arXiv:1405.1861v2 [cs.CR] 27 Jun 2014

Modeling Bitcoin Contracts by Timed Automata*

Marcin Andrychowicz, Stefan Dziembowski**, Daniel Malinowski and Lukasz
Mazurek

Cryptology and Data Security Group
WWW.Crypto.edu.pl
University of Warsaw

Abstract. Bitcoin is a peer-to-peer cryptographic currency system. Since its in-
troduction in 2008, Bitcoin has gained noticeable popularity, mostly due to its
following properties: (1) the transaction fees are very low, and (2) it is not con-
trolled by any central authority, which in particular means that nobody can “print”
the money to generate inflation. Moreover, the transaction syntax allows to create
the so-called contracts, where a number of mutually-distrusting parties engage in
a protocol to jointly perform some financial task, and the fairness of this process
is guaranteed by the properties of Bitcoin. Although the Bitcoin contracts have
several potential applications in the digital economy, so far they have not been
widely used in real life. This is partly due to the fact that they are cumbersome to
create and analyze, and hence risky to use.

In this paper we propose to remedy this problem by using the methods originally
developed for the computer-aided analysis for hardware and software systems,
in particular those based on the timed automata. More concretely, we propose a
framework for modeling the Bitcoin contracts using the timed automata in the
UPPAAL model checker. Our method is general and can be used to model several
contracts. As a proof-of-concept we use this framework to model some of the
Bitcoin contracts from our recent previous work. We then automatically verify
their security in UPPAAL, finding (and correcting) some subtle errors that were
difficult to spot by the manual analysis. We hope that our work can draw the
attention of the researchers working on formal modeling to the problem of the
Bitcoin contract verification, and spark off more research on this topic.

1 Introduction

Bitcoin is a digital currency system introduced in 2008 by an anonymous developer
using a pseudonym ““Satoshi Nakamoto” [23]]. Despite of its mysterious origins, Bitcoin
became the first cryptographic currency that got widely adopted — as of January 2014
the Bitcoin capitalization is over €7 bln. The enormous success of Bitcoin was also
widely covered by the media (see e.g. [16I5125021122]]) and even attracted the attention
of several governing bodies and legislatures, including the US Senate [21]. Bitcoin owes
its popularity mostly to the fact that it has no central authority, the transaction fees are

* This work was supported by the WELCOME/2010-4/2 grant founded within the framework of
the EU Innovative Economy (National Cohesion Strategy) Operational Programme.
** On leave from the Sapienza University of Rome.


www.crypto.edu.pl

very low, and the amount of coins in the circulation is restricted, which in particular
means that nobody can “print” money to generate inflation. The financial transactions
between the participants are published on a public ledger maintained jointly by the users
of the system.

One of the very interesting, but slightly less known, features of the Bitcoin is the
fact that it allows for more complicated “transactions” than the simple money transfers
between the participants: very informally, in Bitcoin it is possible to “deposit” some
amount of money in such a way that it can be claimed only under certain conditions.
These conditions are written in the form of the Bifcoin scripts and in particular may
involve some timing constrains. This property allows to create the so-called contracts
[27]], where a number of mutually-distrusting parties engage in a Bitcoin-based protocol
to jointly perform some task. The security of the protocol is guaranteed purely by the
properties of the Bitcoin, and no additional trust assumptions are needed. This Bitcoin
feature can have several applications in the digital economy, like creating the assurance
contracts, the escrow and dispute mediation, the rapid micropayments [27], the multi-
party lotteries [8]]. It can also be used to add some extra properties to Bitcoin, like the
certification of the users [[L7]], or creating the secure “mixers” whose goal is to enhance
the anonymity of the transactions [[19]]. Their potential has even been noticed by the
media (see, e.g., a recent enthusiastic article on the CNN Money [22]).

In our opinion, one of the obstacles that may prevent this feature from being widely
used by the Bitcoin community is the fact that the contracts are tricky to write and
understand. This may actually be the reason why, despite of so many potential applica-
tions, they have not been widely used in real life. As experienced by ourselves [6/718]],
developing such contracts is hard for the following reasons. Firstly, it’s easy to make
subtle mistakes in the scripts. Secondly, the protocols that involve several parties and
the timing constraints are naturally hard to analyze by hand. Since mistakes in the con-
tracts can be exploited by the malicious parties for their own financial gain, it is natural
that users are currently reluctant to use this feature of Bitcoin.

In this paper we propose an approach that can help designing secure Bitcoin con-
tracts. Our idea is to use the methods originally developed for the computer-aided anal-
ysis for hardware and software systems, in particular the timed automata [1/2]. They
seem to be the right tool for this purpose due to the fact that the protocols used in the
Bitcoin contracts typically have a finite number of states and depend on the notion of
time. This time-dependence is actually two-fold, as (1) it takes some time for the Bit-
coin transactions to be confirmed (1 hour, say), and (2) the Bitcoin transactions can
come with a “time lock” which specifies the time when a transaction becomes valid.

Our contribution We propose a framework for modeling the Bitcoin contracts using
timed automata in the UPPAAL model checker [9IT8] (this is described in Sec. [2)). Our
method is general and can be used to model a wide class of contracts. As a proof-
of-concept, in Sec. [3| we use this framework to model two Bitcoin contracts from our
previous work [8l6]. This is done manually, but our method is quite generic and can
potentially be automatized. In particular, most of the code in our implementation does
not depend on the protocol being verified, but describes the properties of Bitcoin system.
To model a new contract it is enough to specify the transactions used in the contract,
the knowledge of the parties at the beginning of the protocol and the protocol followed



by the parties. We then automatically verify the security of our contracts in UPPAAL (in
Sec.[3.1). The UPPAAL code for the contracts modeled and verified by us is available at
the web page http://crypto.edu.pl/uppaal-btc.zip.

Future work We hope that our work can draw the attention of the researchers work-
ing on formal modeling to the problem of the Bitcoin contracts verification, and spark
off more research on this topic. What seems especially interesting is to try to fully au-
tomatize this process. One attractive option is to think of the following workflow: (1) a
designer of a Bitcoin contract describes it in UPPAAL (or, possibly, in some extension
of it), (2) he verifies the security of this idealized description using UPPAAL, and (3) if
the idealized description verifies correctly, then he uses the system to “compile” it into a
real Bitcoin implementation that can be deployed in the wild. Another option would be
to construct a special tool for designing the Bitcoin contracts, that would produce two
outputs: (a) a code in the UPPAAL language (for verification) and (b) a real-life Bitcoin
implementation.

Of course, in both cases one would need to formally show the soundness of this
process (in particular: that the “compiled” code maintains the properties of the idealized
description). Hence, this project would probably require both non-trivial theoretical and
engineering work.

Preliminaries Timed automata were introduced by Alur and Dill [112]]. There exist
other model checkers based on this theory, like Kronos [31]] and Times [4]. It would be
interesting to try to implement our ideas also in them. Other formal models that involve
the notion of the real time include the timed Petri nets [[10], the timed CSP [26], the
timed process algebras [30/24], and the timed propositional temporal logic [3]]. One can
try to model the Bitcoin contracts also using these formalisms. For the lack of space, a
short introduction to UPPAAL was moved to Appendix [D] The reader may also consult
[9418] for more information on this system.

We assume reader’s familiarity with the public-key cryptography, in particular with
the signature schemes (an introduction to this concept can be found e.g. in [20/12]]). We
will frequently denote the key pairs using the capital letters (e.g. A), and refer to the
private key and the public key of A by: A.sk and A.pk, respectively. We will also use
the following convention: if A = (A.sk, A.pk) then sig 4 (m) denotes a signature on a
message m computed with A.sk and ver 4(m, o) denotes the result (true or false) of
the verification of a signature o on message m with respect to the public key A.pk. We
will use the “B” symbol to denote the Bitcoin currency unit.

1.1 A short description of Bitcoin

Since we want the exposition to be self-contained, we start with a short description
of Bitcoin, focusing only on the most relevant parts. For the lack of space we do not
describe how the coins are created, how the transaction fees are charged, and how the
Bitcoin “ledger” is maintained. A more detailed description of Bitcoin is available on
the Bitcoin wiki site [[11]. The reader may also consult the original Nakamoto’s paper
[23]].


http://crypto.edu.pl/uppaal-btc.zip

Introduction In general one of the main challenges when designing a digital currency
is the potential double spending: if coins are just strings of bits then the owner of a
coin can spend it multiple times. Clearly this risk could be avoided if the users have
access to a trusted ledger with the list of all the transactions. In this case a transaction
would be considered valid only if it is posted on the board. For example suppose the
transactions are of a form: “user X transfers to user Y the money that he got in some
previous transaction 7},”, signed by the user X. In this case each user can verify if money
from transaction 7}, has not been already spent by X. The main difficulty in designing
the fully-distributed peer-to-peer currency systems is to devise a system where the users
jointly maintain the ledger in such a way that it cannot be manipulated by an adversary
and it is publicly-accessible.

In Bitcoin this problem is solved by a cryptographic tool called proofs-of-work [15].
We will not go into the details of how this is done, since it is not relevant to this work.
Let us only say that the system works securely as long as no adversary controls more
computing power than the combined computing power of all the other participants of the
protocoﬂ The Bitcoin participants that contribute their computing power to the system
are called the miners. Bitcoin contains a system of incentives to become a miner. For
the lack of space we do not describe it here.

Technically, the ledger is implemented as a chain of blocks, hence it is also called a
“block chain”. When a transaction is posted on the block chain, it can take some time
before it appears on it, and even some more time before the user can be sure that this
transaction will not be cancelled. However, it is safe to assume that there exists an upper
bound on this waiting time (1-2 hours, say). We will denote this time by MAX_LATENCY.

As already highlighted in the introduction, the format of the Bitcoin transactions
is in fact quite complex. Since it is of a special interest for us, we describe it now
in more detail. The Bitcoin currency system consists of addresses and transactions
between them. An address is simply a public key pkﬂ Normally every such key has a
corresponding private key sk known only to one user, which is an owner of this address.
The private key is used for signing the transactions, and the public key is used for
verifying the signatures. Each user of the system needs to know at least one private key
of some address, but this is simple to achieve, since the pairs (sk, pk) can be easily
generated offline.

Simplified version We first describe a simplified version of the system and then show
how to extend it to obtain the description of the real Bitcoin. Let A = (A.sk, A.pk) be a
key pair. In our simplified view a transaction describing the fact that an amount v (called
the value of a transaction) is transferred from an address A.pk to an address B.pk has
the following form T, = (y, B.pk, v, sig 4 (y, B.pk,v)), where y is an index of a previ-
ous transaction Ty, We say that I3.pk is the recipient of T}, and that the transaction T},

"It is currently estimated [23]] that the combined computing power of the Bitcoin participants is
around 64 exaFLOPS, which exceeds by factor over 200 the total computing power of world’s
top 500 supercomputers, hence the cost of purchasing the equipment that would be needed to
break this system is huge.

2 Technically an address is a cryptographic hash of pk. In our informal description we decided
to assume that it is simply pk. This is done only to keep the exposition as simple as possible,
as it improves the readability of the transaction scripts later in the paper.



is an input of the transaction T, or that it is redeemed by this transaction (or redeemed
by the address B.pk). More precisely, the meaning of 7T}, is that the amount v of money
transferred to A.pk in transaction 7, is transferred further to B.pk. The transaction is
valid only if (1) A.pk was a recipient of the transaction T, (2) the value of T}, was at
least v (the difference between the value of T}, and v is called the transaction fee), (3)
the transaction 77, has not been redeemed earlier, and (4) the signature of A is correct.
Clearly all of these conditions can be verified publicly.

The first important generalization of this simplified system is that a transaction
can have several “inputs” meaning that it can accumulate money from several past
transactions Ty, ..., T,,. Let Ay,..., A, be the respective key pairs of the recipi-
ents of those transactions. Then a multiple-input transaction has the following form:
Ty = (y1,---,Ye, B.pk,v,siga, (y1, B.pk, v),...,sig4,(ye, B.pk,v)), and the result
of it is that B.pk gets the amount v, provided it is at most equal to the sum of the values
of transactions Ty, , ..., T,,. This happens only if none of these transactions has been
redeemed before, and all the signatures are valid.

Moreover, each transaction can have a time lock t that tells at what time in the future
the transaction becomes valid. The lock-time ¢ can refer either to a measure called the
“block index” or to the real physical time. In this paper we only consider the latter type
of time-locks. In this case we have T, = (y1,...,y¢, B.pk,v,t,sig4, (y1, B.pk,v,t),
..,Siga,(ye, B.pk,v,t)). Such a transaction becomes valid only if time ¢ is reached
and if none of the transactions T, , ..., Ty, has been redeemed by that time (otherwise
it is discarded). Each transaction can also have several outputs, which is a way to divide
money between several users and to divide transactions with large value into smaller
portions. We ignore this fact in our description since we will not use it in our protocols.

More detailed version The real Bitcoin system is significantly more sophisticated
than what is described above. First of all, there are some syntactic differences, the most
important being that each transaction 7, is identified not by its index, but by its hash
H(T,). Hence, from now on we will assume that = H(T,).

The main difference is, however, that in the real Bitcoin the users have much more
flexibility in defining the condition on how the transaction 7, can be redeemed. Con-
sider for a moment the simplest transactions where there is just one input and no time-
locks. Recall that in the simplified system described above, in order to redeem a trans-
action, its recipient A.pk had to produce another transaction 7, signed with his private
key A.sk. In the real Bitcoin this is generalized as follows: each transaction 7}, comes
with a description of a function (output-script) m, whose output is Boolean. The trans-
action 7T, redeeming the transaction Ty, is valid if 7, evaluates to true on input 7.
Of course, one example of 7, is a function that treats T, as a pair (a message m, a
signature o), and checks if o is a valid signature on m, with respect to the public
key A.pk. However, much more general functions , are possible. Going further into
details, a transaction looks as follows: T, = (y, 7y, v, 0,), where [T,] = (y, 7z, v) is
called the body[’f] of T}, and 0, is a “witness” that is used to make the script 7, evaluate to

3 In the original Bitcoin documentation this is called “simplified T}”. Following our earlier
work [8l6l7] we chosen to rename it to “body” since we find the original terminology slightly
misleading.



true on T, (in the simplest case o, is a signature on [T} ]). The scripts are written in the
Bitcoin scripting language [28]], which is stack-based and similar to the Forth program-
ming language. It is on purpose not Turing-complete (there are no loops in it), since
the scripts need to evaluate in (short) finite time. It provides basic arithmetical opera-
tions on numbers, operations on stack, if-then-else statements and some cryptographic
functions like calculating hash function or verifying a signature.

The generalization to the Ty, Ton: Ty, 7)) Ty,
z * Y1y Y2

rpult1ple-1n}?ut trapsacnons with o B in-script: o, [in-script: o2 oo B
tlme-loc.ks is straightforward: a +lout-script(arg): 7o (arg)
transaction has a form: 7, = val: v B
(yla---7y€>71'a;>717ta<717--~7‘72)a tlock: ¢
where the body [T,] is equal

. vB
to (y1,...,Ye, T, v, t), and it is

valid if (1) time ¢ is reached, Fig.1. A graphical representation of a transaction 7}, =
(2) every m;([Ty], 0;) evaluates (y1,y2, Ta,v,t,01,02).

to true, where each m; is the output script of the transaction 7Ty, and (3) none of these
transactions has been redeemed before. We will present the transactions as boxes. The
redeeming of transactions will be indicated with arrows (the arrows will be labelled
with the transaction values). An example of a graphical representation of a transaction
is depicted in Fig.[I]

The transactions where the input script is a signature, and the output script is a
verification algorithm are the most common type of transactions. We will call them
standard transactions. Currently some miners accept only such transactions, due to the
fact that writing more advanced scripts is hard and error-prone, and anyway the vast
majority of users does not use such advanced features of Bitcoin. Fortunately, there
exist other miners that do accept the non-standard (also called strange) transactions,
one example being a big mining pooﬂ called Eligius (that mines a new block on average
once per hour). We also believe that in the future accepting the general transaction will
become standard, maybe at a cost of a slightly increased fee. Actually, popularizing the
Bitcoin contracts, by making them safer to use, is one of the goals of this work.

2 Modeling the Bitcoin

To reason formally about the security of the contracts we need to describe the attack
model that corresponds to the Bitcoin system. The model used in [8l6]] was inspired
by the approach used in the complexity-based cryptography. This way of modeling
protocols, although very powerful, is not well-suited for the automatic verification of
cryptographic protocols. In this section we present the approach used in this paper,
based on timed-automata, using the syntax of the UPPAAL model checker.

In our model each party executing the protocol is modeled as a timed automaton
with a structure assigned to it that describes the party’s knowledge. States in the au-
tomaton describe which part of the protocol the party is performing. The transitions in
the automaton contain conditions, which have to be satisfied for a transition to be taken
and actions, which are performed whenever a transition is taken.

* Mining pools are coalitions of miners that perform their work jointly and share the profits.



The communication between the parties may be modeled in a number of various
ways. It is possible to use synchronization on channels offered by UPPAAL and shared
variables representing data being sent between the parties. In all protocols verified by
us, the only messages exchanged by the parties were signatures. We decided to model
the communication indirectly using shared variables — each party keeps the set of
known signatures, and whenever a sender wants to send a signature, he simply adds it
to the recipient’s set.

The central decision that needs to be made is how to model the knowledge of the
honest parties and the adversary. Our representation of knowledge is symbolic and
based on Dolev-Yao model [13], and hence we assume that the cryptographic prim-
itives are perfectly secure. In our case it means, for example, that it is not possible
to forge a signature without the knowledge of the corresponding private key, and this
knowledge can be modeled in a “binary” way: either an adversary knows the key, or
not. The hash functions will be modeled as random oracles, which in particular implies
that they are collision-resilient and hard to invert. We also assume that there exists a se-
cure and authenticated channel between the parties, which can be easily achieved using
the public key cryptography. Moreover, we assume that there is a fixed set of variables
denoting the private/public pairs of Bitcoin keys. A Bitcoin protocol can also involve
secret strings known only to some parties (like e.g. a string s in the commitment pro-
tocol in Appendix [B), we assume that there is a fixed set of variables denoting such
strings. For each private key and each secret string there is a subset of parties, which
know them, but all public keys and hashes of all secret strings are known to all the
parties (if this is not the case then they can be broadcast by parties knowing them).

A block chain is modelled using a shared variable (denoted bc) keeping the status
of all transactions and a special automaton, which is responsible for maintaining the
state of bc (e.g. confirming transactions).

In the following sections we describe our model in more details.

2.1 The keys, the secret strings, and the signatures

We assume that the number of the key pairs in the protocol
is known in advance and constant. Therefore, key pairs
will be simply referred by consecutive natural numbers
(type Key is defined as an integer from a given range).
Secret strings are modelled in the same way. As already
mentioned we assume that all public keys and hashes of
all secrets are known to all parties.

typedef struct {
Key key;
TxId tx_num;
Nonce input_nonce;
} Signature;

Fig. 2. The signatures type.
Moreover, we need to model the signatures over trans-

actions (one reason is that they are exchanged by the parties in some protocols). They
are modelled by structures containing a transaction being signed, the key used to com-
pute a signature and an input_nonce, which is related to the issue of transaction mal-
leability and described in Appendix



2.2 The transactions

We assume that all transactions that can be created by the honest parties during the
execution of the protocol comes from a set, which is known in advance and of size
T'. Additionally, the adversary can create his own transactions. As explained later (see
Sec.[2.4]below) we can upper-bound the number of adversarial transactions by 7'. Hence

the total upper bound on the number of transactions is 27

For simplicity we refer the transactions us-
ing fixed identifiers instead of their hashes. We
can do this because we know all the trans-
actions, which can be broadcast in advance
(compare Sec[2.4] and Appendix [A] for further
discussion). A single-input and single-output
transaction is a variable of a record type Tx de-
fined in Fig. [3] The num field is the identifier
of the transaction, and the input field is the
identifier of its input transaction. The value
field denotes the value of the transaction (in B).

typedef struct {
TxId num;
TxId input;
int value;
int timelock;
bool timelock_passed;
Status status;
Nonce nonce;
bool reveals_secret;
Secret secret_revealed;
OutputScript out_script;

The timelock field indicates the time lock of | 1 T%

the transaction, and the timelock_passedisa
boolean field indicating whether the timelock
has passed.

The status field is of a type Status that contains following values: UNSENT (indicat-
ing that transaction has not yet been sent to the block chain), SENT (the transaction has
been sent to the block chain and is waiting to be confirmed), CONFIRMED (the transac-
tion is confirmed on the block chain, but not spent), SPENT (the transaction is confirmed
and spent), and CANCELLED (the transaction was sent to the block chain, but while it was
waiting for being included in the block chain its input was redeemed by another trans-
action).

The out_script denotes the output script. In case the transaction is standard it simply
contains a public key of the recipient of the transaction. Otherwise, it refers to a hard-
coded function which implements the output script of this transaction (see Sec. [2.5] for
more details).

The inputs scripts are modelled only indirectly (the fields reveals_secret and
secret_revealed). More precisely, we only keep information about which secrets
are included in the input script (see e.g. the CS protocol in Fig. 9] transaction Open).

The above structure can be easily extended to handle multiple inputs and outputs.

Fig. 3. The transactions type

2.3 The parties typedef struct {
bool know_key[KEYS_NUM|;
bool know_secret[SECRETS_NUM[;
int[0,KNOWN_
SIGNATURES_SIZE] known_signatures_size;
Signature known_signatures

[KNOWN_SIGNATURES_SIZE];

The parties are modelled by
timed automata describing proto-
cols they follow. States in the au-
tomata describe which part of the
protocol the party is performing.

The transitions in the automata | 3 Party;

Fig. 4. The parties type.



contain conditions, which have to

be satisfied for a transition to be

taken and actions, which are performed whenever a transition is taken. An example of
such automaton appears in Fig. [/} and is described in more details in Appendix
The adversary is modelled by a special automaton described in Sec. 2.4}

Moreover, we need to model the knowledge of the parties (both the honest users and
the adversary) in order to be able to decide whether they can perform a specific action in
a particular situation (e.g. compute the input script for a given transaction). Therefore
for each party, we define a structure describing its knowledge. More technically: this
knowledge is modelled by a record type Party defined in Fig. 4]

The boolean tables know_key[KEYS_NUM] and know_secret[SECRETS_NUM| de-
scribe the sets of keys and secrets (respectively) known to the party: know_key[i] =
true if and only if the party knows the i-th secret key, and know_secret[i] = true if
and only if the party knows the i-th secret string. The integer known_signatures_size
describes the number of the additional signatures known to the party (i.e. received from
other parties during the protocol), and the array known_signatures contains these
signatures.

2.4 The adversary

The real-life Bitcoin adversary can create an arbitrary number of transactions with arbi-
trary output scripts, so it is clear that we need to somehow limit his possibilities, so that
the space of possible states is finite and of a reasonable size. We show that without loss
of generality we can consider only scenarios in which an adversary sends to the block
chain transactions only from a finite set depending only on the protocol.

The knowledge of an adversary is modeled in the similar way to honest parties, but
we do not specify the protocol that he follows. Instead, we use a generic automaton,
which (almost) does not depend on the protocol being verified and allows to send to the
block chain any transaction at any time assuming some conditions are met, e.g. that the
transaction is valid and that the adversary is able to create its input script.

We observe that the transactions made by the adversary can influence the execution
of the protocol only in two ways: either (1) the transaction is identical to the transaction
from the protocol being verified or (2) the transaction redeems one of the transactions
from the protocol. The reason for above is that honest parties only look for transactions
of the specific form (as in the protocol being executed), so the only thing an adversary
can do to influence this process is to create a transaction, which looks like one of these
transactions or redeem one of these. Notice that we do not have to consider transactions
with multiple inputs redeeming more than one of the protocol’s transactions, because
there is always an interleaving in which the adversary achieves the same result using
a number of transactions with single inputs. The output scripts in the transactions of
type (2) do not matter, so we may assume that an adversary always sends them to one
particular key known only to him.

Therefore, without loss of generality we consider only the transactions, which ap-
pear in the protocol being verified or transactions redeeming one of these transactions.
Hence, the total number of transactions, which are modeled in our system is twice as
big as the number of transactions in the original protocol.



The adversary is then a party, that can send an arbitrary transaction from this set if
only he is able to do so (e.g. he is able to evaluate the input script and the transaction’s
input is confirmed, but not spent). If the only actions of the honest parties is to post
transactions on the block chain, then one can assume that this is also the only thing that
the adversary does. In this case his automaton, denoted Adversary is very simple: it
contains one state and one loop, that simply tries to send an arbitrary transaction from
the mentioned set. This is depicted in Fig. [5on page [I0] (for a moment ignore the left
loop).

<cond> me.know_key[C_KEY] and
<cond> parties|BOB].known_signatures_size == 0
<action> broadcast_signature(create_signature_tx(C_KEY, bc[FUSE])) <action> try_to_send(me, bcfi])

Fig. 5. The automaton for the Adversary

In some protocols the parties besides of posting the transactions on the block chain,
also exchange messages with each other. This can be exploited by the adversary, and
hence we need to take care of this in our model. This is done by adding more actions
in the Adversary automaton. In our framework, this is done manually. For example in
the protocol that we analyze in Sec. [3] Alice sends a signature on the Fuse transaction
(cf. Step [3 Fig. 0] Appendix [B). This is reflected by the left loop in the Adversary
automaton in Fig. 5] which should be read as follows: if the adversary is able to create
a signature on the F'use transaction and Bob did not receive it yet, then he can send it
to Bob.

Of course, our protocols need to be analyzed always “from the point of view of an
honest Alice” (assuming Bob is controlled by the adversary) and “from the point of
view of an honest Bob” (assuming Alice is controlled by the adversary). Therefore, for
each party we choose whether to use the automaton describing the protocol executed
by the parties or the already mentioned special automaton for an adversary.

2.5 The block chain and the notion of time

In Bitcoin whenever a party wants to post a transaction on the block chain she broad-
casts it over a peer-to-peer network. In our model this is captured as follows. We model
the block chain as a shared structure denoted bc containing the information about
the status of all the transactions and a timed automaton denoted BlockChainAgent
(see Fig. [6), which is responsible for maintaining the state of bc. One of the duties
of BlockChainAgent is ensuring that the transactions which were broadcast are con-
firmed within appropriate time frames.

In order to post a transaction t on the block chain, a party p first runs the try_to_
send( Party p, Tx t) function, which broadcasts the transaction if it is legal. In par-
ticular, the can_send function checks if (a) the transaction has not been already sent,
(b) all its inputs are confirmed and unredeemed and (c) a given party p can create the
corresponding input script. The only non-trivial part is (c) in case of non-standard trans-
actions, as this check is protocol-dependent. Therefore, the exact condition on when the

10



party p can create the appropriate input script, has to be extracted manually from the
description of the protocol. If all these tests succeed, then the function communicates
the fact of broadcasting the transaction using the shared structure bc.

<cond> time == bcfi].timelock and (not bcf[i].timelock_passed)
<action> bcf[i].timelock_passed = true

<action> init_bc()
©

<state> forall(i : TxId) (is_waiting(bcli]) imply bc_clock[i] < MAX_LATENCY)
<state> and
<state> forall(i : TxId) ((not bc[i].timelock_passed) imply time <= bc[i].timelock)

<cond> is_waiting(bcf[i])
<action> try_to_confirm(bcfi], n)

Fig. 6. The BlockChainAgent automaton

Once a transaction t has been broadcast, the BlockChainAgent automaton at-
tempts to include it in the block chain (lower loop in Fig. [6). The BlockChainAgent
automaton also enforces that every transaction gets included into the block chain in
less than MAX_LATENCY time, which is a constant that is defined in the system. This is
done by the invariant on the right state in Fig.[6|that guarantees that every transaction is
waiting for confirmation less than MAX_LATENCY.

Eavesdropping on the network The other issue with the block chain is that the peers in
the network can see transactions before they are confirmed. Therefore if a transaction
t contains (e.g. in its input script) a secret string = then an adversary can learn the
value of x before ¢ is confirmed and for example use it to create a different transaction
redeeming the input of ¢ (a similar scenario is possible for a two-party lottery protocol
from [8]], which is only secure in a “private channel model”). To take such possibilities
into account, broadcasting a transaction results in disclosure of the secret string x, what
in our model corresponds to setting appropriate knowledge flags for all parties.

Malleability of transactions BlockChainAgent automaton is also responsible for
choosing the nonces, which imitate the attacks involving the malleability of transac-
tions. This is described in details in Appendix [A]

3 Modeling the Bitcoin-based timed commitment scheme from [8]

In this section we describe the “contract-dependent” part of our model. Our method of
modeling and verifying Bitcoin contracts as timed automata is generic and can be ap-
plied to a large class of Bitcoin contracts (and even possibly automatized as described
in the paragraph “Future work™ on page [3). However, it is easier to describe it using a
concrete example. As a proof-of-concept we constructed the automata corresponding to

11



a very simple contract called the “Bitcoin-based timed commitment scheme” from [§]].
For the lack of space we only sketch informally what the protocol is supposed to do.
In the protocol one of the parties (called Alice) commits herself to a secret string s. A
key difference between this protocol and classic commitment schemes is that Alice is
forced to open the commitment (i.e. reveal the string s) until some agreed moment of
time (denoted PROT_TIMELOCK) or pay 1B to Bob. The full description can be found
in Appendix [B] Although the verification of correctness is quite straightforward in this
case, we would like to stress that our method is applicable to more complicated con-
tracts, like the NewSCS protocol from [8] (see Section , for which the correctness
is much less obvious.

3.1 The results of the verification

Before running the verification procedure in UPPAAL it is necessary to choose, which
parties are honest and which are malicious.

In UPPAAL it is done by selecting an automaton following the protocol or the ma-
licious automaton for an adversary described in Sec. 2.4] for each of the parties. We
started with verification of the security from the point of view of honest Bob. To this
end we used an honest automaton for Bob (see Fig. [/)) and an adversary automaton
described before for Alice (see Fig.[3).

<cond> bc[COMMIT].status == CONFIRMED
<state> time <= MAX_LATENCY <sync> urg_chan? <state> time <= MAX_LATENCY

<cond> can_create_input_script(me, bc[FUSE])

<cond> time == MAX_LATENCY <sync> urg_chan?

<cond> time == MAX_LATENCY <state> accepted

<state> failure

<cond> can_send(me, bc[FUSE])
<action> try_to_send(me, bc[FUSE])
<sync> urg_chan?

Fig. 7. The automaton for an honest Bob in timed-commitment scheme

The property that we checked is the following:

A[] (time >= PROT_TIMELOCK+MAX_LATENCY) imply
(hold_bitcoins(parties[BOB]) == 1 or parties[BOB].know_secret[0]
or BobTA.failure),

which, informally means: “after time PROT_TIMELOCK 4 MAX_LATENCY one of the fol-
lowing cases takes place: either (a) Bob earned 1B, or (b) Bob knows the committed
secret, or (c) Bob rejected the commitment in the commitment phase”. This is exactly
the security property claimed in [8]], and hence the verification confirmed our belief that
the protocol is secure. We verified the security from the point of view of Alice in the
similar way.

12



<cond> bc[COMMIT].status == CONFIRMED
< nc> an?
<action> try_to_send(me, bc{COMMIT]) sync> urg_chan <action> broadcast_signature(create_signature_tx(C_KEY, bc[FUSE]))

<sync> urg_chan?
@ ()

<cond> timer_passed|[0]
<sync> urg_chan?

<cond> timer_passed|[0]

<cond> timer_passed[0] <syncs urg_chan?

<sync> urg_chan?

<action> try_to_send(me, bc[OPEN])

Fig. 8. The automaton for an honest Alice in timed-commitment scheme

The property we verified means that Alice does not lose any bitcoins in the execution
of the protocol (even if Bob is malicious).
As a test we also run the verification procedure on the following two statements:

A[] (time >= PROT_TIMELOCK) imply (parties[BOB].know_secret[0])
A[] (time >= PROT_TIMELOCK) imply (hold_bitcoins(parties[ALICE]) == 1).

The first one states that after time PROT_TIMELOCK Bob knows the secret (which can be
not true, if Alice refused to send it). The second one states that after time PROT_TIME-
LOCK Alice holds 1 B (which occurs only if Alice is honest, but not in general). The
UPPAAL model checker confirmed that these properties are violated if one of the par-
ties is malicious, but hold if both parties follow the protocol (i.e. when honest automata
are used for both parties). Moreover, UPPAAL provides diagnostic traces, which are
interleavings of events leading to the violation of the property being tested. They al-
low to immediately figure out, why the given property is violated and turned out to be
extremely helpful in debugging the automata.

3.2 The NewSCS protocol from [8]]

We also modeled and verified the Simultaneous Commitment Scheme (NewSCS) pro-
tocol from [8]], which is relatively complicated as it contains 18 transactions. To under-
stand it fully the reader should probably look in the [§], but as reference we included the
description of these contracts in Appendix|C] Informally speaking, the NewSCS scheme
is a protocol that allows two parties, Alice and Bob, to simultaneously commit to their
secrets (s4 and sp, respectively) in such a way that each commitment is valid only if
the other commitment was done correctly. Using UPPAAL we automatically verified the
following three conditions, which are exactly the security statements claimed in [6]:

— After the execution of the protocol by two honest parties, they both know both
secrets and hold the same amount of coins as at the beginning of the protocol,
which in UPPAAL syntax was formalized as:

A[] (time >= PROT_TIMELOCK+MAX_LATENCY) imply
(parties[ALICE] .know_secret[SB_SEC] and parties[BOB].know_secret[SA_SEC]

and hold_bitcoins(parties[ALICE]) ==
and hold_bitcoins(parties[BOB]) == 2)

(here SA_SEC and SB_SEC denote the secrets of Alice and Bob, respectively, and 2

is the value of the deposit).
— An honest Bob cannot lose any coins as a result of the protocol, no matter how the
dishonest Alice behaves:

13



2) A[] (time >= PROT_TIMELOCK) imply hold_bitcoins(parties[BOB]) >= 2

— If an honest Bob did not learn Alice’s secret then he gained Alice’s deposit as a
result of the execution.

3) A[] ((time >= PROT_TIMELOCK+2*MAX_LATENCY) imply
((parties[ALICE].know_secret[SB_SEC]
and !parties[BOB].know_secret[SA_SEC])
imply hold_bitcoins(parties[BOB]) >= 3))

The analogous guarantees hold for Alice, when Bob is malicious. The verification of
each of the mentioned properties took less than a minute on a dual-core 2.4 GHz note-
book. We confirmed that the protocol NewSCS is correct, but there are some imple-
mentation details, which are easy to miss and our first implementation (as an automa-
ton) turned out to contain a bug, which was immediately found due to the verification
process and diagnostic traces provided by UPPAAL. We describe this in more detail in
Appendix [C.T] Moreover UPPAAL turned out to be very helpful in determining the ex-
act time threshold for the time locks, for example we confirmed that the time at which
the parties should abort the protocol claimed in [[7]] (¢ — 3MAX_LATENCY) is strict.

These experiments confirmed that the computer aided verification and in particular
UPPAAL provides a very good tool for verifying Bitcoin contracts, especially since it
is rather difficult to assess the correctness of Bitcoin contracts by hand, due to the dis-
tributed nature of the block chain and a huge number of possible interleavings. There-
fore, we hope that our paper would encourage designers of complex Bitcoin contracts
to make use of computer aided verification for checking the correctness of their con-
structions.

References

1. R. Alur and D. L. Dill. Automata for modeling real-time systems. In ICALP’90.

2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 1994.

3. R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 1994.

4. T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES - a tool for modelling
and implementation of embedded systems. TACAS ’02.

5. Marc Andreessen. Why Bitcoin Matters, Jan 2013. The New York Times,
dealbook.nytimes.com/2014/01/21/why-bitcoin-matters, accessed on 26.01.2014.

6. M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Fair two-party com-
putations via the bitcoin deposits. Cryptology ePrint Archive, Report 2013/837, 2013.
http://eprint.iacr.org/2013/837, accepted to the 1st Workshop on Bitcoin Research.

7. M. Andrychowicz, S. Dziembowski, D. Malinowski, and .. Mazurek. How to deal with
malleability of Bitcoin transactions. ArXiv e-prints, December 2013.

8. M. Andrychowicz, S. Dziembowski, D. Malinowski, and £.. Mazurek. Secure Multiparty
Computations on Bitcoin. Cryptology ePrint Archive, 2013. http://eprint.iacr.org/
2013/784) accepted to the 35th [IEEE Symposium on Security and Privacy (Oakland) 2014.

9. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on uppaal 4.0, 2006.

10. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Softw. Eng., 17(3):259-273, March 1991.

11. Bitcoin. Wiki. en.bitcoin.it/wiki/.

12. H. Delfs and H. Knebl. Introduction to Cryptography: Principles and Applications. Infor-
mation Security and Cryptography. Springer, 2007.

14


http://dealbook.nytimes.com/2014/01/21/why-bitcoin-matters/
http://eprint.iacr.org/2013/837
http://eprint.iacr.org/2013/784
http://eprint.iacr.org/2013/784
http://en.bitcoin.it/wiki/

13. D. Dolev and A. C. Yao. On the security of public key protocols. Information Theory, IEEE
Transactions on, 1983.

14. Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM Journal
on Computing, 30(2):391-437, 2000.

15. C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In CRYPTO, 1992.
16. The Economist. The Economist explains: How does Bitcoin work?, Apr 2013.
www.economist.com/blogs/economist-explains/2013/04/economist-explains-how-does-

bitcoin-work, accessed on 26.01.2014.

17. G. Ateniese et al. Certified bitcoins. Cryptology ePrint Archive, Report 2014/076.

18. J. Bengtsson et al. UPPAAL - a tool suite for automatic verification of real-time systems. In
Hybrid Systems, volume 1066 of Lecture Notes in Computer Science, 1995.

19. S. Barber et al. Bitter to better - how to make bitcoin a better currency. FC’12.

20. J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman & Hall/Crc Cryp-
tography and Network Security Series). Chapman & Hall/CRC, 2007.

21. T. B. Lee. Here’s how Bitcoin charmed Washington. www.washingtonpost.com/blogs/the-
switch/wp/2013/11/21/heres-how-bitcoin-charmed-washington, accessed on 26.01.2014.

22. David Z. Morris. Bitcoin is not just digital currency. It’s Napster for finance, Jan 2014. CNN
Money, finance.fortune.cnn.com/2014/01/21/bitcoin-platform, accessed on 26.01.2014.

23. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

24. Xavier Nicollin and Joseph Sifakis. The algebra of timed processes, atp: Theory and appli-
cation. Inf. Comput., 114(1):131-178, 1994.

25. R. Cohen. Global Bitcoin Computing Power Now 256 Times Faster Than Top 500 Su-
percomputers, Combined! Forbes, www.forbes.com/sites/reuvencohen/2013/11/28/global-
bitcoin-computing-power-now-256-times-faster-than-top-500-supercomputers-combined/.

26. G. M. Reed and A. W. Roscoe. A timed model for communicating sequential processes.
Theor. Comput. Sci., 58(1-3):249-261, June 1988.

27. Bitcoin wiki. Contracts. len.bitcoin.it/wiki/Contracts, Accessed on 26.01.2014.

28. Bitcoin wiki. Script. en.bitcoin.it/wiki/Script, Accessed on 26.01.2014.

29. Bitcoin wiki. Transaction malleability. en.bitcoin.it/wiki/Transaction_Malleability, Ac-
cessed on 26.01.2014.

30. Wang Yi. CCS + time = an interleaving model for real time systems. In Automata, Languages
and Programming, volume 510 of Lecture Notes in Computer Science. 1991.

31. Sergio Yovine. Kronos: a verification tool for real-time systems. Journal on Software Tools
for Technology Transfer, 1, October 1997.

A Malleability of transactions

Let us now describe the reason why we introduced the variables of a type Nonce in the
transaction and the signatures. The reason is that they are used to model the fact that
the transactions in Bitcoin can be slightly modified without changing its functionality.
Malleability is a very general concept introduced in cryptography in a seminal paper
of Dolev et al. [14]]. It is a (usually) undesired property of the cryptographic schemes
that very informally means that an adversary, after seeing an output of a scheme, can
produce another output that is in some non-trivial way “related” to the original outputE]
As it turns out, malleability of transaction is a feature of Bitcoin, which poses a serious

3 For example, the one time pad encryption scheme (see, e.g., [20]) defined as: Enc(K, M) :=
K ® M and Dec(K, C) := K @ C (where “@” denotes the coordinate-wise xor) is malleable
since by negating every bit in C one obtains a ciphertext C’ of a message M’ that is equal

15


http://www.economist.com/blogs/economist-explains/2013/04/economist-explains-how-does-bitcoin-work
http://www.economist.com/blogs/economist-explains/2013/04/economist-explains-how-does-bitcoin-work
http://www.washingtonpost.com/blogs/the-switch/wp/2013/11/21/heres-how-bitcoin-charmed-washington/
http://www.washingtonpost.com/blogs/the-switch/wp/2013/11/21/heres-how-bitcoin-charmed-washington/
http://finance.fortune.cnn.com/2014/01/21/bitcoin-platform/
http://www.forbes.com/sites/reuvencohen/2013/11/28/global-bitcoin-computing-power-now-256-times-faster-than-top-500-supercomputers-combined/
http://www.forbes.com/sites/reuvencohen/2013/11/28/global-bitcoin-computing-power-now-256-times-faster-than-top-500-supercomputers-combined/
http://en.bitcoin.it/wiki/Contracts
https://en.bitcoin.it/wiki/Script
http://en.bitcoin.it/wiki/Transaction_Malleability

risk for almost all contracts using time locks. We now briefly describe this problem.
More detailed descriptions can be found in [7129].

Bitcoin transactions are malleable in the following way: given a valid transaction ¢,
an adversary is able to create a functionally equivalent and valid transaction ¢’ which
has a different hash, even if he does not know the secret key used to produce ¢. Both
transactions have the same input transactions, the same output script and differ only
in the hash. Therefore, the following scenario is possible. A transaction ¢ is sent to the
block chain, which technically means that it is broadcast over the network. An adversary
can therefore see ¢ and create and broadcast t'. If he is lucky then eventually ¢’ becomes
included in the block chain, instead of ¢. It means that we can not assume the knowledge
of the hash of the transaction before it is confirmed. It poses a serious problem for most
of the protocols using time locks, because such protocols often need to sign a transaction
s which redeems ¢, before t is broadcast. Such transaction s contains a hash of ¢ and
in case when ¢’ is included in the block chain instead of ¢, the transaction s becomes
invalid.

In our model the transactions are addressed by fixed identification numbers instead
of hashes, so a special technique should be applied to take the malleability of transac-
tions into account. To this end we extend the transaction structure with a “malleability
nonce”, which contains an integer from a fixed and small set Nonce (in most cases
a set int[0, 1] of size 2 is enough). Each transaction, which has not been sent to the
block chain has the nonce field equal to 0, which indicates that the transaction was not
modified. Whenever a transaction is being confirmed, its malleability nonce is set to
a random value. Moreover, the structure describing the signature on the transaction ¢
which redeems s (see Sec. @ contains the assumed malleability nonce of s (set when
the transaction ¢ was being signed) and is considered valid only if this nonce matches
the real nonce of the transaction s. Therefore, if the transaction s was confirmed after
the signature structure was created, the signature may or may not become invalidated,
what catches the issue of malleability in real Bitcoin network.

The above solution with “malleability nonces” makes the assumption that whenever
s is modified, then only the transaction ¢ becomes invalid. In reality it would also influ-
ence another transaction u which redeems ¢ and so on. However, in all Bitcoin protocols
we are aware of, this is not an issue as the signatures are computed at most “one step
forward”. It is also not difficult to extend the model to handle “malleability nonce of
the second (or arbitrary) level” if necessary.

to a “negated” M. Note that this works even if one does not know K. Since the one-time
pad is perfectly secure, thus the non-malleability is not implied by the standard security of an
encryption scheme.

16



B Bitcoin-based timed commitment scheme

Commit(in: U)
in-script: sig 4 ([Commit])
dB |out-script(body, o1, 02, x):
(H(x) = h A vera(body,o1))V
(vera(body, 1) A verg(body, o2))

val: d B
Open(in: Commi) B[ 7 _ Fuse(in: Commit) _ _ _ |
dB |in-seript: sig 4 ([Open)]), L, s /in-script: !
) out-scrip.t(bogy o): ver;\(l;ody o) »LSLgA(LFQSQ ), sigp([Fuse]), L JdEL
val: d B . ’ ;out-script(body, 0): ver 4 (body, o) |
: val:dB
'tlock: ¢ !

Pre-condition:
. The key pair of Alice is A and the key pair of Bob is B.

2. Alice already sent to Bob the value h = H (s), where s is the value she wants to

commit to.
. The block chain contains a confirmed and unredeemed transaction U, which can
be redeemed with key A of value d BB.

The CS.Commit(Alice, Bob, d, t, s) phase
. Alice sends to the block chain the transactions Commiit.

2. If within time MAX_LATENCY the Commit transaction does not appear on the block

chain, or if it looks incorrect (e.g. it differs in the h value) then Bob aborts.
. Alice creates the body of the transaction Fuse, signs it and sends the signature to
Bob.
Bob accepts the commitment if he receives the appropriate signature from Alice.

The CS.Open(Alice, Bob, d, t, s) phase

. Alice sends to the block chain the transactions Open, what reveals the secret string
s.

If within time ¢ the transaction Open does not appear on the block chain then Bob
sends to the block chain the transaction Fuse and earns d B.

Fig.9. The CS(Alice, Bob,d,t, s) protocol. The scripts’ arguments, which are omitted are de-

noted by L.

A commitment scheme is one of the basic cryptographic primitives (see, e.g., [[12]]). It is
executed between two parties: Alice and Bob. In the first phase (called, the commitment
phase) Alice commits herself to some secret value s. That means that she sends to Bob
a value ¢ = f(s) for some agreed randomized function f. In the second phase (called

the opening phase) Alice sends to Bob s plus some extra information.

17




From the commitment scheme we require two properties — hiding and binding.
These properties will be satisfied if we use f as f(s) = H(s||r) where H is a crypto-
graphic hash function and r is a random, fix length padding (if we model H as a random
oracle). In the Bitcoin-based timed commitment scheme this construction is used as a
building block (with often used in Bitcoin function SHA-256 as a hash function). In its
description we assume, that the padding was already added and simply use H instead
of f.

One of the problems with the classical commitment scheme is that there is no way
to force Alice to open the commitment and hence reveal the secret. To remedy this,
in [8] we proposed to use the Bitcoin system to punish financially Alice in case she
does not open the commitment. This is done as follows. Assume that Alice wants to
commit herself to some secret s. To do it, she creates and sends to the block chain a
Bitcoin transaction (Commit) that contains a commitment f(s) and has some value
dB (this money is called the “deposit”). This transaction can be spent in one of two
ways: either by revealing the secret (this is an expected action of Alice, she will have
to reveal the secret to get her money back), or the signatures of both Alice and Bob
(by this Bob can punish Alice). After the transaction is included in the block chain,
Alice creates the Fuse transaction — it spends the Commit transaction and sends the
money to Bob. Alice sets a time lock ¢ (which forces her to open the commitment by
time t) adds her signature and sends it to Bob. Bob accepts the commitment if the
transactions are correct (e.g. they have proper values, time lock, and Fuse has a good
signature) and adds his signature to the Fuse transaction. Otherwise he quits. Alice
should open the commitment (i.e. send to the block chain the transaction Open spending
the Commit transaction; it will contain the secret) before the time lock ends to get back
her money. If she does not do that, then Bob sends the Fuse transaction to get agreed
amount of bitcoins. The graph of transactions and a detailed description of the protocol
is presented in Fig.[9] We require that this scheme, besides of being binding and hiding,
has the following extra properties:

1. honest Alice will never lose her money and she will always open the commitment,

2. if both Alice and Bob are honest, then Bob will accept the commitment,

3. if honest Bob accepts the commitment, then he will learn the secret or gain agreed
value of bitcoins.

We verified these conditions using UPPAAL and the model described in this paper (see

Sec.[3.).

18



C Simultaneous Commitment scheme from [7]]

Nk w

10.

Pre-conditions:

A holds the key pair A and B holds the key pair B.

. A knows the secret s4, B knows the secret sp, both players know the hashes hs, =

H(sa) and hs, = H(sB).

. There are four unredeemed transactions TIA7 T$' and T2, T.F, which can be redeemed

with the keys A and B respectively, each having the value of d 3.
The NewSCS.Commitr(A, B, d,t, sa, sg) phase:

A draws a random string r 4 and B draws a random string r 5.

. The parties execute CS.Commit(A,B,d,t,74) and CS.Commit(B, A, d,t,rg) using

T{* and T} respectively. The former execution will be denoted CS* and the latter CSZ.
Recall that the parties quit the whole NewSCS protocol if they detect the misbehavior
of the other party during one of the CS.Commit executions.

The NewSCS.Commits(A, B, d, t,sa, sp) phase:

Both players construct the body of the transaction Commit using T and T2 as inputs.
A signs the transaction Commit and sends the signature to B.

B signs the transaction Commit and broadcasts it.

Both parties wait until the transaction Commit is confirmed.

If the transaction Commit does not appear on the blockchain until the time ¢ —3maxgg,
where maxgg is the maximal possible delay between broadcasting the transaction and
including it in the blockchain, then A immediately redeems the transaction 75" and after
T5' is redeemed she opens her CS* commitment and quits the protocol. Analogously,
if A did not send her signature to B until the time ¢ — 3maxgg, then B opens his CS”
commitment and quits the protocol.

The NewSCS.Open(A, B, d, t, s4, sp) phase:

A and B broadcast the transactions Open”* and Open® respectively, what reveals the
secrets s4 and sp.

After the transactions Open® and Open® are confirmed, A and B open their CS com-
mitments.

If A did not broadcast Open™ until time ¢, then depending on whether she opened her
commitment CS* or not, B broadcasts Fuse® or CS#. Fuse to getextra d B (in addition
to 2d B already claimed from Open® and CSP.Open). Similarly, if B misbehaved then
A broadcasts Fuse® or CSZ. Fuse to get her extra d B.

Fig. 10. The description of the NewSCS protocol.

19




Commit(in: T3, T)
in-script; : sig 4 ([Commit)) in-seripta: sig 5 ([ Commit])
dB | out-script; (body, o, x): out-scriptz(body, o, ): dB
(vera(body,o) NH(x) = hs,) V  |(verg(body,o) A H(z) = hsy) V
(verg(body,o) N H(x) = hy,) (vera(body,o) AN H(z) = hry)
val;: dB valo: dB
aB aB
Open” (in: Commit(1)) Open® (in: Commit(2))
in-script: in-script:
dB |siga([Open™)), sa sig ([Open”]), s dB

CS*(A,B,d,t,Ta)

CSB(B,A,d,t,rB)

out-script(body, o):
ver a(body, o)

out-script(body, o):
verg (body, o)

val: dB val: dB
aB dB
L _ Fuse(in: Commit(1)) | L _ Puse®(in: Commit(2) |
iin-script: sigp, ([Fuse™]),ra___ | Jin-script: sig, ([Fuse”]), vz _ |
lout-script(body, o): verg(body, o) | lout-script(body, o): ver a(body, o) !
'val:dB ! B, d 'val:dB !

Fig. 11. The graph of transactions for the NewSCS protocol. Two boxes labeled with CS(...)
denote the transactions broadcast in the appropriate execution of the Bitcoin-based timed com-
mitment scheme. h, denotes the value H (), but it is used in the output scripts to stress that the
value of the hash is directly included in the transaction (instead of value of  and an application
of the hash function).

C.1 A bug in the first version of NewSCS

As mentioned in Section the protocol NewSCS is correct, but there are some im-
plementation details, which are easy to miss and our first implementation turned out
to contain a bug, which was immediately found due to verification process. More pre-
cisely, in Step 10 of the NewSCS protocol it is said that Bob sends to the block chain
one of the two transactions: Fuse”* or CS*. Fuse and as a result gains 1 bitcoin, what
means that at least one of these two transactions becomes confirmed. Therefore, our
first implementation just tried to send these two transactions. However, it turns out that
there is a strategy of malicious Alice and an interleaving of events in which none of
these transactions becomes confirmed and it is necessary to try to sends the transaction
Fuse” again after waiting for time MAX_LATENCY. UPPAAL provides diagnostic traces,
which allows to easily find bugs like the one mentioned.

20



D UprrAAL

D.1 A very short introduction to timed automata and UPPAAL

For the lack of space we only sketch the description of UPPAAL and the semantics of
the timed automata (focusing on the most relevant features). The reader may consult
[9U18]] for more information on this topic.

In UPPAAL the automata are generally finite-state automata equipped with clocks.
UPPAAL system consists of some number of timed automata, clocks and variables of
discrete, bounded sets (also user defined, like records) and functions working on vari-
ables and clocks. The state of the system consists of locations of the automata, values
of the variables and the clocks evaluation. The clocks evaluate to positive real numbers,
but because of bounded set of possible constraints number of different state it which the
system can be is finite.

The only possible transitions in UPPAAL are moving all the clocks forward with
the same value or to use some of edges to change the state of some of the automata.
Both kind of transitions are correct only if all invariants and guards are satisfied. The
invariants are properties of the locations and have to be satisfied each time the system
is in this location. The locations may have also names (used in a verification), be urgent
(time cannot pass when any automaton is in such location) or committed (the system
immediately has to use an edge outgoing from such location). Moreover, edges can use
selectors to set a local variable to any value of some type. When an edge is used, it may
also run a connected update — it changes values of variables and resets some clocks.
The pairs of edges may also be synchronized — in such case they can be used, but only
together. The synchronization may also be urgent — then it has to be used if only it can
be used. More details and a syntax used in UPPAAL can be found in Appendix [D.2]

UPPAAL comes also with a simulator (to e.g. run transitions in a random order) and
a verifier. The verifier checks whether the given properties (written in the simplified
version of TCTL — timed computation tree logic) are satisfied by the system.

D.2 UPPAAL syntax

Let us analyze the UPPAAL syntax on the example of automaton for Bob from a timed
commitment scheme (Fig.[I2)). It has 4 states: the upper-left is a starting state, the upper-
right corresponds to a situation when the Commit transaction is confirmed, but the
signature on Fuse from Step. [3] has not yet been received by Bob. The lower-left state
(denoted failure) means that the commitment was not accepted by Bob and the lower-
right (denoted accepted) state means that Bob accepted the commitment (Step ).

21



<cond> bc[COMMIT].status == CONFIRMED
<state> time <= MAX_LATENCY <sync> urg_chan? <state> time <= MAX_LATENCY

<cond> can_create_input_script(me, bc[FUSE])

<cond> time == MAX_LATENCY <sync> urg_chan?

<cond> time == MAX_LATENCY <state> accepted

<state> failure

<cond> can_send(me, bc[FUSE])
<action> try_to_send(me, bc[FUSE])
<sync> urg_chan?

Fig. 12. The automaton for Bob in timed-commitment scheme

There are 5 types of labels on the pictureﬂ

<select> These labels are placed on the edges to set a local variable used in following
condition and/or action to any value from a specified set, e.g. i : TxId, cond(i),
action(i) placed on an edge means that this edge can be used for any i from
TxId, provided cond(i) is true and then action(i) is performed. The mentioned
automation for Bob does not have any edges of this kind.

<cond> These labels are placed on the edges and they represent conditions (called
guards in UPPAAL), which have to be satisfied, e.g. bc[COMMIT].status == CON-
FIRMED means that this transition can be taken only if the transaction Commit has
been already confirmed and can_create_input_script(me, bc[FUSE]) checks if
Bob is able to create input script for Fuse transaction, what is equivalent to the fact
that he has already received the signature from Step. [3 (Fig. 9).

<action> These labels are placed on the edges and they represent actions (called up-
dates in UPPAAL), i.e. functions which are called whenever a transition is taken.
In our example there is just one action try_to_send(me, bc[FUSE]), which checks
whether it is possible to send the given transaction in the current state (e.g. it was
not sent earlier, its inputs are confirmed, but not spent, the current party is able to
evaluate the corresponding input scripts) and changes the state of the transaction to
SENT if all conditions are met.

<state> These labels, placed on the states, represent names of the states (failure and
accepted) and invariants specifying conditions, which has to be satisfied in the
given state. Execution in which the invariant is not satisfied are ignored by UPPAAL.
Therefore a node with an invariant time <= MAX_LATENCY and an outgoing edge
with a guard time == MAX_LATENCY guarantee that the edge will be taken exactly
at time MAX_LATENCY (Moreover it makes impossible to enter the state after time
MAX_LATENCY, but it is not important in our example.)

<sync> These labels, placed on the edges, represent synchronization channels. Here
they are used for a special purpose of obtaining urgent transitions. This is the tech-
nical trick described in Sec. [D.3] but for understanding this picture it is enough to
know that the automaton is not allowed to wait whenever there is an edge available
with the label urg_chan?.

® We color them using the default UPPAAL coloring. We also decided to add special text labels
(in the “<>" brackets) in the Figures of automata to make the text readable when printed black
and white

22



D.3 Helper automaton

A transition is called urgent, when it has to be taken immediately whenever it is pos-
sible. More precisely, the time cannot pass, whenever there is an automaton with an
urgent transaction available (i.e. with a satisfied guard). UPPAAL does not provide ur-
gent transitions, but there exists a simple workaround, described e.g. in [9]. The solu-
tion is based on the so-called urgent channels. Here, the “urgency” means that the time
cannot pass whenever there is an automaton with an available transition synchronizing
on an urgent channel (availability means that in particular there is another automaton,
which can synchronize on the same channel). Therefore, it is enough to mark edges we
would like to be urgent with a synchronization label urg_chan? and create a special
automaton (called Helper in our implementation) with one state and a loop with label
urg_chan! for some urgent channel urg_chan.

UPPAAL does not allow to put guards involving clocks on edges with synchroniza-
tion on urgent channels, so another workaround is needed to achieve this functionality.
The simple solution is to check on the edge a value of some boolean shared variable
and make sure that the value of this variable is always the same as the value of the clock
condition we would like to have on the edge. The correct value of the shared variable
can be maintained by another loop in the Helper automaton. The Helper automaton
is presented in Fig.[13]

<cond> timer_t[i] == time and (not timer_passed([i])
<action> timer_passed][i] = true

<action> init_prot()
©

<state> forall(i : Timer) ((not timer_passed][i]) imply time <= timer_{[i])

<sync> urg_chan!

Fig. 13. The Helper automaton

23



	Modeling Bitcoin Contracts by Timed Automata

