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Abstract

Modern complex software systems produce a large amount of execution data, often
stored in logs. These logs can be analyzed using trace checking techniques to check
whether the system complies with its requirements specifications. Often these specifi-
cations express quantitative properties of the system, which include timing constraints as
well as higher-level constraints on the occurrences of significant events, expressed using
aggregate operators.

In this paper we present an algorithm that exploits the MapReduce programming
model to check specifications expressed in a metric temporallogic with aggregating modal-
ities, over large execution traces. The algorithm exploitsthe structure of the formula to
parallelize the evaluation, with a significant gain in time.We report on the assessment
of the implementation—based on the Hadoop framework—of theproposed algorithm and
comment on its scalability.

1 Introduction

Modern software systems, such as service-based applications (SBAs), are built according to
a modular and decentralized architecture, and executed in adistributed environment. Their
development and their operation depend on many stakeholders, including the providers of
various third-party services and the integrators that realize composite applications by orches-
trating third-party services. Service integrators are responsible to the end-users for guaran-
teeing an adequate level of quality of service, both in termsof functional and non-functional
requirements. This new type of software has triggered several research efforts that focus on
the specification and verification of SBAs.

In previous work [7], some of the authors presented the results of a field study on prop-
erty specification patterns [11] used in the context of SBAs,both in industrial and in research
settings. The study identified a set of property specification patterns specific to service provi-
sioning. Most of these patterns are characterized by the presence of aggregate operations on
sequences of events occurring in a given time window, such as“the average distance between
pairs of events (e.g., average response time)”, “the numberof events in a given time window”,
“the average (or maximum) number of events in a certain time interval over a certain time
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window”. This study led to the definition of SOLOIST [8] (SpecificatiOn Language fOr ser-
vIce compoSitions inTeractions), a metric temporal logic with new temporal modalities that
support aggregate operations on events occurring in a giventime window. The new temporal
modalities capture, in a concise way, the new property specification patterns presented in [7].

SOLOIST has been used in the context ofoffline trace checkingof service execution
traces. Trace checking (also calledtrace validation[14] or history checking[12]) is a pro-
cedure for evaluating a formal specification over a log of recorded events produced by a
system, i.e., over a temporal evolution of the system. Traces can be produced at run time
by a proper monitoring/logging infrastructure, and made available at the end of the service
execution to perform offline trace checking. We have proposed procedures [5, 6] for offline
checking of service execution traces against requirementsspecifications written in SOLOIST
using bounded satisfiability checking techniques [15]. Each of the procedures has been tai-
lored to specific types of traces, depending on the degree of sparseness of the trace (i.e., the
ratio between the number of time instants where significant events occur and those in which
they do not). The procedure described in [5] is optimized forsparse traces, while the one
presented in [6] is more efficient for dense traces.

Despite these optimizations, our experimental evaluationrevealed, in both procedures, an
intrinsic limitation in their scalability. This limitation is determined by the size of the trace,
which can quickly lead to memory saturation. This is a very common problem, because exe-
cution traces can easily get very large, depending on the running time captured by the log, the
systems the log refers to (e.g., several virtual machines running on a cloud-based infrastruc-
ture), and the types of events recorded. For example, granularity can range from high-level
events (e.g., sending or receiving messages) to low-level events (e.g., invoking a method on
an object). Most log analyzers that process data streams [9]or perform data mining [16] only
partially solve the problem of checking an event trace against requirements specifications,
because of the limited expressiveness of the specification language they support. Indeed, the
analysis of a trace may require checking for complex properties, which can refer to specific
sequence of events, conditioned by the occurrence of other event sequence(s), possibly with
additional constraints on the distance among events, on thenumber of occurrences of events,
and on various aggregate values (e.g., average response time). SOLOIST addresses these
limitations as we discussed above.

The recent advent of cloud computing has made it possible to process large amount of data
on networked commodity hardware, using a distributed modelof computation. One of the
most prominent programming models for distributed, parallel computing isMapReduce[10].
The MapReduce model allows developers to process large amount of data by breaking up
the analysis into independent tasks, and performing them inparallel on the various nodes of
a distributed network infrastructure, while exploiting, at the same time, the locality of the
data to reduce unnecessary transmission over the network. However, porting a traditionally-
sequential algorithm (like trace checking) into a parallelversion that takes advantage of a
distributed computation model like MapReduce is a non-trivial task.

The main contribution of this paper is an algorithm that exploits the MapReduce pro-
gramming model to check large execution traces against requirements specifications written
in SOLOIST. The algorithm exploits the structure of a SOLOIST formula to parallelize its
evaluation, with significant gain in time. We have implemented the algorithm in Java using
the Apache Hadoop framework [2]. We have evaluated the approach in terms of its scalability
and with respect to the state of art for trace checking of LTL properties using MapReduce [3].

The rest of the paper is structured as follows. First we provide some background infor-
mation, introducing SOLOIST in Sect. 2 and then the MapReduce programming model in
Sect. 3. Section 4 presents the main contribution of the paper, describing the algorithm for
trace checking of SOLOIST properties using the MapReduce programming model. Section 5
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(w, i) |= p iff p∈ σi
(w, i) |= ¬φ iff (w, i) 6|= φ
(w, i) |= φ ∧ψ iff (w, i) |= φ ∧ (w, i) |= ψ
(w, i) |= φSI ψ iff for some j < i,τi − τ j ∈ I ,(w, j) |= ψ and for allk, j < k< i,(w,k) |= φ
(w, i) |= φUI ψ iff for some j > i,τ j − τi ∈ I ,(w, j) |= ψ and for allk, i < k< j,(w,k) |= φ
(w, i) |= CK

⊲⊳n(φ) iff c(τi−K,τi ,φ) ⊲⊳ n andτi ≥ K

(w, i) |=U
K,h
⊲⊳n (φ) iff

c(τi−⌊
K
h ⌋h,τi ,φ)
⌊ K

h ⌋
⊲⊳ n andτi ≥ K

(w, i) |=M
K,h
⊲⊳n (φ) iff max

{

⋃

⌊

K
h

⌋

m=0 {c(lb(m), rb(m),φ)}

}

⊲⊳ n andτi ≥ K

(w, i) |=DK
⊲⊳n(φ ,ψ) iff

∑(s,t)∈d(φ ,ψ,τi ,K)(τt− τs)

|d(φ ,ψ ,τi ,K)|
⊲⊳ n andτi ≥ K

wherec(τa,τb,φ) = |{s | τa < τs≤ τb and(w,s) |= φ}|, lb(m) = max{τi −K,τi − (m+1)h}, rb(m) = τi −mh, and
d(φ ,ψ ,τi ,K) = {(s, t) | τi −K < τs≤ τi and(w,s) |= φ , t = min{u | τs < τu ≤ τi ,(w,u) |= ψ}}

Figure 1: Formal semantics of SOLOIST

discusses related work. Section 6 presents the evaluation of the approach, both in terms of
scalability and in terms of a comparison with the state of theart for MapReduce-based trace
checking of temporal properties. Section 7 provides some concluding remarks.

2 SOLOIST

In this section we provide a brief overview of SOLOIST; for the rationale behind the language
and a detailed explanation of its semantics see [8].

The syntax of SOLOIST is defined by the following grammar:φ ::= p | ¬φ | φ ∧φ | φUI φ |
φSI φ | CK

⊲⊳n(φ) | U
K,h
⊲⊳n (φ) |MK,h

⊲⊳n (φ) | DK
⊲⊳n(φ ,φ), wherep ∈ Π, with Π being a finite set of

atoms. In practice, we use atoms to represent different events of the trace.I is a nonempty
interval overN; ⊲⊳ ∈ {<,≤,≥,>,=}; n,K,h range overN. Moreover, for theD modality, we
require that the subformulae pair(φ ,ψ) evaluate to true in alternation.

TheUI andSI modalities are, respectively, the metric “Until” and “Since” operators. Ad-
ditional temporal modalities can be derived using the usualconventions; for example “Next”
is defined asXI φ ≡ ⊥UI φ ; “Eventually in the Future” as FI φ ≡ ⊤UI φ and “Always” as
GI φ ≡ ¬(FI¬φ), where⊤ means “true” and⊥ means “false”. Their past counterparts can
be defined using “Since” modality in a similar way. The remaining modalities are calledag-
gregatemodalities and are used to express the property specification patterns characterized
in [7]. TheCK

⊲⊳n(φ) modality states a bound (represented by⊲⊳ n) on the number of occur-
rences of an eventφ in the previousK time instants; it is also called the “counting” modality.
TheUK,h

⊲⊳n (φ) (respectively,MK,h
⊲⊳n (φ)) modality expresses a bound on the average (respectively,

maximum) number of occurrences of an eventφ , aggregated over the set of right-aligned ad-
jacent non-overlapping subintervals within a time windowK; it can express properties like
“the average/maximum number of events per hour in the last ten hours”. A subtle difference
in the semantics of theU andM modalities is thatM considers events in the (possibly empty)
tail interval, i.e., the leftmost observation subintervalwhose length is less thanh, while the
U modality ignores them. TheDK

⊲⊳n(φ ,ψ) modality expresses a bound on the average time
elapsed between occurrences of pairs of specific adjacent eventsφ andψ in the previousK
time instants; it can be used to express properties like the average response time of a service.

The formal semantics of SOLOIST is defined on timedω-words [1] over 2Π×N. A
timed sequenceτ = τ0τ1 . . . is an infinite sequence of valuesτi ∈ N with τi > 0 satisfying
τi < τi+1, for all i ≥ 0, i.e., the sequence increases strictly monotonically. A timed ω-word
over alphabet 2Π is a pair(σ ,τ) whereσ = σ0σ1 . . . is an infinite word over 2Π andτ is a
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timed sequence. A timed language over 2Π is a set of timed words over the same alphabet.
Notice that there is a distinction between the integer position i in the timedω-word and the
corresponding timestampτi . Figure 1 defines the satisfiability relation(w, i) |= φ for every
timed ω-word w, every positioni ≥ 0 and for every SOLOIST formulaφ . For the sake of
simplicity, hereafter we express theU modality in terms of theC one, based on this definition:

U
K,h
⊲⊳n (φ)≡ C

⌊K
h ⌋·h

⊲⊳n·⌊K
h ⌋
(φ), which can be derived from the semantics in Fig. 1.

We remark that the version of SOLOIST presented here is a restriction of the original
one introduced in [8]: to simplify the presentation in the next sections, we dropped first-order
quantification on finite domains and limited the argument of theD modality to only one pair of
events; as detailed in [8], these assumptions do not affect the expressiveness of the language.

SOLOIST can be used to express some of the most common specifications found in
service-level agreements (SLAs) of SBAs. For example the property: “The average response
time of operationA is always less than 5 seconds within any 900 second time window, be-
fore operationB is invoked” can be expressed as:G(Bstart→D

900
<5 (Astart,Aend)), whereA and

B correspond to generic service invocations and each operation has astart and anendevent,
denoted with the corresponding subscripts.

We now introduce some basic concepts that will be used in the presentation of our dis-
tributed trace checking algorithm in Sect. 4. Letφ andψ be SOLOIST formulae. We denote
with sub(φ) the set of all subformulae ofφ ; notice that foratomicformulaea∈Π, sub(a)= /0.
The set ofatomic subformulae (oratoms) of formula φ is defined assuba(φ) = {a | a ∈
sub(φ), sub(a) = /0}. The setsubd(φ) = {α | α ∈ sub(φ),∀β ∈ sub(φ),α /∈ sub(β )} rep-
resents the set of alldirect subformulaeof φ ; φ is called thesuperformulaof all formulae
in subd(φ). The notationsupψ (φ) denotes the set of all subformulae ofψ that have formula
φ asdirect subformula, i.e., supψ(φ) = {α | α ∈ sub(ψ),φ ∈ subd(α)}. The subformulae
in sub(ψ) of a formulaψ form a lattice with respect to the partial ordering induced by the
inclusion in setssupψ (·) andsubd(·), with ψ and /0 being thetop andbottomelements of the
lattice, respectively. We also introduce the notion of theheightof a SOLOIST formula, which
is defined recursively as:

h(φ) =
{

max{h(ψ) | ψ ∈ subd(φ)}+1 if subd(φ) 6= /0
0 otherwise.

We exemplify these concepts using formulaγ ≡ C40
⊲⊳3(a∧b)U(30,100)¬c.

Hencesub(γ) = {a,b,c,a∧b,¬c,C40
⊲⊳3(a∧b)} is the set of all subformulae ofγ; suba(γ) =

{a,b,c} is the set ofatomsin γ; subd(γ) = {C40
⊲⊳3(a∧b),¬c} is the set of direct subformulae of

γ; supγ (a) = supγ(b) = {a∧b} shows that the sets of superformulae ofa andb in γ coincide;
and the height ofγ is 3, sinceh(a)= h(b) = h(c) = 0,h(¬c) = h(a∧b)= 1,h(C40

⊲⊳3(a∧b)) = 2
and thereforeh(γ) =max{h(C40

⊲⊳3(a∧b)),h(¬c)}+1= 3.

3 The MapReduce programming model

MapReduce [10] is a programming model for processing and analyzing large data sets us-
ing a parallel, distributed infrastructure (generically called “cluster”). At the basis of the
MapReduce abstraction there are two functions,mapand reduce, that are inspired by (but
conceptually different from) the homonymous functions that are typically found in functional
programming languages. Themapandreducefunctions are defined by the user; their signa-
tures aremap(k1,v1) → list(k2,v2) andreduce(k2,list(v2)) → list(v2). The idea
of MapReduce is to apply amapfunction to each logical entity in the input (represented bya
key/value pair) in order to compute a set of intermediate key/value pairs, and then applying a
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reducefunction to all the values that have the same key in order to combine the derived data
appropriately.

Let us illustrate this model with an example that counts the number of occurrences of each
word in a large collection of documents; the pseudocode is:

map(String key, String value)

//key: document name

//value: document contents

for each word w in value:

EmitIntermediate(w,"1")

reduce(String key, Iterator values):

//key: a word

//values: a list of counts

int result = 0

for each v in values:

result += ParseInt(v)

Emit(AsString(result)

Themap function emits list of pairs, each composed of a word and its associated count
of occurrences (which is just 1). All emitted pairs are partitioned into groups and sorted
according to their key for the reduction phase; in the example, pairs are grouped and sorted
according to the word they contain. Thereducefunction sums all the counts (using an iterator
to go through the list of counts) emitted for each particularword (i.e., each unique key).

Besides the actual programming model, MapReduce brings in aframework that provides,
in a transparent way to developers, parallelization, faulttolerance, locality optimization, and
load balancing. The MapReduce framework is responsible forpartitioning the input data,
scheduling and executing theMap andReducetasks (also calledmappersandreducers, re-
spectively) on the machines available in the cluster, and for managing the communication and
the data transfer among them (usually leveraging a distributed file system).

More in detail, the execution of a MapReduce operation (called job) proceeds as follows.
First, the framework divides the input into splits of a certain size using anInputReader, gener-
ating key/value(k,v) pairs. It then assigns each input split to Map tasks, which are processed
in parallel by the nodes in the cluster. A Map task reads the corresponding input split and
passes the set of key/value pairs to themap function, which generates a set ofintermediate
key/value pairs(k′,v′). Notice that each run of themapfunction is stateless, i.e., the transfor-
mation of a single key/value pair does not depend on any otherkey/value pair. The next phase
is calledshuffle and sort: it takes the intermediate data generated by each Map task, sorts them
based on the intermediate data generated from other nodes, divides these data into regions to
be processed by Reduce tasks, and distributes these data on the nodes where the Reduce tasks
will be executed. The division of intermediate data into regions is done by apartitioning
function, which depends on the (user-specified) number of Reduce tasks and the key of the in-
termediate data. Each Reduce task executes thereducefunction, which takes an intermediate
key k′ and a set of values associated with that key to produce the output data. This output is
appended to a final output file for this reduce partition. The output of the MapReduce job will
then be available in several files, one for each Reduce task used.

4 Trace checking with MapReduce

Our algorithm for trace checking of SOLOIST properties takes as input a non-empty execution
traceT and the SOLOIST formulaΦ to be checked. The traceT is finite and can be seen as a
time-stamped sequence ofH elements, i.e.,T = (p1, p2, . . . , pH). Each of these elements is a
triple pi = (i,τi ,(a1, . . . ,aPi )), wherei is the position within the trace,τi the integer timestamp,
and(a1, . . . ,aPi ) is a list of atoms such thata j i ∈ Π, for all j i ∈ {1, ...Pi},Pi ≥ 1 and for all
i ∈ {1,2, . . . ,H}.

The algorithm processes the trace iteratively, through subsequent MapReduce passes. The
number of MapReduce iterations is equal to height of the SOLOIST formulaΦ to be checked.
Thel -th iteration (with 1< l ≤ h(Φ)) of the algorithm receives a set of tuples from the(l−1)-
th iteration; these input tuples represent all the positions where the subformulae ofΦ having
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function INPUT READERΦ,k,l (Tk)
for all (i,τi ,A) ∈ Tk do

TS(i)← τi

for all a∈ A do
if a∈ suba(Φ) then

output(a, i)
end if

end for
end for

end function

(a) Input reader algorithm

pi

(a1, i)
. . .

(aPi , i)
Input reader

(b) Data flow of the Input reader

Figure 2: Input reader

heightl −1 hold. Thel -th iteration then determines all the positions where the subformulae
of Φ with heightl hold.

Each iteration consists of three phases: 1) reading and splitting the input; 2) (map) asso-
ciating each formula with its superformula; 3) (reduce) determining the positions where the
superformulae obtained in the previous step hold, given thepositions where their subformulae
hold. We detail each phase in the rest of this section.

4.1 Input reader

We assume that before the first iteration of the algorithm theinput trace is available in the
distributed file system of the cluster; this is a realistic assumption since in a distribute setting
is possible to collect logs, as long as there is a total order among the timestamps. The input
reader at the first iteration reads the trace directly, whilein all subsequent iterations input
readers read the output of the reducers of the previous iteration.

The input reader component of the MapReduce framework is able to process the input
trace exploiting some parallelism. Indeed, the MapReduce framework exploits the location
information of the different fragments of the trace to parallelize the execution of the input
reader. For example, a trace split inton fragments can be processed in parallel using min(n,k)
machines, given a cluster withk machines.

Figure 2b shows how the input reader transforms the trace at the first iteration: for every
atomic propositionφ that holds at positioni in the original trace, it outputs a tuple of the
form (φ , i). The transformation does not happen in the subsequent iterations, since (as will be
shown in Sect. 4.3) the output of the reduce phase has the sameform (φ , i). The algorithm in
Fig. 2a shows how input reader handles thek-th fragmentTk of the input traceT. For each
time pointi and for each atomp that holds in positioni it creates a tuple(p, i). Moreover, for
each time pointi, it updates a globally-shared associative list of timestampsTS. This list is
used to associate a timestamp with each time point; its contents are saved in the distributed
file system, for use during the reduce phase.

4.2 Mapper

Each tuple generated by an input reader is passed to a mapper at the local node. Mappers “lift”
the formula in the tuple by associating it with all its superformulae in the input formulaΦ.
For example, given the formulaΦ≡ (a∧b)∨¬a, the tuple(a,5) is associated with formulae
a∧b and¬a. The reduce phase will then exploit the information about the direct subformulae
to determine all the positions in which a superformula holds.
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function MAPPERΦ,l ((φ , i))
if l ≤ h(φ) then

for all ψ ∈ supΦ(φ) do
output((ψ , i),(φ , i))

end for
end if

end function

(a) Mapper algorithm

(φ , i)
((ψ1, i),(φ , i))

. . .

((ψg, i),(φ , i))
Mapper

(b) Data flow of a Mapper

Figure 3: Mapper

As shown in Fig. 3, the output of a mapper are tuples of the form((ψ , i),(φ , i)) whereφ is
a direct subformulae ofψ andi is the position whereφ holds. For each received tuple of the
form (φ , i), the algorithm shown in Fig. 3a loops through all the superformulaeψ of φ and
emits (using the functionoutput) a tuple((ψ , i),(φ , i)).

Notice that the key of the intermediate tuples emitted by themapper has two parts: this
type of key is called acomposite keyand it is used to performsecondary sortingof the in-
termediate tuples. Secondary sorting performs the sortingusing multiple criteria, allowing
developers to sort not only by the key, but also “by value”. Inour case, we perform secondary
sorting based on the position where the subformula holds, inorder to decrease the memory
used by the reducer. To enable secondary sorting, we need to override the procedure that com-
pares keys, to take into account also the second element of the composite keys when their first
elements are equal. We have also modified the key grouping procedure to consider only the
first part of the composite key, so that each reducer gets all the tuples related to exactly one
superformula (as encoded in the first part of the key), sortedin ascending order with respect
to the position where subformulae hold (as encoded in the second part of the key).

4.3 Reducer

In the reduce phase, at each iterationl , reducers calculate all positions where subformulae
with height l hold. The total number of reducers running in parallel at thel -th iteration is
the minimum between the number of subformulae with heightl in the input formulaΦ and
the number of machines in the cluster multiplied by the number of reducers available on each
node. Each reducer calls an appropriate reduce function depending on the type of formula
used as key in the input tuple. The initial data shared by all reducers is the input formulaΦ,
the index of the current MapReduce iterationl and the associative map of timestampsTS.

In the rest of this section we present the algorithms of the reduce function defined for
SOLOIST connectives and modalities. For space reasons we limit the description to the algo-
rithms for negation (¬) and conjunction (∧), and for the modalitiesUI , CK

⊲⊳n, MK,h
⊲⊳n , andDK

⊲⊳n.
The other temporal modalities can be expressed in a way similar to theUntil modalityUI . In
the various algorithms we use several auxiliary functions whose pseudocode is available in
the appendix.

Negation. When the key refers to a negated superformula, the reducer emits a tuple at
every position where the subformula does not hold, i.e., at every position that does not occur
in the input tuples received from the mappers. The algorithmin Fig. 3e shows how output
tuples are emitted. If no tuples are received then the reducer emits tuples at each position.
Otherwise, it keeps track of the positioni of the current tuple and the positionp of the previous
tuple and emits tuples at positions[p+1, i−1].

Conjunction. We extend the binary∧ operator defined in Sect. 2 to any positive arity; this
extension does not change the language but improves the conciseness of the formulae. With
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function REDUCER
DK

⊲⊳n ,Φ,l ,TS(D
K
⊲⊳n(φ ,ψ), tuples[])

if h(DK
⊲⊳n(φ ,ψ)) = l +1 then

p← 0, pairs← 0, dist← 0
for all (ξ , i) ∈ tuplesdo

for j← p+1. . . i−1 do
updateDistInterval(j)
emitDist(j)

end for
if ξ = ψ then

pairs← pairs+1
dist← dist+(TS(i)−TS(subFmas.last))

end if
subFmas.addLast(i)
updateDistInterval(i)
emitDist(i)
p← i

end for
else

for all (φ , i) ∈ tuplesdo
output(φ , i)

end for
end if

end function

function REDUCER∧,Φ,l ,T S(ψ , tuples[])
p← 0, c← 1
while (φ , i) ∈ tuplesdo

if h(ψ) = l +1 then
if i = p then

c← c+1
else

if c= |subd(ψ)| then
output(ψ , i)

end if
c← 1

end if
else

output(φ , i)
end if
p← i

end while
end function

(a) D modality (b) Conjunction

function REDUCERUI ,Φ,l ,TS(φ1U(a,b)φ2, tuples[])
if h(φ1U(a,b)φ2) = l +1 then

p← 0
for all (ξ , i) ∈ tuplesdo

updateLTLBehavior(i)
updateMTLBehavior(i)
if ξ = φ2 then

emitUntil(i)
end if
p← i

end for
else

for all (φ , i) ∈ tuplesdo
output(φ , i)

end for
end if

end function

function REDUCER
CK
⊲⊳n ,Φ,l ,TS(C

K
⊲⊳n(φ), tuples[])

p← 0, c← 0
for all (φ , i) ∈ tuplesdo

c← c+1
for j ← p+1. . . i−1 do

updateCountInterval(j)
if c ⊲⊳ n then

output(CK
⊲⊳n(φ), j)

end if
end for
updateCountInterval(i)
if c ⊲⊳ n then

output(CK
⊲⊳n(φ), i)

end if
p← i

end for
end function

(c) U modality (d) C modality

function REDUCER¬,Φ,l ,T S(¬φ , tuples[])
p← 0
for all ((φ , i)) ∈ tuplesdo

for j← p+1. . . i−1 do
output(¬φ , j)

end for
p← i

end for
for i← p+1. . .TS.size() do

output(¬φ , i)
end for

end function

function REDUCER
M

K,h
⊲⊳n ,Φ,l ,TS

(MK,h
⊲⊳n (φ), tuples[])

p← 0
for all (ξ , i) ∈ tuplesdo

for j ← p+1. . . i−1 do
updateMaxInterval(j)
emitMax(j)

end for
updateMaxInterval(i)
emitMax(i)
p← i

end for
end function

(e) Negation (f) M modality

Figure 4: Reduce algorithms
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this extension, conjunctiona∧b∧c is represented as a single conjunction with 3 subformulae
and has height equal to 1. Tuples(φ , i) received from the mapper may refer to any subformula
φ of a conjunction.

In the algorithm in Fig. 3b we process all the tuples sequentially. First, we check if the
height of each subformula is consistent with respect to the iteration in which they are pro-
cessed. In fact, mappers can emit some tuples before the “right” iteration in which they should
be processed, since subformule of a conjunction may have different height. If the heights are
not consistent, the reducer re-emits the tuples that appeared early. Since the incoming tuples
are sorted by their position, it is enough to use a counter to record how many tuples there are
in each positioni. When the value of the counter becomes equal to the arity of the conjunc-
tion, its means that all the subformulae hold ati and the reducer can emit the tuple for the
conjunction at positioni. Otherwise, we reset the counter and continue.

UI modality. The reduce function for theUntil modality is shown in Fig. 3c. When we
process tuples with this function, we have to check both the temporal behavior and the metric
constraints (in the form of an(a,b) interval) as defined by the semantics of the modality.

Given a formulaφ1U(a,b)φ2, we check whether it can be evaluated in the current iteration,
since reducer may receive some tuples early. If this happens, reducer re-emits the tuple, as
described above.

The algorithm processes each tuple(φ , i) sequentially. It keeps track of all the positions in
the(0,b) time window in the past with respect to the current tuple. Foreach tuple it calls two
auxiliary functions,updateLTLBehavior andupdateMTLBehavior. The first function checks
whetherφ1 holds in all the positions tracked in the(0,b) time window; if this not the case
we stop tracing these positions. This guarantee that we onlykeep track of the position that
exhibit the correct temporal semantics of theUntil formula. Afterwards, functionupdateMTL-
Behavior checks the timing constraints and removes positions that are outside of the(0,b)
time window. Lastly, ifφ2 holds in the position of the current tuple, we call functionemitUn-
til, which emits anUntil tuple for each position that we track, which is not in the(0,a) time
window in the past.

C modality. The reduce function for theC modality is outlined in the algorithm in Fig. 3d.
To correctly determine ifCmodality holds, we need to keep track of all the positions in the past
time window(0,K). While we sequentially process the tuples, we use variablep to save the
position which appeared in the previous tuple. This allows us to consider positions between
each consecutive tuple in the inner “for” loop. We call functionupdateCountInterval, which
checks if the tracked positions, together with the current one, occur within the time window
(0,K); positions that do not fall within the time interval are discarded. Variablec is used to
count in how many tracked positions subformulaφ holds. At the end, we compare the value
of c with n according to the⊲⊳ comparison operator; if this comparison is satisfied we emita
C tuple.

M modality. The algorithm in Fig. 3f shows when the tuples for theM modality are
emitted. Similarly to theC modality, we need to keep track of the all positions in the(0,K)
time window in the past. Also, the two nested “for” loops makesure that we consider all time
positions. For each position we call in sequence functionupdateMaxInterval and function
emitMax. FunctionupdateMaxInterval is similar toupdateCountInterval, i.e., it checks
whether the tracked positions, together with the current one, occur within the time window
(0,K). FunctionemitMax computes, in the tracked positions, the maximum number of occur-
rences of the subformula in all subintervals of lengthh. It compares the computed value to
the boundn using the⊲⊳ comparison operator; if this comparison is satisfied it emits theM
modality tuple.

D modality. The reduce function for theD modality is shown in Fig. 3a. Similarly to the
case of theUI modality, if the heights of the subformulae are not consistent with the index of
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the current iteration, the reducer re-emits the corresponding tuples. After that, the incoming
tuples are processed in a sequential way and two nested “for”loops guarantee that we consider
all time points. We need to keep track of all the positions in the (0,K) time window in the
past in which eitherφ or ψ occurred. Differently from the previous aggregate modalities,
we have to consider only the occurrences ofφ for which there exists a matching occurrence
ψ ; for each of these pairs we have to compute the distance. Thisprocessing of tuples (and
the corresponding atoms and time points that they include) is done by the auxiliary function
updateDistInterval. Variablespairs anddist keep track of the number of complete pairs
in the current time window and their cumulative distance (computed accessing the globally-
shared mapTSof timestamps). Finally, by means of the functionemitDist, if there is any
pair in the time window, we compare the average distance computed as dist

pairs with the boundn
using the⊲⊳ comparison operator. If the comparison is satisfied, we emitaD modality tuple.

5 Related work

To the best of our knowledge, the approach proposed in [3] is the only one that uses MapRe-
duce to perform offline trace checking of temporal properties. The algorithm is conceptually
similar to ours as it performs iterations of MapReduce jobs depending on the height of the
formula. However, the properties of interest are expressedusing LTL. This is only a subset of
the properties that can be expressed by SOLOIST. Their implementation of the conjunction
and disjunction operators is limited to only two subformulae which increases the height of the
formula and results in having more iterations. Intermediate tuples exchanged between map-
pers and reducers are not sorted by the secondary key, therefore reducers have to keep track
of all the positions where the subformulae hold, while our approach tracks only the data that
lies in the relevant interval of a metric temporal formula.

Distributed computing infrastructures and/or programming models have also been used
for other verification problems. Reference [13] proposes a distributed algorithm for perform-
ing model checkingof LTL safety propertieson a network of interconnected workstations.
By restricting the verification to safety properties, authors can easily parallelize a bread-first
search algorithm. Reference [4] proposes a parallel version of the well-known fixed-point
algorithm for CTL model checking. Given a set of states wherea certain formula holds and
a transition relation of a Kripke structure, the algorithm computes the set of states where the
superformula of a given formula holds though a series of MapReduce iterations, parallelized
over the different predecessors of the states in the set. Theset is computed when a fixed-
point of a predicate transformer is reached as defined by the semantics of each specific CTL
modality.

6 Evaluation

We have implemented the proposed trace checking algorithm in Java using the Hadoop MapRe-
duce framework [2] (version 1.2.1). We executed it on a Windows Azure cloud-based infras-
tructure where we allocated 10 small virtual machines with 1CPU core and 1.75 GB of mem-
ory. We followed the standard Hadoop guidelines when configuring the cluster: the number
of map tasks was set to the number of nodes in the cluster multiplied by 10, and the number of
reducers was set to the number of nodes multiplied by 0.9; we used 100 mappers and 9 reduc-
ers. We have also enabled JVM reuse for any number of jobs, to minimize the time spent by
framework in initializing Java virtual machines. In the rest of this section, we first show how
the approach scales with respect to the trace length and how the height of the formula affects
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(d) Formula:∃ j ∈ {0. . .9} ∀i ∈ {0. . .8} : G(50,500)(ai, j → X(50,500)(ai+1, j ))

Figure 5: Scalability of the algorithm
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Table 1: Average processing time per tuple for the four properties.

Property 1 Property 2 Property 3 Property 4
SOLOIST LTL SOLOIST LTL SOLOIST LTL SOLOIST LTL

Number of tuples 16,121 55,009 24,000 119,871 215,958 599,425 1,747,360 4,987,124
Time per event (µs) 1.172 19 1.894 21 3.707 14 7.200 30

the running time and memory. Afterwards, we compare our algorithm to the one presented
in [3], designed for LTL.

Scalability.

To evaluate scalability of the approach, we considered 4 formulae, with different height:
C50000
<10 (a0), D50000

<10 (a1,a2), (a0∧ (a1∧ a2))U(50,200)((a1∧ a2)∨ a1) and∃ j ∈ {0. . .9} ∀i ∈
{0. . .8} : G(50,500)(ai, j → X(50,500)(ai+1, j)). Here the∀ and∃ quantifiers are used as a short-
hand notation to predicate on finite domains: for example,∀i ∈ {1,2,3} : ai is equivalent
to a1∧ a2∧ a3. We generated random traces with a number of time instants varying from
10000 to 350000. For each time instant, we randomly generated with a uniform distribution
up to 100 distinct events (i.e.,atomicpropositions). Hence, we evaluated our algorithm for a
maximum number of events up to 35 millions. The time span between the first and the last
timestamp was 578.7 days on average, with a granularity of one second.

Figure 5 shows the total time and the memory used by the MapReduce job run to check the
four formulae on the generated traces. FormulaeC50000

<10 (a0) andD50000
<10 (a1,a2) needed one

iteration to be evaluated (shown in Fig. 5a and Fig. 5b). In both cases, the time taken to check
the formula increases linearly with respect to the trace length; this happens because reducers
need to process more tuples. As for the linear increase in memory usage, for modalitiesC
andD reducers have to keep track of all the tuples in the window of lengthK time units and
the more time points there are the moredensethe time window becomes, with a consequent
increase in memory usage. As for the checking of the other twoformulae (shown in Fig. 5c
and Fig. 5d), more iterations were needed because of the height of the formulae. Also in this
case, the time taken by each iteration tends to increase as the length of the trace increases;
the memory usage is constant since the formulae considered here do not contain aggregate
modalities. Notice the increase of time and memory from Fig.5c to Fig. 5d: this is due
to the expansion of the quantifiers in formula∃ j ∈ {0. . .9} ∀i ∈ {0. . .8} : G(50,500)(ai, j →
X(50,500)(ai+1, j)).

Comparison with the LTL approach [3].

We compare our approach to the one presented in [3], which focuses on trace checking of
LTL properties using MapReduce; for this comparison we considered the LTL layer included
in SOLOIST by means of theUntil modality. Although the focus of our work was on im-
plementing the semantics of SOLOIST aggregate modalities,we also introduces some im-
provements in the LTL layer of SOLOIST. First, we exploited composite keys and secondary
sorting as provided by the MapReduce framework to reduce thememory used by reducers.
We also extended the binary∧ and∨ operators to support any positive arity.

We compared the two approaches by checking the following formulae: 1)G(50,500)(¬a0);
2)G(50,500)(a0→ X(50,500)(a1)); 3)∀i ∈ {0. . .8} : G(50,500)(ai→ X(50,500)(ai+1)); and 4)∃ j ∈
{0. . .9} ∀i ∈ {0. . .8} : G(50,500)(ai, j → X(50,500)(ai+1, j)). The height of these formulae are 2,
3, 4 and 5, respectively. This admittedly gives our approacha significant advantage since in [3]
the restriction for the∧ and∨ operators to have an arity fixed to 2 results in a larger height
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for formulae 3 and 4. We randomly generated traces of variable length, ranging from 1000 to
100000 time instants, with up to 100 events per time instant.With this configuration, a trace
can contain potentially up to 10 million events. We chose to have up to 100 events per time
instant to match the configuration proposed in [3], where there are 10 parameters per formula
that can take 10 possible values. We generated 500 traces. The time needed by our algorithm
to check each of the four formulae, averaged over the different traces, was 52.83, 85.38, 167.1
and 324.53 seconds, respectively. We do not report the time taken by the approach proposed
in [3] since the article does not report any statistics from the run of an actual implementation,
but only metrics determined by a simulation. Table 1 shows the average number of tuples
generated by the algorithm for each formulae. The number of tuples is calculated as the sum
of all input tuples for mappers at each iterations in a singletrace checking run. The table also
shows the average time needed to process a single event in thetrace. This time is computed as
the total processing time divided by the number of time instants in the trace, averaged over the
different trace checking runs. The SOLOIST column refers tothe data obtained by running
our algorithm, while the LTL column refers to data reported in [3], obtained with a simulation.
Our algorithm performs better both in terms of the number of generated tuples and in terms
of processing time.

7 Conclusion and Future Work

In this paper we present an algorithm based on the MapReduce programming model that
checks large execution traces against specifications written in SOLOIST. The experimental
results in terms of scalability and comparison with the state of the art are encouraging and
show that the algorithm can be effectively applied in realistic settings.

A limitation of the algorithm is that reducers (that implement the semantics of temporal
and aggregate operators) need to keep track of the positionsrelevant to the time window
specified in the formula. In the future, we will investigate how this information may be split
into smaller and more manageable parts that may be processedseparately, while preserving
the original semantics of the operators.
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A Auxiliary functions

In this section we present the pseudocode of the auxiliary functions used in the reduce steps
of until, count, maximumanddistanceoperators presented in Sect. 4.3.

As explained in Sect. 4.3, the reduce function for theuntil modality of the formφ1U(a,b)φ2

keeps track of all the positions in the past(0,b) time window with respect to the timestamp
of the current tuple. For clarity, the positions are partitioned into arraysint0A andintAB that
store the positions in the past(0,a] and(a,b) time windows, respectively. FunctionclearIn-
tervals, shown in Fig. 5e, removes all positions from both arrays. FunctionupdateLTLBe-
havior, shown in Fig. 5b, appends the current position to arrayint0A and checks whether the
LTL condition of theuntil operator holds for the stored positions. If the condition isviolated,

14



the arrays are cleared. More specifically, the arrays are cleared if there exist some positions,
between the current positioni and the previous positionp, which were not received by the re-
ducer. The arrays are also cleared ifφ1 does not hold in all the consecutive positions currently
stored by the reducer. FunctionupdateMTLBehavior, shown in Fig. 5a, is used to check the
timing conditions of theuntil operator. SinceupdateLTLBehavior inserts the newly received
position into the arrays,updateMTLBehavior updates the arrays with respect to the timestamp
related to the new position. If some positions fromint0A are not in the(0,a] interval any-
more, functionupdateMTLBehavior transfers them tointAB. Next, the function removes all
tuples fromintAB that are not in the(a,b) interval. FunctionemitUntil, shown in Fig. 5f,
emitsuntil tuples for all positions stored inintAB.

The reduce function for theCK
⊲⊳n(φ) modality keeps track of all the positions in the past

time window(0,K). The positions are stored in the arrayintK. FunctionupdateCountIn-
terval, shown in Fig. 5c, adds the position from the current tuple tointK and then checks
if all stored positions are in the past(0,K) time window. In practice, the function compares
the difference between the timestamps of the first and the last position inintK. As long as
this difference is greater thanK, the function removes the positions from the beginning of the
array. It checks if the subformulaφ holds at every removed position and, if it is the case, it
decrements variablec.

The reduce function for modalityMK,h
⊲⊳n (φ) updates its own corresponding array of posi-

tionsintK using functionupdateMaxInterval. It also computes, usingemitMax, the maxi-
mum number of occurrences of subformulaφ in subintervals of lengthh over a windowK.
FunctionupdateMaxInterval, shown in Fig. 5g, checks whether the stored positions occur
within the time window(0,K) in the same way as itscountcounterpart. FunctionemitMax
calculates, for each positionz from intK, the subintervalwc it belongs to. This is done by
calculating the difference between the timestamp at the last position inintK and the one at
the positionz and then dividing it by the length of the subintervalh. Variablec counts the
number of occurrences of subformulaφ in the current subintervalwc. We incrementc for
every position where subformulaφ holds andwc does not change with respect to the previous
position. Whenwc changes, we update variablemax and reset variablec to 0 or 1, depending
on whether subformulaφ holds in the current position. When the function terminates, variable
max holds the maximum number ofφ occurrences in all subintervals. Finally, variablemax

is compared to the boundn and a tuple is emitted in case the condition is satisfied.
The reduce function for theDK

⊲⊳n(φ ,ψ) modality uses theupdateDistInterval andemit-
Dist functions, in a similar way as the previous modality. Function updateDistInterval,
shown in Fig. 5d, updates the array of past positionsintK. If subformulaφ holds at a position
that is removed from the array, we decrement thepairs variable that holds the current num-
ber of (φ ,ψ) pairs inintK. We also update the cumulative distancedist between complete
pairsintK. Finally, if there is at least one pair in the current time window, functionemitDist
(shown in Fig. 5i) compares the average distance computed asdist

pairs to the boundn. If the
condition is satisfied, it emits adistancemodality tuple.
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Global variables:a,b, int0A, intAB
function UPDATEMTLB EHAVIOR(i)

τ ← TS(i)
τc← TS(int0A.first())
while τ−a≥ τc do

p← int0A.removeFirst()
intAB.addLast(p)
τc← TS(int0A.first())

end while
τc← TS(intAB.first())
while τ−b≥ τc do

p← intAB.removeFirst()
τc← TS(intAB.first())

end while
end function

Global variables:p,ξ ,φ1, int0A, intAB
function UPDATELTLB EHAVIOR(i)

if i− p> 1 then
clearIntervals()

end if
if ξ = φ1 then

if max(int0A.last(),intAB.last())!=i-1then
clearIntervals()

end if
int0A.addLast(i)

end if
end function

(a) Update MTL behavior function (b) Update LTL behavior function

Global variables:intK,φ ,c,K
function UPDATECOUNTINTERVAL(i)

intK.addLast(i)
while TS(intK.last)−TS(intK. f irst)> K do

z← intK.removeFirst()
if (φ ,z) ∈ tuplesthen

c← c−1
end if

end while
end function

Global variables:intK,φ ,dist, pairs,K
function UPDATEDISTINTERVAL(i)

intK.addLast(i)
while TS(intK.last)−TS(intK. f irst)> K do

z← intK.removeFirst()
if z= subFmas. f irst() then

subFmas.removeFirst()
pairs← pairs−1
dist← dist− (TS(subFmas. f irst−TS(z)))

end if
end while

end function

(c) Update count interval function (d) Update distance interval function

Global variables:int0A, intAB
function CLEARINTERVALS()

intAB.clear()
int0A.clear()

end function

Global variables:intAB
function EMITUNTIL (i)

for all z∈ intABdo
output(φ1U(a,b)φ2,z)
intAB.remove(z)

end for
end function

(e) Clear intervals function (f) Emit until tuples function

Global variables:intK,φ ,K,n,h
function EMITMAX (i)

τr ← TS(intK.last)
wc← 0, c← 0, max← 0
for all z∈ intK do

if wc= ⌊ (τr−T S(z))
h ⌋ then

if (φ ,z) ∈ tuplesthen
c← c+1

end if
else

max←max(c,max)
wc← (τr −TS(z))/h
if (φ ,z) ∈ tuplesthen

c← 1
else

c← 0
end if

end if
end for
if max⊲⊳ n then

output(MK,h
⊲⊳n (φ), i)

end if
end function

Global variables:intK,K
function UPDATEMAX INTERVAL(i)

intK.addLast(i)
while TS(intK.last)−TS(intK. f irst)> K do

intK.removeFirst()
end while

end function

(g) Update maximum interval function

Global variables:dist, pairs,n
function EMITDIST(i)

if pairs> 0 then
if dist

pairs ⊲⊳ n then

output(DK
⊲⊳n(φ ,ψ), i)

end if
end if

end function

(h) Emit maximum tuples function (i) Emit distance tuples function

Figure 6: Auxiliary functions
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