, and from an efficiency
standpoint, as they allow dedicated algorithms to exploit the specific structure.
The global constraint catalog [2] in fact lists about 354 global constraints at
the time of writing. In addition, each of these constraints potentially come in
many different forms as they can be applied, not only on variables, but also on
expressions involving variables.

This large number of variants presents a challenge for system developers who
must produce, validate, optimize, and maintain each version of each constraint.
To avoid the proliferation of such variants, system developers often prefer to de-
sign a unique variant over variables and introduce new variables and constraints
to model the more complex cases. For instance, a constraint

alldifferent(x1 + 1, . . . , xn + n)

can be modeled by a system of constraints

{alldifferent(y1, . . . , yn), y1 = x1 + 1, . . . , yn = xn + n}

where the yi’s are new variables. This approach keeps the system core small
but introduces an overhead in time and space. Indeed, the new constraints must

http://arxiv.org/abs/1401.5341v1

be propagated through the constraint engine and the system must maintain
additional domains and constraints, increasing the cost of propagation and the
space requirements.

Over the years, system designers have sought ways to mitigate this difficulty
and proposed several solutions of varying complexity. Prolog-style languages
offered indexicals [5,3] while C++ libraries like Ilog Solver [6] introduces the
concept of variable views. For an injective function f and a variable (or a view)
x, a variable view y enforces the equivalent of the constraint y = f(x) but it
does not introduce a new variable and a new constraint: Instead, it delegates all
domain and constraint operations (the ability to wake constraints) on y to x,
sometimes after applying f−1. These variable views remove the time and space
overhead mentioned above and keep the solver kernel small, thus giving us a
valuable abstraction for constraint programming. Recently, [8,9] demonstrated
how variable views can be implemented in terms of C++ templates, providing
further improvement in speed and memory usage. The idea is to use parametric
polymorphism to allow for code reuse and compile-time optimizations based on
code expansion and inlining. [9] demonstrates that variable views provide signif-
icant software engineering benefits as well as great computational improvements
over the basic approach using new variables and constraints.

This paper aims at expanding the scope of constraint-programming views
with an extremely simple abstraction: The concept of domain views which only
delegate domain operations. Domain views preserve the benefits of variable views
but simplify the implementation of value-based propagation, i.e., the propagation
of events of the form 〈c, x, v〉, meaning that constraint c must be propagated
because variable x has lost value v (e.g., [10,4]). The key benefit of domain
views is to support non-injective views elegantly and compositionalls. Domain
views can also be implemented using parametric polymorphism and hence are
fully compatible with the compilation techniques in [9].

The rest of the paper is organized as follows. Sections 2, 3, and 4 present
the preliminaries on constraint programming and on views. Section presents the
implementation of variable views. Section 5 introduces the concept of domain
views. Section 6 demonstrates how to generalize domain views to the case where
the function f is not injective. Section 7 briefly discusses how to exploit mono-
tonicity and anti-monotonicity. Section 8 presents experimental results. Section
9 discusses related work on advisors [7] and Section 10 concludes the paper.

2 Preliminaries

A constraint-programming system is organized around a queue of events Q and
its main component is an engine propagating constraints in the queue, i.e.,

1 while ¬ empty (Q) do

2 propagate (pop(Q)) ;

For simplicity, we only consider two types of events: 〈c, x〉 and 〈c, x, v〉. An event
〈c, x〉 means that constraint cmust be propagated because the domain of variable

1 i n t e r f a c e Var iab le
2 bool member (V v) ;
3 bool remove (V v) ;
4 void watch (C c) ;
5 void watchValue (C c) ;
6 void wake ;
7 void wakeValue (V v) ;

Fig. 1. The Variable Interface.

x has been shrunk. An event 〈c, x, v〉 means that constraint cmust be propagated
because the value v has been removed from the domain of variable x. Events of
the form 〈c, x〉 are sometimes called variable-based propagation, while those of
the form 〈c, x, v〉 are sometimes called value-based propagation. Note that some
systems also implement what is called constraint-based propagation, where the
event simply consists of constraint to propagate without additional information.
We do not discuss constraint-based propagation here since it is easier to handle.

The propagation of a constraint may change the domains of some variables
and thus introduce new events in the queue. As a result, a variable x not only
maintains its domain D(x) but also keeps track of the constraints it appears in
so that the proper events can be inserted in the queue. As a result, a variable x
is best viewed as a triple 〈D,SC, SCv〉, where D is the domain of the variable,
SC is the set of constraints involving x that use variable-based propagation, and
SCv is the set of constraints involving x that use value-based propagation. If x is
a variable, we use D(x), SC(x) and SCv(x) to denote these three components.

For simplicity, a variable in this paper implements the interface depicted in
Figure 1, where V denotes the set of values considered (e.g., integers or reals)
and C the set of constraints. For a variable x, method member(v) tests v ∈
D(x), method remove(v) implements D(x) := D(x) \ {v} and returns true
if the resulting domain is not empty, method watch(c) registers constraint c
for variable-propagation, and method watchValue(c) registers constraint c for
value-propagation. The wake methods are used for creating new events in the
queue. Method wake must implement Q := Q ∪ {〈c, x〉 | c ∈ SC(x)} while
method wakeValue(v) must implement Q := Q ∪ {〈c, x, v〉 | c ∈ SCv(x)}.
With our conventions, a variable can be implemented as depicted in Figure 2.

3 Views

The purpose of this paper is to define and implement abstractions for constraints
of the form y = ψ(x). In a first step, the paper focuses on injective views, i.e.,
views in which function ψ is injective, which is the functionality provided by
many constraint-programming solvers.

Definition 1 (Injective Function) A function ψ : D → V is injective if

∀v, v′ ∈ D : ψ(v) = ψ(v′) ⇒ v = v′.

1 implementation DomainVariable
2 {V} D ;
3 {C} SC ;
4 {C} SCv ;
5
6 DomainVariable({V} Do) { D := Do ; SC := ∅ ; SCv := ∅ ; }
7 bool member (V v) { return v ∈ D ;}
8 bool remove (V v) {
9 i f v ∈ D

10 D := D \ {v} ;
11 wake () ;
12 wakeValue (v) ;
13 }
14 void watch (C c) { SC := SC ∪ {c} ; }
15 void watchValue (C c) { SCv := SCv ∪ {c} ; }
16 void wake () { Q := Q ∪ {〈c, this〉 | c ∈ SC} ;}
17 void wakeValue (V v) { Q := Q ∪ {〈c, this, v〉 | c ∈ SCv} ;}

Fig. 2. The Implementation of a Domain Variable

The inverse ψ−1 : V → D⊥ of injective function ψ is defined as

ψ−1(w) =

{

v if v ∈ D ∧ ψ(v) = w
⊥ otherwise

where D⊥ = D ∪ {⊥}.

Note that the definition of ψ−1 is a specification: An actual implementation uses
a dedicated implementation of ψ−1 as the following two examples illustrate.

Example 1 (Shift View) Consider the view y = x + c where c is an integer
and x and y are integer variables. Function ψ : Z → Z can be specified (using
lambda calculus notation [1]) as λk.k + c. Its inverse ψ−1 : Z → Z is defined as
λk.k − c.

Example 2 (Affine View) Consider the view y = ax + b where a, b ∈ Z and
x, y are integer variables. ψ : Z → Z is λk.ak + b. Its inverse ψ−1 : Z → Z is

ψ−1 =

{

λk.(k − b)/a if (k − b) mod a = 0
λk.⊥ otherwise.

Views must be compositional and make it possible to state a view over a view.

4 Variable Views

The fundamental idea of variable views, implemented in many systems, is to
delegate all domain and constraint operations of variable y to variable x. A
variable view thus implements an adapter pattern that stores neither domain

1 implementation DomainVariable
2 {V} D ;
3 {〈C,X〉} SC ;
4 {〈C,X ,F〉} SCv ;
5
6 DomainVariable({V} Do) { D := Do ; SC := ∅ ; SCv := ∅ ;}
7 bool member (V v) { return v ∈ D ;}
8 bool remove (V v) {
9 i f v ∈ D

10 D := D \ {v} ;
11 wake () ;
12 wakeValue (v) ;
13 }
14 void watch (C c,X y) { SC := SC ∪ {〈c, y〉} ; }
15 void watchValue (C c,X y,F ψ) { SCv := SCv ∪ {〈c, y, ψ〉} ;}
16 void watch (C c) { watch (c , t h i s) ; }
17 void watchValue (C c) { watch (c , th i s ,λk.k) ; }
18
19 void wake () { Q := Q ∪ {〈c, x〉 | 〈c, x〉 ∈ SC} ;}
20 void wakeValue (V v){ Q := Q ∪ {〈c, x,ψ(v)〉 | 〈c, x,ψ〉 ∈ SCv} ;}

Fig. 3. The Domain Variable for Variable Views.

nor sets of constraints. The variable view simply stores a reference to variable x
and delegates all domain and constraint operations to x, possibly after applying
function ψ or ψ−1 on the arguments. Informally speaking, the membership test
w ∈ D(y) becomes ψ−1(w) ∈ D(x), the removal operation proceeds similarly
and variable x also watches all the constraints of y.

The only difficulty in variable views comes from the fact that variable x now
needs to watch constraints on both x and y. For variable-based propagation, it is
necessary to remember which variable is being watched for each constraint and
the set SC now consists of pairs 〈c, z〉 where c is a constraint and z is a variable.
For value-based propagation, it is necessary to store the function ψ since it must
be applied when method wakeValue is applied. Hence the set SCv now contains
triples of the form 〈c, z, ψ〉. These generalizations are necessary, since when a
value v is removed from the domain of x, the value-based events for variable y
must be of the form 〈c, y, ψ(v)〉.

The implementation of variables to support variable views is shown in Fig-
ure 3 where X denotes the set of variables/views and F the set of first-order
functions. Observe the types of SC and SCv in lines 3–4, the new methods in
lines 14–15 allow to watch a constraint c for a view y, the matching redefinition
of the watch methods, and the wake methods that store additional information
in the queue by applying the stored function ψ on value v (line 20).

Figure 4 depicts a template for variable views in terms of an injective function
ψ. A shift view specialization is shown in Figure 5. Observe that variable views do
not store a domain nor constraint sets. Methods member and remove apply ψ−1 as
mentioned earlier with only the addition of a test for the ⊥ case. Methods watch

1 implementation VariableView<ψ>
2 X x ;
3 VariableView (X x) { x := x ; }
4 bool member (V v) {
5 i f ψ−1(v) 6= ⊥ return x . member(ψ−1(v)) ; else return f a l s e ;
6 }
7 bool remove (Z v) {
8 i f ψ−1(v) 6= ⊥ return x . remove (ψ−1(v)) ; else return t rue ;
9 }

10 void watch (C c ,X y) { x . watch (c, y) ; }
11 void watchValue (C c ,X y ,F φ) { x . watchValue (c ,y ,φ ◦ ψ) ; }
12 void watch (C c) { x . watch (c , t h i s) ; }
13 void watchValue (C c) { x . watchValue (c , th i s ,ψ) ; }

Fig. 4. The Template for Variable Views.

1 implementation Var iab leSh i f tView
2 X x ;
3 Z c ;
4 Var iab leSh i f tView (X x ,Z c) { x := x ; c := c ; }
5 bool member (Z v) { return x . member (v−c) ; }
6 bool remove (Z v) { return x . remove (v−c) ; }
7 void watch (C c ,X y) { x . watch (c, y) ; }
8 void watchValue (C c ,X y ,Z → Z φ) { x . watchValue (c ,y ,φ ◦ (λk.k + c)) ; }
9 void watch (C c) { x . watch (c , t h i s) ; }

10 void watchValue (C c) { x . watchValue (c , th i s ,λk.k + c) ; }

Fig. 5. A Variable View for Shift Views.

and watchValue (lines 10–11) state a view on the view itself. In particular, line
11 illustrates the need for function composition in the case of value propagation.

The instantiation for shift views in Figure 5 highlights some interesting
points. First, there is no need for a ⊥ test, since the inverse of ψ is always in
the domain of ψ. Second, value-based propagation requires the use of first-order
functions (see lines 9 and 12) or objects implementing the same functionalities.
In contrast, methods member and remove “inline” function φ−1 in the code,
which is never stored or passed as a parameter.

Optimization Variable views now stores tuples 〈c, z, ψ〉 for value-based propa-
gation. Observe however that z is an object so that it is possible to use it to
compute function ψ. This only requires the view to provide a method map that
maps the value v through ψ. Lines 15 and 20 in Figure 3 become

1 void watchValue (C c,X y) { SCv := SCv ∪ {〈c, y〉} ;}
2 void wakeValue (V v) { Q := Q ∪ {〈c, x, x.map(v)〉 | 〈c, x〉 ∈ SCv} ;}

The map method on standard variables is defined as

1 V map(V v) { return v ;}

and its definition on views (defined over variable x with injective function ψ) is

1 implementation DomainVariable
2 {V} D ;
3 {C} SC ;
4 {C} SCv ;
5 {X} Views ;
6
7 DomainVariable({V} Do) { D := Do ;SC := ∅ ;SCv := ∅ ;Views := ∅ ;}
8 void addView(X x) { Views := Views ∪ {x} ; }
9 bool member (V v) { return v ∈ D ;}

10 bool remove (V v) {
11 i f v ∈ D

12 D := D \ {v} ;
13 wake () ;
14 wakeValue (v) ;
15 f o r a l l y ∈ Views

16 y . wake () ;
17 y . wakeValue (v) ;
18 }
19 void watch (C c) { SC := SC ∪ {c} ;}
20 void watchValue (C c) { SCv := SCv ∪ {c} ;}
21 void wake () { Q := Q ∪ {〈c, this〉 | c ∈ SC} ;}
22 void wakeValue (V v) { Q := Q ∪ {〈c, this, v〉 | c ∈ SCv} ;}

Fig. 6. The Domain Variable for Domain Views.

1 V map(V v) { return ψ(x.map(v)) ;}

Observe the recursive call, since views can be posted on views. This optimization
clutters a bit the API of variables and views but only minimally.

Variable views are an important concept in constraint programming for injec-
tive functions. For constraint-based and variable-based propagation, the imple-
mentation is simple and efficient, although it requires to upgrade slightly the data
structure to watch constraints. For value-based propagation, the implementation
is a bit more cumbersome. It requires a generalization of the constraint queue
and the addition of a map method on variables and views to avoid manipulat-
ing first-order functions. Domain views provide an extremely simple alternative,
which also has the benefits of supporting non-injective functions elegantly.

5 Domain Views

The key idea behind domain views is to delegate only domain operations from
variable y to variable x: The view for y maintains its own constraints to watch.
This removes the need to manipulate first-order functions. To implement domain
views, traditional variables (and views) must store which variables are viewing
them. When their domains change, they must notify their views.

Figure 6 depicts the revised implementation of domain variables to support
domain views. The variable now keeps its views (line 5) and provides a method

1 implementation DomainView<ψ>
2 X x ;
3 {C} SC ;
4 {C} SCv ;
5 {X} Views ;
6 DomainView(X x) { SC := ∅ ; SCv := ∅ ; Views := ∅ ;}
7 void addView(X x) { Views := Views ∪ {x} ; }
8 bool member (V v) {
9 i f ψ−1(v) 6= ⊥ return x . member(ψ−1(v)) ; else return f a l s e ;

10 }
11 bool remove (Z v) {
12 i f ψ−1(v) 6= ⊥ return x . remove (ψ−1(v)) ; else return t rue ;
13 }
14 void watch (C c) { SC := SC ∪ {c} ; }
15 void watchValue (C c) { SCv := SCv ∪ {c} ; }
16 void wake () {
17 Q := Q ∪ {〈c, this〉 | c ∈ SC} ;
18 f o r a l l (y ∈ Views) y . wake () ;
19 }
20 void wakeValue (V v) {
21 Q := Q ∪ {〈c, this, v〉 | c ∈ SCv} ;
22 f o r a l l (y ∈ Views) y . wakeValue (ψ(v)) ;
23 }

Fig. 7. The Template for Domain Views.

for adding a view (line 8). The only other change is in method remove in lines
16–18: The domain variable calls method wake and wakeValue on its views to
inform them of the loss of value v to let them schedule their own constraints.

Figure 7 shows a template for domain views in terms of an injective function
ψ. A specialization for shift views is shown in Figure 8. Observe first how the
domain view maintains its own set of constraints. It delegates its domain oper-
ations in methods member and remove in the same way as variable views, but it
does not delegate its watch methods, which are similar to those of a traditional
domain variable. To implement views on views, the wake methods also wake
the views (lines 16–20 and 21–25), using the function ψ to send the appropriate
value since v is the value removed from D(x). D(x) may be explicit (traditional
variable) or implicit (views). The shift view in Figure 8 does not manipulate
first-order functions and inlines ψ−1 in lines 9 and 12 and ψ in line 24.

Domain views provide an elegant alternative to variable views. They remove
the need to modify the data structure for watching constraint and alleviate the
need for the map function, while preserving the benefits of variable views and
enabling more inlining for value-based propagation. They are based on a simple
idea: Only delegating the domain operations. Instead of delegating constraint
watching, constraints are watched locally. It is interesting to analyze the mem-
ory requirements of both approaches. Variable views need to store variables in
their constraint lists, which require space proportional to the length of these
lists. In contrast, domain views only require a few pointers for their own lists,

1 implementation DomainShiftView
2 X x ;
3 {C} SC ;
4 {C} SCv ;
5 {X} Views ;
6 Z c ;
7 DomainShiftView (X x ,Z c) {
8 SC := ∅ ; SCv := ∅ ; Views := ∅ ; c := c ;
9 }

10 bool member (Z v) { return x . member (v−c) ; }
11 bool remove (Z v) { return x . remove (v−c) ; }
12 void watch (C c) { SC := SC ∪ {c} ; }
13 void watchValue (C c) { SCv := SCv ∪ {c} ; }
14 void wake () {
15 Q := Q ∪ {〈c, this〉 | c ∈ SC} ;
16 f o r a l l (y ∈ Views) y . wake () ;
17 }
18 void wakeValue (V v) {
19 Q := Q ∪ {〈c, this, v〉 | c ∈ SCv} ;
20 f o r a l l (y ∈ Views) y . wakeValue (v + c) ;
21 }

Fig. 8. A Domain View for Shift Views.

the constraints themselves being present in both approaches albeit in different
lists. The viewed variables must also maintain the list of its views, which is
proportional to the number of views.

6 Non-injective Views

We now generalize domain views to non-injective functions.

Definition 2 (Inverse of a Non-Injective Function) The inverse ψ−1 : V →
2D
⊥

of non-injective function ψ : D → V is defined as

ψ−1(w) =

{

⊥ if 6 ∃ v ∈ D : ψ(v) = w
{v ∈ D | ψ(v) = w} otherwise.

Figure 9 gives the template for non-injective views. There are only a few mod-
ifications compared to the template for injective views. The member function
must now test membership for a set of values (line 12) and the remove function
must remove a set of values (line 18). Finally, method wakeValue(w) must test
membership of v = ψ(w), since there may be multiple supports for v in D(x).

The key advantage of domain views is that they own their constraints. In the
context of non-injective functions, this is critical since only the view “knows”
whether its constraints must be scheduled for propagation.

It is more difficult and less elegant, but not impossible, to generalize vari-
able views to support non-injective functions. Consider what should happen for

1 implementation NonInjectiveDomainView<ψ>
2 X x ;
3 {C} SC ;
4 {C} SCv ;
5 {X} Views ;
6 NonInjectiveDomainView(X x) {
7 SC := ∅ ; SCv := ∅ ; Views := ∅ ;
8 }
9 void addView(X x) { Views := Views ∪ {x} ; }

10 bool member (V v) {
11 i f ψ−1(v) 6= ⊥ return ∃w ∈ ψ−1(v) : x . member(w) ;
12 else return f a l s e ;
13 }
14 bool remove (V v) {
15 i f ψ−1(v) 6= ⊥
16 f o r a l l (w ∈ ψ−1(v)) i f ¬ x . remove (w) return f a l s e ;
17 return t rue ;
18 }
19 void watch (C c) { SC := SC ∪ {c} ; }
20 void watchValue (C c) { SCv := SCv ∪ {c} ; }
21 void wake () {
22 Q := Q ∪ {〈c, this〉 | c ∈ SC} ;
23 f o r a l l (y ∈ Views) y . wake () ;
24 }
25 void wakeValue (V w) {
26 v = ψ(w) ;
27 i f x .member (v)
28 Q := Q∪ {〈c, this, v〉 | c ∈ SCv} ;
29 f o r a l l (y ∈ Views) y . wakeValue (ψ(v)) ;
30 }

Fig. 9. The Template for Non-Injective Domain Views.

variable views. For a view y = f(x), when a value v is removed from the domain
of x, it is no longer sufficient to just use the map function. The view must now
decide whether the value f(v) is still supported for y. Moreover, if we have a view
z = g(y) and variable x is trying to decide whether to schedule a constraint in-
volving z, it must query z to find out whether the value g(f(v)) is still supported,
which depends on whether value f(v) is still supported in variable y. Hence, to
implement non-injective functions in variable views, waking constraints up must
be conditional. It is necessary to implement a method needToSchedule on views
to determine if the original removal will actually remove a value on the views.
Method wakeValue now becomes

1 void wakeValue (V v) {
2 Q := Q∪ {〈c, x, x.map(v)〉 | 〈c, x〉 ∈ SCv & x . needToSchedule (v)} ;}

The implementation of needToSchedule must also be recursive (like the map

function) to handle the case of views on views. For space reasons, we let readers
figure out the details on how to do so correctly and only note the conceptual
simplicity of domain views.3

Literal Views Reified constraints are a fundamental abstraction in constraint
programming. For instance, In a magic series s of length n, every si must satisfy
si =

∑n−1
j=0 (sj = i), i.e., it states that si should be the number of occurrences of

value i in s itself. To implement this behavior, one could rely on auxiliary boolean
variables bij ⇔ sj = i. for every i and j in 0..n−1 leading to a quadratic number
of boolean variables and reified equality constraints. The reification b ⇔ x = i
can be seen as a non-injective view and Figure 10 describes its implementation.
The view uses two methods not described before: Method isBoundTo(i) on
variable x holds if D(x) = {i}, while method bind(i) succeeds if i ∈ D(x) and
reduces the domain D(x) to {i}. With these two functions, the implementation
is direct with the methods member, remove, and wakeValue carried out by case
analysis on the value of the “reified variable”.

Modulo Views We now show a view for a constraint y = x mod k with k ∈ Z.
The view implementation maintains the supports for each value v ∈ D(y), i.e.,

∀v ∈ D(y) sv = {w | w ∈ D(x) ∧ w mod k = v}

Figure 11 depicts a sketch of a simple implementation.

7 Monotone and Anti-Monotone Views

We briefly mention how to exploit monotone and anti-monotone properties to
perform additional operations such as updateMin and updateMax. These tech-
niques are well-known and are only reviewed here for completeness.

Definition 3 (Monotone/AntiMonotone Function) An injective function
ψ is monotone if ∀v, w : v ≤ w → ψ(v) ≤ ψ(w). It is anti-monotone if ∀v, w :
v ≤ w → ψ(v) ≥ ψ(w).

If ψ : Z → Z is a monotone function and y is a view on x, then the update
operations on bounds becomes

1 bool updateMin (Z v) { return x . updateMin (ψ−1(v)) ; }
2 bool updateMax (Z v) { return x . updateMax (ψ−1(v)) ; }

ignoring the case where ψ−1(v) is not well-defined. When ψ is anti-monotone,
they become

1 bool updateMin (Z v) { return x . updateMax (ψ−1(v)) ; }
2 bool updateMax (Z v) { return x . updateMin (ψ−1(v)) ; }

3 Method needToSchedule must also update any internal state of the views. From a
semantic standpoint, it would desirable to have another recursive method to notify
the view that value v has been removed and to update the state.

1 implementation ReifedDomainView
2 X x ;
3 {C} SC ;
4 {C} SCv ;
5 {X} Views ;
6 Z i ;
7 DomainReifiedView(X x ,Z i) {
8 SC := ∅ ; SCv := ∅ ; Views := ∅ ; i := i ;
9 }

10 bool member (Z v) {
11 i f v = 0 return ¬x . isBoundTo (i) ;
12 else return x . member(i) ;
13 }
14 bool remove (Z v) {
15 i f v = 0
16 return x . bind (i) ;
17 else return x . remove (i) ;
18 }
19 . . .
20 void wakeValue (V v) {
21 i f v = i

22 Q := Q ∪ {〈c, this, 1〉 | c ∈ SCv} ;
23 f o r a l l (y ∈ Views) y . wakeValue (1) ;
24 else

25 i f ¬member (0)
26 Q := Q ∪ {〈c, this, 0〉 | c ∈ SCv} ;
27 f o r a l l (y ∈ Views) y . wakeValue (0) ;
28 }

Fig. 10. A Domain View for Reified Views.

8 Empirical Evaluation

We now describe experimental results to demonstrate the efficiency of domain
views. The experiments were run on MacOS X 10.8.3 running on a Core i7 at
2.6Ghz, using the Objective-CP optimization system [11]. The complete im-
plementation of the integer and boolean variables, along with their domain and
their views (including literal views) is around 3,200 lines of code, which is simi-
lar to the type of code reuse advertised for Gecode [9]. Objective-CP pushes
the methodology advocated in [9] to the limit, only supporting core constraints
and using views to obtain more complex versions. For instance, the CP solver
in Objective-CP provides

∑n

i=0 xi ≤ b but not
∑n

i=0 ai · xi ≤ b. Note that
cost-based propagation for COP would, of course, mandate global constraints
retaining the ai. Objective-CP supports value-based propagation and non-
injective views, which demonstrates the additional functionalities provided by
domain views. Note that the experiments only aim at demonstrating the prac-
ticability of domain views: See [9] for the benefits of views.

1 implementation ModuloDomainView
2 . . .

3 int k ;
4 {Z} [] S ;
5 DomainReifiedView(X x ,Z k) { . . . }
6 bool member (Z v) { return Sv 6= ∅ ; }
7 bool remove (Z v) {
8 f o r a l l (w ∈ Sv)
9 i f ¬ x . remove (w) return f a l s e ;

10 return t rue ;
11 }
12 . . .
13 void wakeValue (V w) {
14 v := w mod k ;
15 i f ¬ member(v)
16 Q := Q ∪ {〈c, this, v〉 | c ∈ SCv} ;
17 f o r a l l (y ∈ Views)
18 y . wakeValue (v) ;
19 }

Fig. 11. A Domain View for a Modulo Function.

Benchmarks The implementation was validated with on a variety of benchmarks
relying on views. The experiments compare implementations with no views, with
the optimized variable views (with subtype polymorphism), and domain views.
When no-views are used, the implementation uses the constraints and auxiliary
variables introduced during the flattening of the model. The implementation
uses the same models throughout and the search space and pruning are always
identical. For bibd, we follow [9] and rewrite the boolean relations a ∧ b as
¬ (¬a ∨ ¬b) to ensure that the system uses negation views. Specifically, knapsack
use linear equations

∑

i∈S xi = b and introduce views for the coefficients. The
Steel Mill Slab problem relies on literal views for the color constraint on slab
s :

∑

c∈Colors ∨o∈Orders[c](xo = s) ≤ 2. Debruijn uses both linear equations as
well as reifications. Langford uses affine views to “shift” indices within element
constraints. Magicseries clearly relies on reifications. Sport is the classic sport
scheduling benchmark and uses global constraints.

Measurements The benchmarks use a simple first-fail heuristic as decomposi-
tion may change the behavior of more advanced heuristics (e.g., WDEG) and
these experiments are only interested in assessing view implementations, not in-
herent speed. Table 1 offers a comparative view of the results. It is based on
50 execution of each benchmark to account for the inherent variability related
to modern processor technology. Columns µ(Tcpu) and µ(Twc) give the average
user-time or wall-clock times in milliseconds. Columns σ(Tcpu) and σ(Twc) re-
port the standard deviations for those run times. Column |M | reports the peak
memory consumption in kilobytes for the entire process. The measurement was
taken at the level of the malloc C-runtime function and includes all memory

Bench type µ(Tcpu) µ(Twc) σ(Tcpu) σ(Twc) |M |(KB) P.(×1000)

bibd(6) No-View 1,088.4 1,130.5 222.1 227.9 44,652 1,984
bibd(6) Domain-View 729.8 759.2 107.6 111.0 29,197 804
bibd(6) Var-View 644.7 671.2 59.4 60.2 28,082 805
knapsack(4) No-View 8,857.5 8,873.9 180.9 184.8 987 33,207
knapsack(4) Domain-View 6,768.0 6,784.5 166.8 176.1 812 2,949
knapsack(4) Var-View 6,151.2 6,164.5 109.2 111.0 789 3,062
ais(30) No-View 1,341.8 1,348.9 52.2 57.6 1,336 2,734
ais(30) Domain-View 1,355.3 1,361.5 31.8 32.4 1,336 2,734
ais(30) Var-View 1,354.9 1,362.4 26.1 26.5 1,337 2,734
sport No-View 4,851.7 4,864.2 111.3 116.0 2,030 3,361
sport Domain-View 4,850.9 4,864.3 179.4 189.3 2,029 3,361
sport Var-View 4,936.1 4,949.5 231.8 236.7 2,029 3,361
langford(9/3) No-View 6,060.5 6,076.1 298.8 306.2 1,375 54,027
langford(9/3) Domain-View 7,008.3 7,026.6 316.8 323.5 1,368 56,893
langford(9/3) Var-View 6,859.5 6,877.9 242.7 248.5 1,366 56,887
debruijn(2/12) No-View 7,665.5 8,437.3 153.4 169.2 624,635 2,558
debruijn(2/12) Domain-View 7,292.2 8,014.2 111.2 144.1 552,515 946
debruijn(2/12) Var-View 6,935.2 7,628.2 384.9 422.4 550,792 967
slab No-View 4,845.2 4,919.4 108.6 115.4 84,092 4,403
slab Domain-View 2,243.5 2,294.0 128.7 138.8 51,725 909
slab Var-View 4,509.8 4,578.7 94.7 99.4 73,929 2,968
magicserie(300) No-View 17,951.2 18,164.7 284.0 300.8 231,622 30,771
magicserie(300) Domain-View 8,318.3 8,443.6 191.9 201.4 122,026 257
magicserie(300) Var-View 14,879.9 15,088.0 429.1 441.1 229,288 20,745

Table 1. Experimental Results on Variable and Domain Views.

allocations done by the executable. Finally, column P. reports the number of
propagation events recorded by the engine (in thousands).

Without surprise, the results indicate that a minimalist kernelmust use views
to be competitive. The differences in memory consumptions and running times
are often quite significant when contrasted with view-based implementations.
For all benchmarks involving only injective views, variable and domain views
are essentially similar in time and space efficiency. Given the standard devia-
tions, the differences in efficiency are not statistically significant, although vari-
able views are often slightly more efficient. This is not always the case, as the
sport-scheduling problem indicates. The main benefit of domain views is to sup-
port non-injective views simply and efficiently. This is particularly clear on the
benchmarks relying on reifications, i.e, slab and magicserie. The benefits are
in terms of runtime and memory consumption. The runtime benefits are quite
substantial, as the running time is halved on the Steel Mill Slab problem. The
dramatic drop in the number of propagations is easily explained by the absence
of constraints of the form b⇔ (x = v), yet, the same work is still carried out by
the view, albeit at a much lower overhead.

In summary, the experimental results show that domain views do not add
any measurable overhead on injective views and bring significant benefits on
non-injective views, which they support elegantly.

9 Related Work

It is important to contrast the variable and domain view implementations pro-
posed here with another approach using delta-sets and advisors [7,9]. Advisors
are another way of “simulate” value-based propagation.4 An advisor is associ-
ated with a variable and a constraint and it modifies the state of the constraint
directly upon a domain modification for its variables. Advisors do not go through
the propagation queue but modify the state of their constraint directly. This has
both an advantage (speed) and an inconvenience, since an advisor may be called
while its constraint is propagating; Hence some care must be exercised to main-
tain a consistent state. Advisors also receive the domain change (called a delta
set) which they may query.

Advisors can be associated with variable views. The view must now be up-
graded to query, not only the domain, but also the delta sets. In other words, the
queries on the delta must transform the domain delta, say {v1, . . . , vn}, through
the view to obtain {φ(v1), . . . , φ(vn)}. Gecode [9] does not compute delta sets
exactly but approximates them by intervals instead. A complete implementa-
tion of value-based propagation would require the creation of these delta sets.
Advisors and delta sets can be used in the case of non-injective functions but
that solution would still go through the propagation queue and use a constraint.
Indeed, by design, advisors do not propagate constraints.

The key advantage of domain views in this context is their ability to imple-
ment non-injective views without going through the propogation queue.

10 Conclusion

This paper reconsidered the concept of views, an important abstraction provided
by constraint-programming systems to avoid the proliferation of constraints,
while preserving the efficiency of dedicated implementation. It proposed an
alternative to the concept of variable views, typically featured in constraint-
programming systems. Contrary to variable views, domain views only delegate
domain operations and maintains their own set of constraints to watch. Domain
views simplify the implementation of constraint-programming systems featur-
ing value-based propagation as they avoid manipulating first-order functions
(or objects implementing a similar functionality). They also make it possible to
implement, in simple ways, views featuring non-injective functions. These are
particularly useful for reified constraints, which are also an important features
of constraint-programming systems. Experimental results demonstrate that do-
main views introduce a negligible overhead (if any) over variable views and that
views over non-injective functions, which are elegantly supported by domain
views, provide significant benefits.

4 It is only a simulation since an advisor updates the constraint state but does not
propagate a constraint itself. They are second-class citizens by choice in Gecode [7].

References

1. H. P. Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103
of Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

2. N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Global constraint cata-
logue: Past, present and future. Constraints, 12(1):21–62, Mar. 2007.

3. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In H. Glaser, P. H. Hartel, and H. Kuchen, editors, PLILP, volume 1292 of
Lecture Notes in Computer Science, pages 191–206. Springer, 1997.

4. I. Dynadec. Comet v2.1 user manual. Technical report, Providence, RI, 2009.
5. P. V. Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in cc(fd).

Technical report, 1992.
6. Ilog Solver 4.4. Reference Manual. Ilog SA, Gentilly, France, 1998.
7. M. Lagerkvist and C. Schulte. Advisors for incremental propagation. In Proceed-

ings of the 13th International Conference on Principles and Practice of Constraint

Programming, Sep 2007.
8. C. Schulte and G. Tack. Perfect derived propagators. In P. J. Stuckey, editor, CP,

volume 5202 of Lecture Notes in Computer Science, pages 571–575. Springer, 2008.
9. C. Schulte and G. Tack. View-based propagator derivation. Constraints, 18(1):75–

107, 2013.
10. P. Van Hentenryck, Y. Deville, and C. Teng. A Generic Arc Consistency Algorithm

and Its Specializations. Artificial Intelligence, 57(2-3), 1992.
11. P. Van Hentenryck and L. Michel. The Objective-CP Optimization System. In

Proceedings of the 19th International Conference on Principles and Practice of

Constraint Programming, Sep 2013.

	Domain Views for Constraint Programming

