
ar
X

iv
:1

31
1.

38
26

v3
 [

cs
.F

L
]

 1
9

Ju
n

20
14

Weak Singular Hybrid Automata ⋆

Shankara Narayanan Krishna, Umang Mathur, and Ashutosh Trivedi

Department of Computer Science and Engineering
Indian Institute of Technology - Bombay

Mumbai 400076, India

Abstract. The framework of Hybrid automata—introduced by Alur,
Courcourbetis, Henzinger, and Ho—provides a formal modeling and anal-
ysis environment to analyze the interaction between the discrete and the
continuous parts of hybrid systems. Hybrid automata can be considered
as generalizations of finite state automata augmented with a finite set of
real-valued variables whose dynamics in each state is governed by a sys-
tem of ordinary differential equations. Moreover, the discrete transitions
of hybrid automata are guarded by constraints over the values of these
real-valued variables, and enable discontinuous jumps in the evolution
of these variables. Singular hybrid automata are a subclass of hybrid
automata where dynamics is specified by state-dependent constant vec-
tors. Henzinger, Kopke, Puri, and Varaiya showed that for even very
restricted subclasses of singular hybrid automata, the fundamental ver-
ification questions, like reachability and schedulability, are undecidable.
Recently, Alur, Wojtczak, and Trivedi studied an interesting class of
hybrid systems, called constant-rate multi-mode systems, where schedu-
lability and reachability analysis can be performed in polynomial time.
Inspired by the definition of constant-rate multi-mode systems, in this
paper we introduce weak singular hybrid automata (WSHA), a previ-
ously unexplored subclass of singular hybrid automata, and show the
decidability (and the exact complexity) of various verification questions
for this class including reachability (NP-Complete) and LTL model-
checking (Pspace-Complete). We further show that extending WSHA
with a single unrestricted clock or with unrestricted variable updates
lead to undecidability of reachability problem.

1 Introduction

Hybrid automata, introduced by Alur et al. [1], provide an intuitive and seman-
tically unambiguous way to model hybrid systems. Various verification questions
for such systems can then be naturally reduced to corresponding questions for
hybrid automata. Hybrid automata can be considered as finite state-transition
graphs with a finite set of real-valued variables with state-dependent dynamics
specified using a set of first-order ordinary differential equations. The variables of
hybrid automata can be used to constrain the evolution of the system by means of
guards of the transitions and local invariants of the states of the state-transition

⋆ This work was partly supported by IRCC project Spons/CS/I12155-1/2013.

http://arxiv.org/abs/1311.3826v3

m1

m2

o1
0<x<6
0<y<1

m3

o2
2<x<3
−3<y<3

m4

o3
1<x<7

−2<y<−1

m5 m6

m7

o4
5<x<7,−3<y<− 1

⊤⊤

2<x<3 −2<y<− 1 5<x<7 ⊤

⊤⊤

Fig. 1. A weak singular hybrid automaton

graph. The variables can also be reset at the time of taking a transition and thus
allowing discrete jumps in the evolution of the system. Considering the richness
of the dynamics of hybrid automata, it should come as no surprise that key ver-
ification questions, like state reachability, are undecidable for hybrid automata
limiting the applicability of hybrid automata for automatic verification of hybrid
systems. Henzinger et al. [12,11] observed that this negative result stays even
for a severely restricted subclass of hybrid automata, called the singular hybrid
automata (SHA), where the variables dynamics is specified as state-dependent
constant-rate vectors and showed that the reachability problem stays undecid-
able for singular hybrid automata with three clocks (unit-rate variables) and one
non-clock variable. In this paper we introduce a weak version of singular hybrid
automata, and show the decidability (and the exact complexity) of reachability,
schedulability, and LTL model-checking problems for this class.

Our definition of weak singular hybrid automata is inspired by the definition
of constant-rate multi-mode systems (CMS) [5], that are hybrid systems that
can switch freely between a finite set of modes (or states) and whose dynamics
are specified by a finite set of variables with mode-dependent constant rates.
The schedulability problem for CMS is to decide—for a given initial state and
convex and bounded safety set—whether there exists a non-Zeno mode-switching
schedule such that the system stays within the safety set. On the other hand,
the reachability problem is to decide whether there is a schedule that steers the
system from a given initial configuration to the target configuration while staying
within a specified bounded and convex safety set. Since the system is allowed
to switch freely between the enabled modes, the reachability and schedulability
problems can be solved in polynomial time [5] by reducing them to a linear
program. We say that a singular hybrid automaton is weak if there exists an
ordering among the states such that the transition to a lower order state is
disallowed, and the states with the same ordering form a CMS, i.e. such states
have a common invariant and vacuous guards on transitions among themselves.

WSHAs are a natural generalization of CMS with structure, and can be used
to model CMS with non-convex safety set. As an example of a WSHA, consider

o1s0
m1

m2

o2

m3

o3m4

o4

m5m6

m7

sT

Fig. 2. Multi-mode system corresponding to a robotic motion planning problem

the two dimensional robotic motion planning problem shown in the Figure 2,
where the arena is a nonconvex region given as union of four convex polytopes
o1, o2, o3 and o4. The possible motion primitives, or modes, in each region are
shown as vectors showing the direction the robot will move given the corre-
sponding mode is chosen. Consider the following reachability and schedulability
problems for this example: given an initial valuation s0 decide if it is possible
to compose the motion primitives available in a given valuation so as to reach
the final state sT , while the schedulability problem is to decide if there is a non-
Zeno composition of motion specifications such that the robot stays in the safety
set forever. This problem can not be solved using the results for constant-rate
multi-mode systems sue to non-convexity of the safety set. On the other hand,
it is easy to see that the reachability and the schedulability problems for this
system can be reduced to corresponding problems on the weak singular hybrid
automaton shown in Figure 1, where modes with the same order are shown inside
a dashed box with global invariant is specified just below the box.

We extend the results of [5] by recovering decidability for WSHA by showing
that the reachability problem and schedulability problems are NP-Complete

for this model. We also define LTL and CTL model-checking problems for weak
singular hybrid automata, and show that while the complexity of LTL model-
checking stays the same as LTL model checking for finite state-transition graphs
(Pspace-Complete), the CTL model-checking is already PSPACE-hard. In-
spired by an unpublished result from Bouyer and Markey [15], we show (Sec-
tion 4) that extending WSHA with single unrestricted clock variable make the
reachability problem undecidable for WSHA with three variables. In the same
section, we also show that extending WSHA with unrestricted variable updates
also make the reachability problem undecidable for WSHA with three variables.
Table 1 shows a summary of results on singular hybrid automata, and the con-
tributions of this paper are highlighted with boldface.

Problem SHA WSHA

Reachability Undecidable (≥3 vars.) [12]
NL-Complete (1 var.)

NP-Complete

Schedulability Undecidable (≥3 vars.) [12]
NL-Complete (1 var.)

NP-Complete

LTL model-checking Undecidable (≥3 vars.) [12]
Pspace-Complete (1 var.)

Pspace-Complete

CTL model-checking Undecidable (≥2 vars.)
Ptime-Complete (1 var.)

Pspace-Hard (≥2 vars.)
Ptime-Complete (1 var.)

Table 1. Summary of decidability results related to (weak) singular hybrid automata

Related work. Timed automata are subclasses of SHA with the restriction
that all variables are clocks, while stopwatch automata are subclasses of hybrid
automata with the restriction that all variables are stopwatches (clocks that can
be paused). Using the region construction [2] Alur and Dill showed that the
reachability and the schedulability problems for timed automata are decidable
and are in fact complete for PSPACE. Henzinger et al. [12] showed that the
undecidability result for singular hybrid automata holds even for stopwatch au-
tomata. Initialized singular hybrid automata are subclasses of singular hybrid
automata with the restriction that if there is a transition between two modes
that have different rate for some variable then that transition must reset that
variable. Henzinger at al. [12] showed the decidability of reachability problem
by reducing the problem to the corresponding problem on timed automata—by
appropriate adjustment of the guards of the transitions. Unlike timed automata
and initialized SHA, our results for WSHA do not rely on the existence of finitary
bisimulation.

Asarin, Maler, and Pnueli [7] studied a subclass of singular hybrid automata,
called the piecewise-constant derivative (PCD) systems, that are defined by a
partition of the Euclidean space into a finite set of polyhedral regions, where the
dynamics in a region is defined by a constant rate vector. PCD systems, unlike
our model, are defined as completely deterministic systems where discrete tran-
sitions occurs at region boundaries and runs change their directions according to
the rate vector available in the new region. They showed that even under such
simple dynamics the reachability problem for PCD systems with three or more
variables is undecidable [7]. The work that is closest to the results in this paper
is on constant-rate multi-mode systems by Alur et al. [5,3]. However, our model
strictly generalizes this model and permits analysis of multi-mode systems with
non-convex safety set. On the positive side, Asarin, Maler, and Pnueli [7] gave an
algorithm to solve the reachability problem for two-dimensional PCD systems.

The paper is organized as the following. In the next section we introduce
technical notations and background required for the paper. In Section 3 we
present weak singular hybrid automata and show the decidability and complexity
results for the reachability, schedulability, and LTL model-checking problems. In
Section 4 we present the two undecidability results related to WSHA. Due to
lack of space the details of most of the proofs are in appendix.

2 Preliminaries

Let R be the set of real numbers. Let X be a finite set of real-valued variables.
A valuation on X is a function ν : X → R. We assume an arbitrary but fixed
ordering on the variables and write xi for the variable with order i. This allows
us to treat a valuation ν as a point (ν(x1), ν(x2), . . . , ν(xn)) ∈ R|X|. Abusing
notations slightly, we use a valuation on X and a point in R|X| interchangeably.
We denote points in this state space by x, y, vectors by r,v, and the i-th coor-
dinate of point x and vector r by x(i) and r(i), respectively. We write 0 for a
vector with all its coordinates equal to 0. We say that a set S ⊆ Rn is bounded
if there exists d ∈ R≥0 such that for all x, y ∈ S we have ‖x− y‖ ≤ d.

We define a constraint over a set X as a subset of R|X|. We say that a
constraint is polyhedral if it is defined as the conjunction of a finite set of linear
constraints of the form a1x1 + · · ·+ anxn ⊲⊳ k, where k ∈ Z, for all 1 ≤ i ≤ n we
have that ai ∈ Z, xi ∈ X , and ⊲⊳∈ {<,≤,=, >,≥}. Every polyhedral constraints
can be written in the standard form Ax ≤ b for some matrix A of size k × n

and a vector b ∈ Zk. We call a bounded polyhedral constraint a convex polytope.
For a constraint G, we write [[G]] for the set of valuations in R|X| satisfying the
constraint G. We write ⊤ (resp., ⊥) for the special constraint that is true (resp.,
false) in all the valuations, i.e. [[⊤]] = R|X| (resp., [[⊥]] = ∅). We write poly(X)
for the set of polyhedral constraints over X including ⊤ and ⊥.

2.1 Singular Hybrid Automata

Singular hybrid automata extend finite state-transition graphs with a finite set
of real-valued variables that grow with state-dependent constant-rates. The tran-
sitions of the automata are guarded by predicates on the valuations of the vari-
ables, and the syntax allows discrete update of the value of the variables.

Definition 1 (Singular Hybrid Automata). A singular hybrid automaton
is a tuple (M,M0, Σ,X,∆, I, F) where:

– M is a finite set of control modes including a distinguished initial set of
control modes M0 ⊆M ,

– Σ is a finite set of actions,
– X is an (ordered) set of variables,
– ∆ ⊆M × poly(X)×Σ × 2X ×M is the transition relation,
– I :M → poly(X) is the mode-invariant function, and
– F : M → Q|X| is the mode-dependent flow function characterizing the rate

of each variable in each mode.

For computation purposes, we assume that all real numbers are rational and
represented by writing down the numerator and denominator in binary.

For all δ = (m,G, a,R,m′) ∈ ∆ we say that δ is a transition between the
modes m and m′ with guard G ∈ poly(X) and reset set R ∈ 2X . For the sake of
notational convenience and w.l.o.g., we assume that an action a ∈ Σ uniquely

determines a transition (m,G, a,R,m′), and we write G(a) and R(a) for the
guard and the reset set corresponding to the action a ∈ Σ. This can be assumed
without loss of generality, since, in this paper, we do not study language-theoretic
properties of an SHA, and assume that the non-determinism is resolved by the
controller.

A configuration of a SHA H is a pair (m, ν) ∈ M × R|X| consisting of a
control mode m and a variable valuation ν∈R|X| such that that ν satisfies the
invariant I(m) of the mode m, i.e. ν ∈ [[I(m)]]. We say that the transition
δ = (m,G, a,R,m′) is enabled in a configuration (m, ν) when guardG ∈ poly(X)
is satisfied by the valuation, i.e. ν ∈ [[G]]. Moreover, the transition δ resets the
variables in R ∈ 2X to 0. We write ν[R:=0] to denote the valuation resulting
from substituting in valuation ν the value for the variables in the set R to 0,
formally ν[R:=0](x) = 0 if x ∈ R and ν[R:=0](x) = ν(x) otherwise. A timed
action of a SHA is the tuple (t, a) ∈ R≥0 × Σ consisting of a time delay and
discrete action. While the system dwells in a mode m ∈M the valuation of the
system flows linearly according to the rate function F (m), i.e. after spending t
time units in mode m from a valuation ν the valuation of the variables will be
ν + t · F (m).

We say that ((m, ν), (t, a), (m′, ν′)) is a transition of a SHA H and we write

(m, ν)
t
−→a (m′, ν′) if (m, ν) and (m′, ν′) are valid configurations of the SHA H,

and there is a transition δ = (m,G, a,R,m′) ∈ ∆ such that:

– all the valuations resulting from dwelling in mode m for time t from the
valuation ν satisfy the invariant of the mode m, i.e. (ν +F (m) · τ) ∈ [[I(m)]]
for all τ ∈ [0, t] (observe that due to convexity of the invariant set we only
need to check that (ν + F (m) · t) ∈ [[I(m)]]);

– The valuation reached after waiting for t time-units satisfy the constraint G
(called the guard of the transition δ), i.e. (ν + F (m) · t) ∈ [[G]], and

– ν′ = (ν + F (m) · t)[R := 0].

A finite run of a singular hybrid automaton H is a finite sequence r =
〈(m0, ν0), (t1, a1), (m1, ν1), (t2, a2), . . . , (mk, νk)〉 such that m0 ∈ M0 and for
all 0 ≤ i < k we have that ((mi, νi), (ti+1, ai+1), (mi+1, νi+1)) is a transition
of H. For such a run r we say that ν0 is the starting valuation, while νk is
the terminal valuation. An infinite run of an SHA H is similarly defined to
be an infinite sequence r = 〈(m0, ν0), (t1, a1), (m1, ν1), (t2, a2), . . .〉 such that
((mi, νi), (ti+1, ai+1), (mi+1, νi+1)) is a transition of the SHA H for all i ≥ 0. We
say that ν0 is the starting configuration of the run. We say that such an infinite
run is Zeno if

∑∞
i=1 ti < ∞. Zeno runs are physically unrealizable since they

require infinitely many mode-switches within a finite amount of time.

2.2 Reachability, Schedulability, and Model-Checking

Given a finite set of atomic propositions P and a labeling function L : M→2P ,
a trace of a SHA H corresponding to an infinite run r = 〈(m0, ν0), (t1, a1), . . .〉
is the sequence 〈L(m0), L(m1), L(m2), . . . L(mn), . . .〉 of labels corresponding to

the mode sequence of r. We use the standard syntax and semantics of LTL
and CTL [8] with the exception that we consider traces corresponding to non-
Zeno runs. Given a SHA H = (M,M0, Σ,X,∆, I, F) and a starting valuation
ν ∈ R|X|, we are interested in the following problems over SHA.

– Reachability problem. Given a target polytope T ⊆ RX , decide whether
there exists a finite run from ν0 to some valuation ν′ ∈ T .

– Schedulability. Decide whether there exists an infinite non-Zeno run start-
ing from ν.

– LTL model checking. Given a set of propositions P , labeling function L,
and an LTL formula φ decide whether all non-Zeno traces of H satisfy φ.

– CTL model checking. Given a set of propositions P , labeling function L,
and a CTL formula φ decide whether all initial modes of H satisfy φ.

The termination [16] and the recurrent computation [4] problems for two-
counter Minsky machines are known to be undecidable. By encoding the two
counters as two vairables, and using another variable to do additional book-
keeping, the termination and the recurrence problem for Minsky machines can
be reduced to reachability and schedulability problems for SHA.

Theorem 1 (Undecidability [12,7,6]). The reachability, schedulability, LTL
and CTL model-checking problems are undecidable for SHA with three variables.

Improved complexity results. Using just two variables x, y (of which y is
only a clock variable), with the encoding x = 2 − 1

2c13c2 for counters c1, c2, we
improve the undecidability result for CTL model checking of SHAs:

Theorem 2. CTL Model-checking problem for singular hybrid automata with
two variables is Undecidable.

We adapt the construction of Laroussinie et al. [14] for the case of one clock
timed automata to show the following results for SHA with one variable.

Theorem 3. For SHA with one variable we have the following results.

(a) The reachability and the schedulability problems are NL-Complete.
(b) LTL Model-checking problem is Pspace-Complete.

Proof. (Sketch.) The Nlogspace-hardness of the reachability problem for SHA
follows from the complexity of reachability problem for finite graphs [13]. On the
other hand, the Nlogspace-hardness of the schedulability problem for SHA fol-
lows from the complexity of nonemptiness problem for Büchi automata (Propo-
sition 10.12 of [17]). For Nlogspace-membership of these problems we adapt
the region construction (LMS regions) for one-clock timed automata proposed
by Laroussinie, Markey, and Schnoebelen [14].

For LTL model checking the Pspace-hardness follows from the PSPACE-
completeness [18] for LTL model checking on finite automata, while the PSPACE
membership follows from the region construction introduced in the proof of (a).
However, we need to be extra careful as our semantics are defined with respect
to non-Zeno runs. To overcome this complication, we characterize non-Zenoness
property of the region graphs as LTL formulas using the following Lemma.

Lemma 1. Let cx and Cx denote the smallest and largest constants used in
guards of H and let RGH be the LMS region graph of H. An infinite run in the
region graph RGH of the form ((m0, r0), a0, (m1, r1), a1, . . .) is called progressive
iff it has a non-Zeno instantiation. Here, rj and mj are respectively the regions
and modes. An infinite run ((m0, r0), a0, (m1, r1), a1, . . .) in the region graph
RGH of a one-variable SHA H is progressive iff one of the following hold:

1. For all j≥0 there exists k > j such that F (mk) = 0;
2. There exists n≥0 such that for all j≥n we have that [[rj]] = [[x>Cx]] and

there exists k > j such that F (mk) > 0;
3. There exists n≥0 such that for all j≥n we have that [[rj]] = [[x < cx]] and

there exists a k > j such that F (mk) < 0;
4. For all j≥0 there exists k > j s.t. rj 6= rk; or
5. There exists n≥0 and a thick region r such that for all j≥n we have that

rj = r and there exists k > j such that F (mj).F (mk) < 0.

Given an LTL formula φ, and a one variable SHA H, we can express in LTL the
conditions characterizing non-zeno runs of H as given by Lemma 1. Let φC be
this LTL formula. Model checking of φ over all non-Zeno runs then reduces to
standard model checking against formula φ ∧ φC . ⊓⊔

3 Weak Singular Hybrid Automata

We begin this section by formally introducing constant-rate multi-mode systems
and review the decidability of reachability and schedulability problems for this
class. We later present the weak singular hybrid automata model and show the
decidability of various verification problems.

3.1 Constant-rate Multi-mode Systems

Definition 2 (Constant-Rate Multi-Mode Systems). We say that a singu-
lar hybrid automaton H = (M,M0, Σ,X,∆, I, F) is a constant-rate multi-mode
system if

– there is a bounded and open polytope S, called the safety set, such that for
all modes m ∈M we have that I(m) = S, and

– all the modes inM form a strongly-connected-component, and for every mode
m,m′ ∈ M if there is a transition (m,G, a,R,m′) ∈ ∆ then G = ⊤, and
R = ∅.

We have slightly modified the definition of CMS from [5] to adapt it to the
presentation used in this paper. Moreover, we have restricted the safety set to
be an open set to avoid problems in reaching a valuation using infinitely many
transitions. Notice that there is no structure in a CMS in the sense that all of the
modes can be chosen in arbitrary order as long as the safety set is not violated.
Alur et al. [5] showed that due to lack of structure, the schedulability and the
reachability problems for CMS can be reduced to LP feasibility problem, and
hence can be solved in polynomial time.

Theorem 4 (Reachability and Schedulability for CMS [5]). The schedu-
lability and the reachability problems for CMS can be solved in polynomial time.

Proof. Reachability. LetH = (M,M0, X,∆, I, F) be a CMS with the safety set
S and the target polytope T be given as a system of linear inequalities AX ≤ b.
Moreover assume that ν and T are in the safety set S. Alur et al. showed that
the target set T is reachable from ν iff the following linear program is feasible:

ν +
∑

m∈M

F (m) · tm = ν′,

Aν′ = b, and (1)

tm >= 0, for all m ∈M.

If this linear program is not feasible, then it is immediate that it is not possible
to reach any valuation in T from ν using modes in any sequence from H. On
the other hand, if the program is feasible, and as long as both the starting valu-
ation and the target set are strictly inside the safety set, a satisfying assignment
〈tm〉m∈M can be used to make progress towards T by scaling tm’s appropriately
without leaving the safety set. Since the feasibility of the linear program can
be decided in polynomial time, it follows that reachability for the CMS can be
decided in polynomial time.
Schedulability. Let H = (M,M0, X,∆, I, F) be a CMS with the safety set S,
and initial valuation ν. In this case, Alur et al. showed that there exists a non-
Zeno run from arbitrary valuation in the safety set if and only if the following
linear program is feasible:

∑

m∈M

F (m) · tm = 0,

∑

m∈M

tm = 1 and (2)

tm >= 0, for all m ∈M.

If this linear program is not feasible, then by Farkas’s lemma it follows that
there is a vector v such that taking any mode for nonnegative time makes some
progress in the direction of v. Hence any non-Zeno run will eventually leave
the safety set. On the other hand, if the program is feasible, then a satisfying
assignment 〈tm〉m∈M can be scaled down to stay in a ball of arbitrary size around
the initial valuation. Hence, if the starting valuation is strictly in the interior of
the safety set, the feasibility of the linear program (2) imply the existence of a
non-Zeno run. ⊓⊔

3.2 Syntax and Semantics

Weak singular hybrid automata (WSHA) can be considered as generalized constant-
rate multi-mode systems with structure, and thus bringing the CMS closer to
singular hybrid automata. The restriction on WSHA ensures that the strongly

connected components of WSHA form CMS, and thus recovering the decidability
for the reachability and the schedulability problem. Formally we define WSHA
in the following manner.

Definition 3 (Weak Singular Hybrid Automata). A weak singular hybrid
automaton H = (M,M0, Σ,X,∆, I, F) is a SHA with the restriction that there
is a partition on the set of modes M characterized by a function ̺ : M → N

assigning ranks to the modes such that

– for every transition (m,G, a,R,m′) ∈ ∆ we have that ̺(m) ≤ ̺(m′), and
– for every rank i the set of modes Mi = {m : ̺(m) = i} is such that

– there is a bounded and open polytope Si, called the safety set of Mi, such
that for all modes m ∈Mi we have that I(m) = Si; and

– all the modes in Mi form a strongly-connected-component, and for every
mode m,m′ ∈ Mi if there is a transition (m,G, a,R,m′) ∈ ∆ then G =
⊤, and R = ∅.

Observe that every CMS is a weak singular hybrid automaton (WSHA), and
every strongly connected component of a WSHA is a CMS. Also notice that for
every (finite or infinite) run r = 〈(m0, ν0), (t1, a1), (m1, ν1), . . .〉 of a WSHA we
have that ̺(mi) ≤ ̺(mj) for every i ≤ j. We define the type Γ (r) of a finite
run r = 〈(m0, ν0), (t1, a1), (m1, ν1), . . . , (mk, νk)〉 as a finite sequence of ranks
(natural numbers) and actions 〈n0, b1, n1, . . . , bp, np〉 defined inductively in the
following manner:

Γ (r) =

{

〈̺(m0)〉 if r = 〈(m0, ν0)〉

Γ (r′)⊕ (a, ̺(m)) if r = r′ :: 〈(t, a), (m, ν)〉,

where :: is the cons operator that appends two sequences, while for a sequence
σ = 〈n0, b1, n1, . . . , bp, np〉, a ∈ Σ, and n ∈ N we define σ ⊕ (a, n) to be equal to
σ if np = n and 〈n0, b1, n1, . . . , np, a, n〉 otherwise. Intuitively, the type of a finite
run gives the (non-duplicate) sequence of ranks of modes and actions appearing
in the run, where action is stored only when a transition to a mode of higher rank
happens. We need to remember only these actions since transitions that stay in
the modes of same rank do not reset the variables. It is an easy observation
that, since there are only finitely many ranks for a given WSHA, we have that
for every infinite run r = 〈(m0, ν0), (t1, a1), (m1, ν1), . . .〉 there exists an index i
such that for all j ≥ i we have that ̺(mi) = ̺(mj). With this intuition we define
the type of an infinite run r as the type of the finite prefix of r till index i. We
write ΓH for the set of run types of a WSHA H.

Theorem 5. The reachability and the schedulability problems for weak singular
hybrid automata is NP-complete.

Proof. (Sketch) To show NP-membership we show that to decide the reachability
problem, it is sufficient to guess a finite run type, and check whether there is a
run with that type that reaches the target polytope. Since the size of every run
type is polynomial in the size of the WSHA, and there are only exponentially

many run-types, if for a run we can check whether there exists a run of this
type reaching target polytope is polynomial time, the NP-membership claim
follows. Given a run type σ = 〈n0, b1, n1, . . . , bp, np〉 an initial valuation ν0 and
a bounded and convex target polytope T given as AX ≤ b, there exists a run
with type σ that reaches a valuation in T if and only if the following linear
program is feasible: for every 0 ≤ i ≤ p and m ∈ Mni

there are νni
, ν′ni

∈ R|X|

and tmi ∈ R≥0 such that:

ν0 = νn0
, ν′np

∈ T

νni
, ν′ni

∈ SMni
for all 0 ≤ i ≤ p

νni
∈ G(bi) for all 0 < i ≤ p

νni+1
(j) = 0 for all xj ∈ R(bi+1) and 0 < i ≤ p

νni+1
(j) = ν′ni

(j) for all xj 6∈ R(bi+1) and 0 < i ≤ p

ν′ni
= νni

+
∑

m∈Mni

F (m) · tmi for all 0 ≤ i ≤ p

tmi ≥ 0 for all 0 ≤ i ≤ p and m ∈Mni

These constraints check whether it is possible to reach some valuation in the
target polytope while satisfying the guard and constraints of the WSHA, while
exploiting the fact that modes of same rank can be applied an arbitrary number
of time in an arbitrary order. The proof for this claim is similar to the proof for
the CMS, and hence omitted.

To show NP-hardness we reduce the subset-sum problem to solving the reach-
ability problem in a WSHA. Formally, given A, a non-empty set of n integers and
another integer k, the subset-sum problem is to determine if there is a non-empty
subset T ⊆ A that sums to k. Given the set A and the integer k, we construct
a WSHA H with n + 3 variables x0, x1, . . . , xn+2, 2n + 1 modes m0, . . . ,m2n

and 2n transitions, such that starting from a given valuation, a particular target
polytope T is reachable in the WSHA iff there is a non-empty subset T ⊆ A that
sums up to k. Intuitively, the variable x0 ensures that the variables x1, x2 . . . xn
are initialized with values a1, a2, . . . an (the elements of A). The variable xn+1

sums up the values of the elements in the chosen subset T , and can be later com-
pared with k. The variable xn+2 ensures that the set T is non-empty (specifically
when k = 0). The rates in the modes mi(0 ≤ i ≤ 2n) are given as follows (ri

represents (F (mi)):

• r0(x0) = 1, r0(xn+1) = r0(xn+2) = 0, and r0(xi) = ai, where 1 ≤ i ≤ n

• r2j−1(xj) = −aj , r2j−1(xn+1) = aj , r2j−1(xn+2) = 1, and r2j−1(x0) =
r2j−1(xi) = 0, where 1 ≤ i 6= j ≤ n

• r2j(xj) = −aj, and r2j(x0) = r2j(xi) = r2j(xn+1) = r2j(xn+2) = 0, where
1 ≤ i 6= j ≤ n

The transitions are as follows: (i) There are edges from m0 to m1 and to m2,
and (ii) There are edges from m2j−1 and from m2j to m2j+1 and to m2j+2,
1 ≤ j ≤ n− 1. We claim that the polytope T , given by the set of points x such

m0

(1, 1, 2,−3, 0, 0)

m1

(0,−1, 0, 0, 1, 1)

m2

(0,−1, 0, 0, 0, 0)

m3

(0, 0,−2, 0, 2, 1)

m4

(0, 0,−2, 0, 0, 0)

m5

(0, 0, 0, 3,−3, 1)

m6

(0, 0, 0, 3, 0, 0)

Fig. 3. Constructed WSHA for a set {1, 2,−3}

that x(0) = 1, x(i) = 0, 1 ≤ i ≤ n, x(n+1) = k and x(n+2) ∈ [1, n], is reachable
from the point 0 iff there is a non-empty subset T of A that sums up to k. Figure
3 gives an illustration of the WSHA construction for a set {1, 2,−3}.

The detailed proof can be found in the appendix. Due to the lack of space,
the proof for the schedulability is moved to the appendix. ⊓⊔

Corollary 1. The LTL model-checking problem for WSHA is PSPACE-complete.

We also observe that CTL model checking for weak singular hybrid automata
is already hard for Pspace by using a reduction from subset sum games [10].

Theorem 6. CTL model checking of weak SHAs with two clock variables is
Pspace-hard.

Proof (Sketch). We give a polynomial reduction from subset-sum games. A sub-
setsum game is played between an existential player and a universal player. The
game is specified by a pair (ψ, T) where T ∈ N and ψ is a list:

∀{A1, B1}∃{E1, F1} . . .∀{An, Bn}∃{En, Fn}

where Ai, Bi, Ei, Fi are all natural numbers. The game is played in rounds. In
the first round, the universal player chooses an element from {A1, B1}, and
the existential player responds by choosing a number from {E1, F1}. In the next
round, the universal player chooses an element from {A2, B2}, and the existential
player responds by choosing a number from {E2, F2}. This pattern repeats for n
rounds, and two players this construct a sequence of number, and the existential
player wins iff the sum of those numbers equals T .

For each set {Ai, Bi}, we construct a widget W∀i
shown in the left side of

Figure 4. Similarly, for each set {Ei, Fi}, we construct a widget W∃i
shown in

the right side of Figure 4.
The WSHA A constructed has 2 clocks x, y and is obtained by connecting the

last node of widget W∀i
with the starting node of widget W∃i

for 1 ≤ i ≤ n, and
by connecting the last node ofW∃i

with the initial node of W∀i+1
, 1 ≤ i ≤ n−1.

The last node of W∃n
(labeled Pn) is connected to a node End with a guard

y = T . The clock y is never reset in any of the widgets and accumulates the
computed sum. Notice that the resulting timed automaton is a WSHA since it
is acyclic. Let i0 be the initial mode of this WSHA. The unique initial mode of
the WSHA is labeled with Q1. It is easy to see that the above WSHA can be
constructed in polynomial time; moreover, the constructed WSHA has 3n + 2

modes, 4n + 1 edges and 2 clocks. We now give a CTL formula ϕ of size O(n)
given by [Q1 ∧A© (P1 ∧E© (Q2 ∧ . . .A© (Pn ∧E©End)))] It can be seen
that the existential player wins the subsetsum game iff A, i0 |= ϕ. ⊓⊔

We conjecture that the problem can be solved in Pspace, however decidabil-
ity of the problem is currently open.

4 Undecidable variants of WSHA

In this section, we present two variants of WSHA and show that both lead to
undecidability of the reachability problem.

Theorem 7. The reachability problem is undecidable for three variable WSHAs
with discrete updates.

Proof (Sketch). We show a reduction from the halting problem for two-counter
Minsky machines M. The variables x, y, z of the SHA have global invariants
0 ≤ x ≤ 1, 0 ≤ y, z ≤ 5 respectively. The counters c1, c2 of two-counter machine
are encoded in variables y and z as y = 5− 1

2c1 and z = 5− 1
2c2 . To begin, we have

c1 = c2 = 0, hence y = z = 4, and x=0. The rates of x, y, z are indicated by 3-
tuples inside the modes of the SHA. The discrete updates on x, y, z are indicated
on the transitions. We construct widgets for each of the increment/decrement
and zero check instructions. Each widget begins with x=0, y = 5 − 1

2c1 and
z = 5− 1

2c2 , where c1, c2 are the counter values.

– (Increment and Decrement Instructions). Let us first consider incre-
ment instruction l : c1 := c1 + 1 goto l′. The Figure 5 depicts the increment
widget. This widget starts with a mode labeled l, and ends in a mode la-
beled l′. This widget can be modified to simulate the instructions increment
counter c2, decrement counters c1 and decrement counter c2,respectively, by
changing the cost rate of z at B to -3, the cost rate of y at B to -12, and
the cost rate of z at B to −12, respectively.

– (Zero Check Instruction). We next consider the zero check instruction:
l : if c1 = 0 goto l′ else goto l′′. The widget of Figure 6 depicts the zero
check widget. The zero check widget starts in a mode l and reaches either
the mode l′ or mode l′′.

Qi Pi

x = Ai?

x := 0

x = Bi?

x := 0

Pi Qi+1

x = Ei?

x := 0

x = Fi?

x := 0

Fig. 4. Widgets W∀i
(left) and W∃i

(right)

l

(1,−6, 0)
A

(1,−30, 0)
B

(1,−3, 0)
l′

(x, y, z)

y′ := y + 5 y′ := y + 5 x′ := x− 1

Fig. 5. Increment c1 widget

l

(2, 1, 0)
A

(−1,−1, 0)
l′

(x, y, z)

B

(1, 1

2
, 0)

C

(2, 1, 0)
D

(0, 0, 0)
l′′

(x, y, z)

y′ := y + 1 y′ := y − 1

x′ := x− 1 y′ := y + 4

y′ := y − 5

x′ := x− 1

Fig. 6. Zero Check widget

It is straightforward to see that the modules for increment, decrement, and
zero check simulate the two counter machine. There is a mode HALT correspond-
ing to the HALT instruction. The halting problem for two counter machines is
thus reduced to the reachability of the mode HALT. ⊓⊔

The next variant that we consider is weak singular hybrid automata extended
with discrete updates on the variables even inside the strongly connected com-
ponents. We prove this result by showing that even CMS with one unrestricted
clock variable lead to undecidability.

Theorem 8. The reachability problem is undecidable for CMS with three vari-
ables and one unrestricted clock.

Proof (Sketch). We simulate a two counter machine using a CMS with 3 variables
and one clock. The three variables x1, x2, y have global invariants 0 ≤ x1, x2 ≤ 5
and 0 ≤ y ≤ 1 respectively. The clock variable is x. The counters c1, c2 are
encoded as x1 = 5− 1

2c1 , x2 = 5− 1
2c2 . At the beginning of each widget, we have

x1 = 5− 1
2c1 , x2 = 5− 1

2c2 and y = 1, where c1, c2 are the current counter values.
The gadget simulating an increment instruction is shown below.

l

(6, 0,−1)
A

(−5, 0, 0)
B

(5, 0, 0)
C

(−3, 0, 1)
D

(0, 0,−1)
E

(0, 0, 1)
l′

(x1, x2, y)
0<x<1

{x}

x=1

{x}

x=1

{x} {x}

x=1

{x}

x=1

{x}

The decrement gadget is similar to the increment gadget. The gadget for a
zero check is given in the figure below. Observe that starting at mode l with
y = 1 and x1 = 5 − 1

2c1 , the gadget in this gadget ensures that we reach l′ iff
c1 = 0, and otherwise reaches l′′.

l

(1, 0, 0)
A

(−1, 0, 0)
l′

(x1, x2, y)
B

(1, 0,−1)
C

(−5, 0, 0)

D

(5, 0, 0)
E

(−1, 0, 1)
F

(0, 0,−1)
G

(0, 0, 1)
l′′

(x1, x2, y)

x=1

{x}

x=1

{x}

x=0x<1

{x}

x=1 {x}

x=1

{x}

x<1

{x}

x=1

{x}

x=1

{x}

A complete proof can be found in the Appendix. ⊓⊔

5 Conclusion

We introduced weak singular hybrid automata and showed that verification prob-
lems like reachability and schedulability areNP-Complete, while LTL property
checking is Pspace-Complete. Extending the model with either unrestricted
variable updates or with a single unrestricted clock variable render the reach-
ablity problem undecidable. We showed PSPACE-hardness of the CTL model
checking problem, but the exact complexity of the problem remains open.

References

1. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-S. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In
Hybrid Systems, pages 209–229, 1992.

2. R. Alur and D. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
3. R. Alur, V. Forejt, S. Moarref, and A. Trivedi. Safe schedulability of bounded-rate

multi-mode systems. In HSCC, pages 243–252, 2013.
4. R. Alur and T. A. Henzinger. A really temporal logic. J. ACM, 41(1):181–203,

January 1994.
5. R. Alur, A. Trivedi, and D. Wojtczak. Optimal scheduling for constant-rate multi-

mode systems. In HSCC, pages 75–84, 2012.
6. E. Asarin and O. Maler. Achilles and the tortoise climbing up the arithmetical

hierarchy. Journal of Computer and System Sciences, 57(3):389 – 398, 1998.
7. E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical systems

having piecewise-constant derivatives. TCS, 138:35–66, 1995.
8. C. Baier and J. P. Katoen. Principles of model checking. MIT Press, 2008.
9. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-

state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, 1986.

10. J. Fearnley and M. Jurdzinski. Reachability in two-clock timed automata is pspace-
complete. In ICALP (2), pages 212–223, 2013.

11. T. A. Henzinger and P. W. Kopke. Discrete-time control for rectangular hybrid
automata. TCS, 221(1-2):369–392, 1999.

12. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? Journal of Comp. and Sys. Sciences, 57:94–124, 1998.

13. N. D. Jones, Y. E. Lien, and W. T. Laaser. New problems complete for nondeter-
ministic log space. Mathematical Systems Theory, 10(1):1–17, 1976.

14. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking timed automata
with one or two clocks. In CONCUR, volume 3170 of LNCS, pages 387–401, 2004.

15. N. Markey. Verification of Embedded Systems – Algorithms and Complexity.
Mémoire d’habilitation, ENS Cachan, France, April 2011.

16. M. L. Minsky. Computation: finite and infinite machines. Prentice-Hall, 1967.
17. D. Perrin and J. E. Pin. Infinite Words—Automata, Semigroups, Logic and Games,

volume 141 of Pure and Applied Mathematics. Elsevier, 2004.
18. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal

logics. J. ACM, 32(3):733–749, July 1985.
19. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification (preliminary report). In LICS, pages 332–344, 1986.

A Temporal Logic Model Checking

Model-checking—pioneered by Clarke, Sifakis and Emerson [9]—is widely used
automated verification framework that, given a formal description of a system
and a property, systematically checks whether this property holds for a given
state of the system model.

The linear temporal logic, LTL, and the computational tree logic (CTL)
provide formal languages to specify more involved nesting of such properties
with ease.

The first step in introducing logic to specify the properties of an SHA is
to specify properties of interest as propositions. A more general way to assign
propositions with an SHA is to introduce propositions on the valuations of the
variables. However, in this paper, we consider the propositions given on modes
of the SHA.

A Kripke singular hybrid automaton (KSHA) is a tuple (H,P , L) where H
is an SHA, P is a finite set of atomic propositions, and L :M → 2P is a labeling
function that labels the modes of the SHA with a subset of atomic propositionsP .
Given a KSHA (H,P , L) and an infinite run r = 〈(m0, ν0), (t1, a1), (m1, ν1), . . .〉
of H, we define a trace corresponding to r, denoted as Trace(r), as the sequence

〈L(m0), L(m1), L(m2), . . . L(mn), . . .〉.

Let Trace(H,P , L) be the set of traces of the KSHA H. For a trace σ =
〈P0, P1, . . . , Pn, . . .〉 ∈ Trace(H, P, L) we write σ[i] = 〈Pi, Pi+1, . . .〉 for the suffix
of the trace starting at the index i ≥ 0.

We now define the syntax and semantics of LTL and CTL.

A.1 Linear Temporal Logic

Definition 4 (Linear Temporal Logic (Syntax)). The set of valid LTL for-
mulas over a set P of atomic propositions can be inductively defined as the fol-
lowing:

– ⊤ and ⊥ are valid LTL formulas;
– if p ∈ P then p is a valid LTL formula;
– if φ and ψ are valid LTL formulas then so are ¬φ, φ ∧ ψ and φ ∨ ψ;
– if φ and ψ are valid LTL formulas then so are ©φ, ♦φ, �φ, and φ Uψ.

We often use φ⇒ ψ as a shorthand for ¬φ∨ψ. Before we define the semantics
of LTL formula formally, let us give an informal description of the temporal
operators ©, ♦, �, and U . LTL formulas are interpreted over traces of KSHA.
The formula ©φ, read as next φ, holds for a trace σ = 〈P0, P1, P2, . . .〉 if ψ
holds for the trace σ[1]. The formula ♦φ, read as eventually φ, holds for a trace
σ = 〈P0, P1, P2, . . .〉 if there exists i ≥ 0 such that the formula ψ holds for
the trace σ[i]. The formula �φ, read as globally or always φ, holds for a trace
σ = 〈P0, P1, P2, . . .〉 if for all i ≥ 0 the formula ψ holds for traces σ[i]. Finally,
the formula φUψ, read as φ until ψ, holds for a trace σ = 〈P0, P1, P2, . . .〉 if there

is an index i such that ψ holds for the trace σ[i], and for every index j before
i the formula φ holds for the trace σ[j], i.e the formula φ holds until formula ψ
holds.

Definition 5 (LTL Semantics). For a trace
σ=〈P0, P1, P2, . . .〉 of a KSHA we write σ |= φ to say that the trace σ satisfies
the formula φ. The satisfaction of LTL formulas is defined as follows:

– σ |= ⊤ and σ 6|= ⊥;
– σ |= p if p ∈ P0;
– σ |= ¬φ if σ 6|= φ;
– σ |= φ ∧ ψ if σ |= φ and σ |= ψ;
– σ |= φ ∨ ψ if σ |= φ or σ |= ψ;
– σ |= ©φ if σ[1] |= φ;
– σ |= ♦φ if there exists i ≥ 0 such that σ[i] |= φ;
– σ |= �φ if for all i ≥ 0 we have that σ[i] |= φ; and
– σ |= φ Uψ if there exists i ≥ 0 such that σ[i] |= ψ, and for all 0 ≤ j < i

σ[j] |= φ.

We consider only those runs of the KSHA that are non-Zeno, for satis-
faction/refutation of LTL formule. For a Kripke singular hybrid automaton
(H, P, L), and an LTL formula φ we say that KSHA (H, P, L) satisfies LTL
formula φ, and we write (H, P, L) |= φ, if for all traces of non-Zeno run σ ∈
Trace(H, P, L) we have that σ |= φ.

A.2 Computational Tree Logic

In this section we present CTL logic to reason with Kripke singular hybrid au-
tomata. CTL formulas allows existential and universal quantification over prop-
erties of trace originating from modes. Formally, the set of CTL formulas are
defined in the following manner.

Definition 6 (Computational Tree Logic (Syntax)). The set of valid CTL
formulas over a set P of atomic propositions can be inductively defined as the
following:

– ⊤, ⊥ and p ∈ P are valid CTL mode formulae;
– if φ and ψ are valid CTL mode formulae then so are ¬φ, φ∧ψ, Eφ and Aφ;
– if φ and ψ are valid mode formulae, then ©φ and φ Uψ are valid trace

formulae.

Definition 7 (CTL Semantics). CTL formulae are evaluated over the modes
and traces of a Kripke Hybrid structure. Given a mode m ∈M ,

– m |= ⊤ and m 6|= ⊥;
– m |= p if p ∈ L(m);
– m |= ¬φ if m 6|= φ;
– m |= φ ∧ ψ if m |= φ and m |= ψ;

– m |= Eφ if there exists a trace σ starting at m such that σ |= φ

– m |= Aφ if all traces σ starting at m are such that σ |= φ

– σ |= ©φ iff σ[1] |= φ

– σ |= φ Uψ if there exists i ≥ 0 such that σ[i] |= ψ, and for all σ[j] |= φ

0 ≤ j < i.

We consider only traces of non-Zeno runs of the KSHA for satisfaction/refutation
of CTL formule. Given a CTL formula φ and a KSHA (H,P , L), we say that
(H,P , L) |= φ if and only if all initial modes m0 of A satisfy φ.

B Two-Counter Machines

A two-counter machine (Minsky machine)A is a tuple (L,C) where: L = {l0, l1, . . . , ln}
is the set of instructions. There is a distinguished terminal instruction ln called
HALT. C = {c1, c2} is the set of two counters ; the instructions L are one of the
following types:

1. (increment c) li : c := c+ 1; goto lk,
2. (decrement c) li : c := c− 1; goto lk,
3. (zero-check c) li : if (c > 0) then goto lk else goto lm,
4. (Halt) ln : HALT.

where c ∈ C, li, lk, lm ∈ L.
A configuration of a two-counter machine is a tuple (l, c, d) where l ∈ L is an

instruction, and c, d are natural numbers that specify the value of counters c1
and c2, respectively. The initial configuration is (l0, 0, 0). A run of a two-counter
machine is a (finite or infinite) sequence of configurations 〈k0, k1, . . .〉 where k0
is the initial configuration, and the relation between subsequent configurations
is governed by transitions between respective instructions. The run is a finite
sequence if and only if the last configuration is the terminal instruction ln.
Note that a two-counter machine has exactly one run starting from the initial
configuration. The halting problem for a two-counter machine asks whether its
unique run ends at the terminal instruction ln. It is well known ([16]) that the
halting problem for two-counter machines is undecidable.

C Omitted Proofs

C.1 Proofs from Section 2

Proof of Theorem 2 Given a two counter machine M, we construct a two
variable SHA T and a CTL formula ϕ such that T |= ϕ iff M halts. The counter
values are stored in a variable x in the form 2 − 1

2c13c2 , while y is an extra
variable used for manipulations. The rate of x is given inside the modes of the
SHA, and the rate of y is always 1. Each instruction (increment/decrement/zero
check) in the two counter machine corresponds to a widget in the SHA. A widget
simulating an instruction l1 : c := c + 1; goto l2 starts with a mode labeled l1,

and ends at a mode labeled l′2. The mode labeled l′2 is connected by an edge to
a widget whose start mode is labeled l2. This edge has guard y = 1 and resets
y. This forces a time elapse of atleast 1 each time this widget is taken.

Consider the following widget which simulates an increment instruction l1:
increment c1, goto l2. The CTL formula that takes us through the increment

l1
−6

start
A

3

B

−3
l′2
0

x=0?

x = 2?

y = 1?

y := 0

y = 1?

y := 0

Fig. 7. Simulation of increment instruction

widget shown in figure 7 is ϕl1,l2 given by (l1 ⇒ E♦(l′2 ∧ E © l2)). To begin,
x = 1 (have an initialization widget).

At the start of each increment/decrement/zero check widget, we have y =
0, x = 2 − 1

2c13c2 , where c1, c2 are the currrent counter values. To reach A from
l1 in figure 7, a time 1

3 −
1

2c1+13c2+1 is spent at l1, and hence y = 1
3 −

1
2c1+13c2+1 .

To reach B, a time of 2
3 is spent at A, obtaining y = 1− 1

2c1+13c2+1 . Finally, l
′
2 is

reached with y = 0, x = 2− 1
2c1+13c2

. One time unit is spent at l′2, and we reach
l2 with the same x, y values. The decrement instruction for l1 can be obtained
by changing the rate of x to -12 in mode B in figure 7; the CTL formula for the
decrement instruction remains same.

Now we consider the zero check instruction l: if c1 = 0 goto l1 else goto l2.
Figure 8 depicts the zero check widget.

W1 and W2 are widgets that enforce that the zero check is done correctly.
W1 checks if c1 is indeed 0. If so, x = 2− 1

3c2 . Likewise, W2 checks if c1 6= 0. If
so, x = 2− 1

2c13c2 , with c1 > 0. As earlier, l′1, l
′
2 are connected respectively to l1

and l2 via transitions with guard y = 1 and reset y. The widgets W1,W2 are as
follows:

WidgetW1 (figure 9) repeatedly multiplies 1
2c13c2 by 3 till x becomes 1. If this

happens, then indeed c1 = 0, and the mode T is reached. Similarly, widget W2
first repeatedly mutiplies 1

2c13c2 by 2 (one or more times), till we obtain 1
3c2 , and

then repeatedly multiplies by 3 (zero or more times) till x = 1. Similarly, widget
W2 (figure 10) first repeatedly multiplies 1

2c13c2 by 2, and then (optionally) by
3 until x becomes 1.

l

1
start

A

1

B

1

W 1

l′1
0

W 2

l′2
0

y=0?

y=0?

y = 0?

y = 0?

y = 0?

y = 0?

Fig. 8. ZeroCheck

A0

−6
start

A

3

B

−18
T

1

x=0?

x = 2?y = 1?y := 0
x = 1?
y = 0?

Fig. 9. Widget W 1

The CTL formula to be checked at l (in figure 8) is ϕl,zc given by (l ⇒
[(E© (A ∧E© (l′1 ∧E© l1) ∧E♦T))∨
(E© (B ∧E© (l′2 ∧E© l2) ∧E♦T))]).

There is a mode labelled HALT, which corresponds to the halt instruction.
Let l0 be the label of the first instruction. Note that a minimum time of one unit
is spent in all widgets. There is a self loop at the HALT mode with guard y = 1,
reset y. Any run is therefore, time divergent. The final formula to be checked is
Φ given by

l0 ∧E{[
∧

(ϕli,lj ∧ ϕl,zc)] U HALT }.

Proof of (a) in Theorem 3 The Nlogspace-hardness of the reachability
problem for SHA follows from the complexity of reachability problem for finite
graphs [13]. On the other hand, the Nlogspace-hardness of the schedulabil-
ity problem for SHA follows from the complexity of nonemptiness problem for
Büchi automata (Proposition 10.12 of [17]). For Nlogspace-membership of

B0

0
start

B1

−6

A

3

B

−12

T

1

W 1

y=0?

x=0?

x = 2?

y = 1? y := 0

x, y = 1? y := 0

y = 1?y := 0

Fig. 10. Widget W 2

these problems we adapt the region construction for one-clock timed automata
proposed by Laroussinie, Markey, and Schnoebelen [14].

First notice that valuations of a one variable SHA can be written as real num-
bers corresponding to the value of the unique variable, hence we represent a con-
figuration as (m,x) ∈M×R. Also notice that the SHA compares valuations only
against numbers appearing the constraints of the SHA. Let B = {b0, b1, . . . , bk}
be the set of numbers appearing in the definition of the SHA with the restriction
that b0 = 0 , and bi < bj for all i < j. Observe that two configurations (m,x)
and (m′, x′) are indistinguishable by the constraints of an SHA if m = m′ and
the values of the integer parts of x and x′ are either both greater than bk or both
less than bk, or the integer parts of x and x′ are equal and fractional parts are
either both zero or both non-zero. Given the largest constant appearing in the
constraints of an SHA is bk, then the regions (equivalence classes according to
indistinguishablity by constraints) are the following the set of 4(bk+1) intervals:

(−∞,−bk), [−bk,−bk], (−bk,−bk + 1), [−bk + 1,−bk + 1],

. . . [0, 0], (0, 1), [1, 1], . . . , (bk − 1, bk), [bk, bk], (bk,∞).

Also note that such regions are also indistinguishable with respect to time-
progress, as in any mode, the corresponding rate is positive, negative, or zero,
and in any of these cases, all the valuations in a given region will pass through
same set of regions as time progresses. One can easily show that this region
relation form the classical time-abstract bisimulation [8], and hence the reacha-
bility and schedulability analysis of one variable SHA one can reduce [2,14] these
problems to corresponding problems on finite graphs whose vertices are the pair
of modes and regions. However, this construction does not yield an Nlogspace

algorithm, since these regions can not be stored in a logarithmic space algo-
rithm. Using the similar observation from [14], it follows that the following set
of regions also form time-abstract bisimulation over the configuration of SHA:

(−∞,−bk), [−bk,−bk], (−bk,−bk−1), [−bk−1,−bk−1],

. . . [b0, b0], (b0, b1), [b1, b1], . . . , (bk−1, bk), [bk, bk], (bk,∞).

Moreover the number of regions in this encoding are linear in the size of the
SHA, and hence a region can be stored in logarithmic space. We call this region
graph LMS region graph. Using standard breadth-first search algorithms, the
reachability and the schedulability problems for SHA can be solved in linear
time. Using this region graph, the standard Nlogspace algorithms for reacha-
bility and repeated reachability over graphs can be adapted to give Nlogspace

algorithms for reachability and schedulability problems for one variable SHAs.

C.2 Proof of Lemma 1

An infinite run in the region graph RGH of a one-variable SHA H is an infinite
sequence of the form ((m0, r0), a0, (m1, r1), a1, . . .) where rj are valid regions and
for all j > 0 either ((mj , rj), aj , (mj+1, rj+1)) ∈ ∆RGH

ormj = mj+1 and aj = ε

and rj+1 is a strict time-successor of rj with respect to the mode mj . An infinite
run in the region graph RGH of a one-variable SHA H is called progressive iff it
has a non-Zeno instantiation. A region r in RG is called thick if ∃δ > 0, ν ∈ r

such that ν + δ ∈ r. A region which is not thick is called a thin region.
We first prove the “only if” side by proving that if none of the above condi-

tions hold for a path, then the only instantiations that the path has are Zeno.
Consider an infinite region path ((m0, r0), a0, (m1, r1), a1, . . .) such that none of
the above conditions hold. Then, one of the following three cases arise:

– There is an index n such that for all j ≥ n, we have rj = r where r |= x > Cx

and that F (mj) < 0. Consider the suffix starting from the nth index of any
instantiation σ , say σn = ((mn, νn), an, (mn+1, νn+1), an+1, . . .). If σ was
non-Zeno, then there must be a valuation ν in σn such that ν < νn− t∗ρmin

for any t ≥ 0, where ρmin ≥ 1 is the minimum absolute value of any rate
amongst the rates of mn,mn+1, If we choose t = νn − Cx, then ν < Cx,
violating our assumption.

– There is an index n such that for all j ≥ n, we have rj = r where r |= x < cx
and that F (mj) > 0. This case is similar to the previous one and hence
omitted.

– There is an index n such that for all j ≥ n we have rj = r such that
r |= x ≥ cx and r |= x ≤ Cx and either F (mj) > 0, or F (mj) < 0 for all
j > n. W.l.o.g, we can assume that F (mj) > 0 (The other case is analogous).
Depending upon the region r, we have the following two cases:
• r is of the form x = c, where c is an integer in [cx, Cx]. Then all the
instantitations of the path will clearly be Zeno, with the variable staying
at the same value c even though the rates in each of the locations visited
are strictly positive.

• r is of the form c1 < x < c2, where c1 and c2 are integers in (cx, Cx). Now,
consider the suffix (starting from index n) of any instatiation σ of the
path, say σn = ((mn, νn), an, (mn+1, νn+1), an+1 . . .). Now, if σ was non-
Zeno, there must be a valuation ν in σn such that ν > νn+t∗ρmin for any
t, where ρmin ≥ 1 is the rate with the minimum absolute vale amongst
the rates of qn, qn+1, But, then we can choose t to be c2 − c1 + 1, in
which case ν 6∈ (c1, c2), giving a contradiction.

Hence, the conditions given are necessary for a path to be progressive.
We now prove that the above characterization is also sufficient. We do a

case-by-case analysis for all the 5 conditions given:

– Case-1 : Condition 1 holds. In this case, consider any instantiation σ =
((m0, ν0), a0, (m1, ν1), a1, . . .). Then there are infinitely many indices k0, k1, . . .
such that the rates in the modes mk0

,mk1
, . . . are zero. Then, it is indeed

possible to take the discrete steps ak0
, ak1

. . . after a unit interval of time,
while still having the same abstract path. Such a run is non-Zeno.

– Case-2: Condition 2 holds. In any instantiation of the region path satisfying
this condition, all valuations beyond a index n satisfy x > Cx and there are
infinitely many indices n < k0 < k1 < · · · such that the rates in the modes
mk0

,mk1
, . . . are strictly positive. Then, consider an instantiation in which

the delay between the discrete steps akl−1 and akl
is equal to one. Clearly,

this is a valid instantiation of the path, and is also non-Zeno.
– Case-3: Condition 3 holds. This case is similar to the previous case and

hence, omitted.
– Case-4: Condition 4 holds. Note that, in this case, there exists 2 regions
r1 and r2 such that r1 is a is a thin region, r2 thick region and there are
infinitely many indices k0, k1, . . . such that rkq

= r1 and rkq+1 = r2 and
mkq

= mkq+1. Hence, it is indeed possible to spend a time of 1
2∗ρ in the

region r2, where ρ is the maximum absolute value of the rate in any mode,
before taking the next discrete jump, while still respecting the abstract path.
This gives a non-Zeno path.

– Case-5: Condition 5 holds. In any instantiation of the region path satisfying
this condition, all valuations beyond a index n satisfy c1 < x < c2 and there
are infinitely many indices n < k0 < l0 < k1 < l1 < · · · such that the rates
in the modes mk0

,mk1
, . . . are strictly positive, while those in the modes

ml0 ,ml1 , . . . are strictly negative. W.l.o.g, we can choose rn to be one of
x = c1 or x = c2. Also, if rn = (x = c1), then, F (mn+1) > 0 and we can
assume k0 = n+ 1. For some fixed constant δ1, one can then spend a time
of δ1

F (mk0
) in mode mk0

and 0 units in all modes between k0 and l0 (both

exclusive). Also, we can then spend a time of δ1−δ2
|F (ml0

)| in mode ml0 , where

0 < δ2 < δ1 < 1 are some fixed constants. Similarly, one can spend:
• δ1−δ2

F (mkq)
units of time in mode mkq

for q > 0

• δ1−δ2
|F (mlq)|

units of time in mode mlq for q > 0

• 0 units of time, otherwise
Note that, between indices kq and lq, a minimum of δ1−δ2

ρmax
is spent, where

ρmax ≥ 1 is the maximum absolute value of any rate amongst the rates of
modes mj, j ≥ k1. Hence, such a run is non-Zeno.

The above conditions can be formulated as an LTL formula and conjuncted
with the original LTL formula so that Zeno behaviours are ruled out. We define
predicates F0, F+, F− to denote rates 0, positive and negative, which hold good
mode m iff F (m) = 0, F (m) > 0 and F (m) < 0 respectively. We also define

openC and openc which hold good for regions of the form (Cx,∞) and (−∞, cx)
respectively. Further, we have predicates thick and thin representing thick and
thin regions. Regions is the set of all regions.

Here are the LTL formulae for conditions 1-5:

1. �♦F0

2. ♦{�(openC ∧ ♦F+)}
3. Similar to 2.
4.

∨

r 6=r′∈Regions

[�♦r ∧�♦r′]

5.
∨

r∈Regions

♦{�[thick ∧ r ∧ ♦F+ ∧ ♦F−]}

Note that the conditions specified in Lemma 1 are a superset of the conditions
for a progressive run in a timed automata [2]. This is because, in an SHA, the
variables can change with negative rates. Consider for example, the following
system with x as a continuous variable:

m0start m1

x < 1

x < 1

Fig. 11. Progressive paths

If the automaton in Figure 11 is a timed automaton, then there is no non-
Zeno run starting with x = 0. If however, the system was an SHA with rates
F (m0) = +1 and F (m1) = −1, then the following is a valid non-Zeno run:
((m0, 0), (m1, 0.5), (m0, 0.25), (m1, 0.5), (m0, 0.25), (m1, 0.5), . . .), illustrating why
the conditions in [2] are not complete for progressive runs in systems with neg-
ative rates.

Proof of Theorem 5: Reachability This is a continuation of the proof given
in the main paper. To show NP-hardness of the reachability we reduce the subset-
sum problem to solving the reachability problem in a WSHA. Given the set A and
the integer k, we construct a WSHA H with n + 3 variables x0, x1, . . . , xn+2,
2n + 1 modes m0, . . . ,m2n and 2n transitions, such that a particular target
polytope T is reachable in the WSHA iff there is a non-empty subset T ⊆ A

that sums up to k. The rates in the modes mi(0 ≤ i ≤ 2n) are given as follows
(ri represents

Given the set A and the integer k, we construct a WSHA H with n + 3
variables x0, x1, . . . , xn+2, 2n + 1 modes m0, . . . ,m2n and 2n transitions, such
that a particular target polytope T is reachable in the WSHA iff there is a
non-empty subset T ⊆ A that sums up to k.

The rates in the modes mi(0 ≤ i ≤ 2n) are given as follows (ri represents
(F (mi)):

• r0(x0) = 1, r0(xn+1) = r0(xn+2) = 0, and r0(xi) = ai, where 1 ≤ i ≤ n
• r2j−1(xj) = −aj , r2j−1(xn+1) = aj , r2j−1(xn+2) = 1, and r2j−1(x0) =
r2j−1(xi) = 0, where 1 ≤ i 6= j ≤ n

• r2j(xj) = −aj, and r2j(x0) = r2j(xi) = r2j(xn+1) = r2j(xn+2) = 0, where
1 ≤ i 6= j ≤ n

The transitions in the WSHA are as follows:

• There are edges from m0 to m1 and to m2.
• There are edges from m2j−1 and from m2j to m2j+1 and to m2j+2, 1 ≤ j ≤
n− 1

We now claim that the polytope T , given by the set of points x such that
x(0) = 1, x(i) = 0, 1 ≤ i ≤ n, x(n + 1) = k and x(n + 2) ∈ [1, n], is reachable
from the point 0 iff there is a subset T of A that sums up to k.

Before proving the correctness of the construction, we present a brief intuition
of what each variable stands for. The variable x0 ensures that the variables
x1, x2 . . . xn are initialized with values a1, a2, . . . an (the elements of A). The
variable xn+1 sums up the values of the elements in the chosen subset T , and
can be later compared with k. The variable xn+2 ensures that the set T is non-
empty (specifically when k = 0).

We first prove that if there is a non-empty T that sums to k, then T is
reachable from 0. It is evident that the point (1, 0, 0 · · · , k, |T |) ∈ T can be
reached by taking the following sequence of (time, mode) having length n+ 1:

〈(1,m0), (1, l1), (1, l2) · · · , (1, ln)〉

where li = m2i−1 if ai ∈ T , otherwise li = m2i.
We now prove that if the WSHA H reaches a point in T starting from 0,

then there is a non-empty subset T of A that sums to k. For this, note that since
m2j−1 or m2j (1 ≤ j ≤ n) cannot be reached from one another in the underlying
graph, atmost one of them can occur in any path in the WSHA. Also, since
t(0) = 1, ∀t ∈ T , and since for all modes m apart from m0, F (m)(x0) = 0,
the mode m0 must be taken for exactly unit time. This means that the first
step in any run that reaches T is (t0 = 1,m0). Now, after the first step, the
WSHA reaches the valuation (1, a1, a2 · · · an, 0, 0). In order to reach T , all the
coordinates x1 to xn must go to zero. However, since the rate of ai is non-zero
only in the modes m2i−1 and m2i, and because atmost one ofm2i−1 and m2i can
be taken, we conclude that exactly one of m2i−1 and m2i is taken for a 1 unit
of time. (For the sake of simplicity, we can assume wlog that each of ai 6= 0).
Hence, any reachable run will comprise of n + 1 steps. Also, since we demand
that t(n+ 2) ∈ [1, n] and the rate of xn+2 is non-zero only in the modes m2i−1

(1 ≤ i ≤ n), atleast one of the modes m2i−1 is necessarily taken. Now consider
the run that reaches T :

〈(1,m0), (1, l1), (1, l2) · · · , (1, ln)〉

It is clear that the set {ai|li = m2i−1} is a non-empty subset that sums to k.
Figure 3 gives an illustration of the WSHA construction for a set {1, 2,−3}.

Proof of Theorem 5: Schedulability For schedulability, observe that given
a run type σ = 〈n0, b1, n1, . . . , bp, np〉 and an initial valuation ν0, we say that σ
schedules the WSHA H from ν to T if the following linear program is feasible:
for every 0 ≤ i ≤ p and m ∈ Mni

there are νni
, ν′ni

∈ R|X| and tmi ∈ R≥0 such
that

ν0 = νn0

νni
, ν′ni

∈ SMni
for all 0 ≤ i ≤ p

νni
∈ G(bi) for all 0 < i ≤ p

νni+1
(j) = 0 for all xj ∈ R(bi+1) and 0 < i ≤ p

νni+1
(j) = ν′ni

(j) for all xj 6∈ R(bi+1) and 0 < i ≤ p

ν′ni
= νni

+
∑

m∈Mni

F (m) · tmi for all 0 ≤ i ≤ p

tmi ≥ 0 for all 0 ≤ i ≤ p and m ∈Mni

0 =
∑

m∈Mnp

F (m) · tmp

1 =
∑

m∈Mnp

tmp

These constraints check whether it is possible to reach some mode with the high-
est rank while satisfying the guard and constraints of the WSHA, and schedule
the system forever in the CMS defined by the SCCs of the highest rank in the
type. The proof for this claim is similar to the proof for the CMS, and hence
omitted. Since the size of a run type is polynomial in the size of WSHA, and
checking whether a run type schedules from ν can be performed in polynomial
time (LP feasibility), the schedulability problem in WSHA can be decided in
polynomial time. The NP-hardness of the result follows from a similar reduction
from subset sum problem as shown in Theorem 5.

Proof of Corollary 1 Let (H,P , L) be a weak Kripke SHA and let φ be an
LTL property. From the standard LTL to Büchi automata construction [19] the
negation of φ can be converted to Büchi automata A¬φ whose size is exponen-
tial in the size of φ. The LTL model checking problem then reduces to solving
a schedulability problem for the product of original automaton and A¬φ. We
observe that the product of a weak SHA H and A¬φ remains weak SHA, since
variables occur only in the WSHA. The LTL model checking problem thus re-
duces to the schedulability problem for a weak SHA of size exponential in the
size of original problem, and hence can be decided using standard polynomial
space algorithm. PSPACE-hardness of the problem follows as the LTL model
checking over finite automata is already PSPACE-complete.

C.3 Proofs from Section 4

Proof of Theorem 7 We show a reduction from the halting problem for two-
counter Minsky machines M. The variables x, y, z of the SHA have global in-
variants 0 ≤ x ≤ 1, 0 ≤ y, z ≤ 5 respectively. The counters c1, c2 of two-counter
machine are encoded in variables y and z as

y = 5−
1

2c1
and z = 5−

1

2c2
.

To begin, we have c1 = c2 = 0, hence y = z = 4, and x = 0. The rates of x, y, z
are indicated by 3-tuples inside the modes of the SHA. Likewise, the discrete
updates on x, y, z are also indicated by a 3-tuple on the transitions. We construct
widgets for each of the increment/decrement and zero check instructions. Each
widget begins with x = 0, y = 5 − 1

2c1 and z = 5 − 1
2c2 , where c1, c2 are the

current values of the counters.

– (Increment and Decrement Instructions). Let us first consider incre-
ment instruction

l : c1 := c1 + 1 goto l′.

The Figure 12 depicts the increment widget. This widget starts with a mode
labeled l, and ends in a mode labeled l′. On entering l, we have x = 0 and
y = 5− 1

2c1 . Observe that a time equal to k = 1
6 [5−

1
2c1] units has to be spent

at l, giving x = 1
6 [5−

1
2c1] and y = 0. Otherwise, if one spends a time larger

than k, say k + η, at l, then we obtain y = 5− 1
2c1 − 6[k + η] < 0, violating

the invariants of y. Similarly, if a time k − η is spent at l, then we obatin
y = 5− 1

2c1 − 6[k− η] = 6η, which would make y = 5+6η > 5 on taking the
transition from l to A. Thus, on entering A, we have y = 5 and x = k. At A,
a time k1 = 1

6 is spent, obtaining x = k+k1 = 1− 1
6.2c1 , and y = 0. If a time

< k1 is spent at A, we get y = 5− 30(k1− κ) = 30κ which would violate the
invariants of y on taking the transition from A to B. Similarly, if a time > k1
was spent at A, we get y = 5− 30(k1 + κ) < 0 again violating the invariants
of y. Thus, on reaching B, we have x = 1− 1

6.2c1 and y = 5. To reach l′, we
spend 1

6.2c1 time at B, and get x = 0, and y = 5− 3(1
6.2c1) = 5− 1

2c1+1 . Note

that if a time less than 1
6.2c1 is spent at B, then x would violate its invariants

while taking the transition to l′. Likewise, if a time > 1
6.2c1 is spent at B, x

would violate its invariants.
This widget can be modified to simulate the instructions increment counter
c2, decrement counters c1 and decrement counter c2,respectively, by changing
the cost rate of z at B to -3, the cost rate of y at B to -12, and the cost rate
of z at B to −12, respectively.

– (Zero Check Instruction). We next consider the zero check instruction:

l : if c1 = 0 goto l′ else goto l′′.

The right side widget of Figure 13 depicts the zero check widget. The zero
check widget starts in a mode l and reaches either the mode l′ or mode l′′.

l

(1,−6, 0)
A

(1,−30, 0)
B

(1,−3, 0)
l′

(x, y, z)

(0,5,0) (0,5,0) (-1,0,0)

Fig. 12. Increment c1 widget

l

(2, 1, 0)
A

(−1,−1, 0)
l′

(x, y, z)
B

(1, 1

2
, 0)

C

(2, 1, 0)
D

(0, 0, 0)
l′′

(x, y, z)

(0,1,0) (0,-1,0)(-1,0,0)(0,4,0) (0,-5,0)(-1,0,0)

Fig. 13. Zero Check widget

Assume that c1 = 0. Then y = 4. Then the only possible transition to take
is the one from l to A, which makes y = 5. Note that no time is spent at l in
this case, since it would violate the invariants of y while moving to A. Thus,
at A we have y = 5, x = 0. No time is spent at A since it would make x < 0.
On reaching l′, we therefore have y = 4. Note that if c1 = 0, then we cannot
take the transition from l to B since it cannot meet invariants y ≤ 5 and
x ≤ 1 simultaneously : Unless one time unit is spent at l, y would violate its
invariants on taking the edge to B. In this case, x will become 2, violating
0 ≤ x ≤ 1.
If y = 5 − 1

2c1 with c1 > 0, then we take the transition from l to B after
spending some time at l. We cannot take the transition from l to A, since
that would violate the invariants of y. Thus, we go to B when c1 > 0. The
time spent at l is some 0 < η < 1. This gives y = 5 − 1

2c1 + η and x = 2η.
If η > 1

2c1 , then the invariants of y get violated. If η < 1
2c1 , then on taking

the transition to B, we obtain y = 5 − 1
2c1 + η − 5 < 0, again violating the

invariants of y. Hence, η = 1
2c1 , and we reach B with x = 2η, y = 0. Now at

B, a time 1−2η is spent, reaching C with x = 0, y = 1
2 −η. If a time < 1−2η

is spent at B, then x will violate its invariants on taking the transition to
C; if a time > 1 − 2η is spent at B, x will exceed 1. At C, we thus have
x = 0 and y = 1

2 − 1
2c1 . At C,

1
2 units of time is spent, obtaining x = 1 and

y = 1 − 1
2c1 , so that on reaching D, x = 0 and y = 1 − 1

2c1 . Finally, l
′′ is

reached with x = 0 and y = 5− 1
2c1 .

It is straightforward to see that the modules for increment, decrement, and zero
check simulate the two counter machine. There is a mode HALT corresponding
to the HALT instruction. The halting problem for two counter machines is thus
reduced to the reachability of the mode HALT.

Proof of Theorem 8 We simulate a two counter machine using a CMS with
3 variables and one clock. The three variables x1, x2, y have global invariants
0 ≤ x1, x2 ≤ 5 and 0 ≤ y ≤ 1 respectively. The clock variable is x. The counters
c1, c2 are encoded as x1 = 5− 1

2c1 , x2 = 5− 1
2c2 . At the beginning of each widget,

we have x1 = 5− 1
2c1 , x2 = 5− 1

2c2 and y = 1, where c1, c2 are the current counter

values. To begin with, x1 = x2 = 4, y = 1 and x = 0. The rates of x1, x2, y are
written inside the modes of the CMS as 3 tuples.

We first see the simulation of an increment instruction l: increment c1, goto
l′. Figure 14 depicts the increment widget. This widget starts with a mode l and
goes to a mode l′.

l

(6, 0,−1)
A

(−5, 0, 0)

B

(5, 0, 0)
C

(−3, 0, 1)

D

(0, 0,−1)
E

(0, 0, 1)

l′

(x1, x2, y)

0 < x < 1?

x := 0

x = 1? x := 0

x = 1?

x := 0

x := 0

x = 1?

x := 0

x = 1? x := 0

Fig. 14. Increment c1

We start at mode l with x1 = 5− 1
2c1 and y = 1. A time k = 1

6.2c1 is spent at
l obtaining x1 = 5 and y = 1− k. Note that spending time > k at l would make
x1 > 5, while spending time < k would give y = 1− k + 6η and x1 = 5− 6η for
some η < k. In this case, one time unit spent at A gives x1 < 0, violating the
invariant. Hence, k time units are spent at l, and at B, we obtain x1 = 0 and
y = 1 − k. We reach C with x1 = 5 and y = 1 − k. At C, a time of k is spent,
giving x1 = 5 − 1

2c1+1 , and y = 1. Note that spending time > k at C will give
y > 1. If a time < k is spent at C, then y < 1 on reaching D, and this results in
y < 0 at E, violating the invariant for y. Thus, we indeed spend k time units at
C, and reach E with y = 0 and x1 = 5− 1

2c1+1 . We then reach l′ with y = 1 and

x1 = 5− 1
2c1+1 .

The decrement c1 operation can be done by changing the rate -3 of x1 at C
to −12.

Next, we will see the zero check instruction l: if c1 = 0 goto l′ else goto l′′.
Figure 15 depicts the zero check widget.

We start at mode l with y = 1 and x1 = 5 − 1
2c1 . Assume c1 = 0. In

this case, we cannot take the transition to B, since x1 would attain a negative
value on entering D. Thus, the only possibility is to reach l′ with values of x1, y
unchanged.

Now assume c1 > 0. Then it is not possible to take the transition to A since
that would result in x1 > 5. Thus, we move to B, with values unchanged. At B,
a time η < 1 is elapsed, resulting in x1 = 5 − 1

2c1 + η and y = 1 − η. Clearly,

l

(1, 0, 0)
A

(−1, 0, 0)
l′

(x1, x2, y)

B

(1, 0,−1)

C

(−5, 0, 0)
D

(5, 0, 0)
E

(−1, 0, 1)

F

(0, 0,−1)
G

(0, 0, 1)
l′′

(x1, x2, y)

x = 1?

x := 0

x = 1?

x := 0

x = 0?

x < 1? x := 0

x = 1?

x := 0

x = 1?

x := 0

x < 1? x := 0

x = 1?

x := 0

x = 1?

x := 0

Fig. 15. Zero Check

η ≤ 1
2c1 . If η <

1
2c1 , then on reaching D, we will obtain x1 < 0, thus η = 1

2c1 .
Then, at D, we have x1 = 0 and y = 1 − 1

2c1 . Next, E is reached with x1 = 5
and y = 1 − 1

2c1 . At E, we spend a time κ < 1, obtaining x1 = 5 − κ and
y = 1 − 1

2c1 + κ. If κ 6= 1
2c1 , then on reaching G, y will violate its invariants;

hence at G we have x1 = 5 − 1
2c1 and y = 0. We then reach l′′ with y = 1 and

x1 = 5− 1
2c1 .

It can be seen that the widgets for increment/decrement/zero check faithfully
simulate the two counter machine. There is a mode HALT corresponding to the
HALT instruction. Thus, the HALT mode can be reached iff the two counter
machine halts.

	Weak Singular Hybrid Automata

