
ar
X

iv
:1

50
1.

05
39

0v
3

 [
cs

.S
C

]
 1

3
A

pr
 2

01
7

Real Polynomial Root-finding by Means of Matrix

and Polynomial Iterations∗

Victor Y. Pan [1,2],[a] and Liang Zhao[2],[b]

[1] Department of Mathematics and Computer Science
Lehman College of the City University of New York

Bronx, NY 10468 USA
[2] Ph.D. Programs in Mathematics and Computer Science
The Graduate Center of the City University of New York

New York, NY 10036 USA
[a] victor.pan@lehman.cuny.edu

http://comet.lehman.cuny.edu/vpan/
[b] lzhao1@gc.cuny.edu

Abstract

Univariate polynomial root-finding is a classical subject, still important for modern comput-
ing. Frequently one seeks just the real roots of a polynomial with real coefficients. They can be
approximated at a low computational cost if the polynomial has no nonreal roots, but typically
nonreal roots are much more numerous than the real ones. The subject of devising efficient
real root-finders has been long and intensively studied. Nevertheless, we propose some novel
ideas and techniques and obtain dramatic acceleration of the known numerical algorithms. In
order to achieve our progress we exploit the correlation between the computations with matrices
and polynomials, randomized matrix computations, and complex plane geometry, extend the
techniques of the matrix sign iterations, and use the structure of the companion matrix of the
input polynomial. The results of our extensive numerical tests with benchmark polynomials
and random matrices are quite encouraging. In particular in these tests we have consistently
computed accurate approximations of the real roots of benchmark polynomials of degree up to
1024 by using the IEEE standard double precision. Moreover the number of iterations required
for convergence of our algorithms grew very slowly (if at all) as we increased the degree of the
univariate input polynomials and the dimension of the input matrices from 64 to 1024.

Keywords: Polynomials, Real roots, Matrices, Matrix sign iterations, Companion matrix, Frobe-
nius algebra, Square root iterations, Root squaring

1 Introduction

Assume a univariate polynomial of degree n with real coefficients,

p(x) =
n∑

i=0

pix
i = pn

n∏

j=1

(x− xj), pn 6= 0, (1.1)

which has r real roots x1, . . . , xr and s = (n − r)/2 pairs of nonreal complex conjugate roots. In
some applications, e.g., to algebraic and geometric optimization, one seeks only the r real roots,

∗This work appeared in Theoretical Computer Science, 2017, http://dx.doi.org/10.1016/j.tcs.2017.03.032. It has
been supported by NSF Grants CCF 1116736 and CCF-1563942 and PSC CUNY Award 67699-00 45. Some of its
results have been presented at CASC 2014.

1

http://arxiv.org/abs/1501.05390v3
http://comet.lehman.cuny.edu/vpan/
http://dx.doi.org/10.1016/j.tcs.2017.03.032

which typically make up just a small fraction of all roots.1 The design of efficient real root-finders
is a well studied subject (see [19, Section 10.3.5], [47], [54], and the bibliography therein), but the
most popular packages of subroutines for root-finding such as MPSolve 2000 [5], Eigensolve 2001
[21], and MPSolve 2012 [10] approximate the r real roots about as fast and as slow as all the n
complex roots. It can be surprising, but we present some novel methods that accelerate the known
numerical real root-finders by a factor of n/r, which is dramatic in various important applications.

The springboard for our real root-finders is the matrix sign iterations, which we apply to the
companion matrix of an input polynomial. It is a well known technique for matrix computations
[24], and we make it particularly efficient for real polynomial root-finding, although it has never
been used for this purpose so far. By combining it with a number of known and novel techniques
we ensure fast convergence of the iterations and their efficiency in numerical implementation with
the IEEE standard double precision.

Our numerical tests confirm the efficiency of this approach. In particular, we closely approximate
the real roots of various benchmark polynomials of degree up to 1024 by using double precision.
Moreover the number of iterations required for convergence was typically quite small and grew very
slowly (if it grew at all) as the polynomial degree increased from 64 to 1024.

Some of our techniques should be of independent interest, e.g., our numerical stabilization in
Section 3.3, our exploitation of matrix functions and randomized matrix computations in Algorithm
3.1, and the combination of our maps of the complex plane with rational transformations of the
variable and the roots. Some of our algorithms (e.g., the ones of Section 3.4) combine operations
with matrices and polynomials, demonstrating once again the value of synergistic combinations of
this kind, which we have been advocating since [33] and [6].

Our goal in this paper is to present a novel approach to real root-finding for a polynomial and
to demonstrate the promise of this approach by performing some preliminary tests. We hope that
we have advanced toward our goals substantially, and there are promising directions for substantial
improvement of the implementation of our algorithms. For example, Stage 3 of our Algorithm 3.1 is
reduced to the inversion or orthogonalizaton of Toeplitz-like matrices, and the customary numerical
algorithms, currently available for these operations, can be dramatically accelerated by means of the
techniques of the papers [62] and [63].

We organize our paper as follows. In the next section we cover some background material. We
present a variety of our real polynomial root-finders in Section 3. In Section 4 (the contribution of
the second author) we present the results of our numerical tests. In the Appendix we cover some
auxiliary results.

2 Basic Definitions and Results

Hereafter “flop” stands for “floating point arithmetic operation”, assumed to be performed numeri-
cally, with bounded precision, e.g., the standard IEEE double precision.

2.1 Some Basic Definitions for Matrix Computations

• Cm×n denotes the linear space of complex m×n matrices. Rm×n is its subspace of m×n real
matrices.

• MT = (mji)
m,n
i,j=1 is the transpose of a matrix M = (mij)

m,n
i,j=1 ∈ C

m×n. MH is its Hermitian

transpose. MH = MT for a real matrix M .

• ||M || = ||M ||2 denotes its spectral norm.

1Recall the following excerpt from [14]: “A celebrated result due to Erdös and Turán [20] says that, for a univariate
polynomial over C whose middle coefficients are not too big with respect to its extremal coefficients, the arguments
of its roots are approximately equidistributed. Combined with a recent result of Hughes and Nikeghbali [27], this
shows that the roots of such a polynomial clustered near the unit circle.” This result does not apply to some classes
of polynomials of practical importance, but the study in [17] (also see the earlier papers [28] and [18]) shows that the
expected number r of the real roots of random real polynomials of various such classes stays in the range between
orders of log(n) and

√

n; .

2

• I = In is the n× n identity matrix.

• diag(bj)
s
j=1 = diag(b1, . . . , bs) is the s× s diagonal matrix with the diagonal entries b1, . . . , bs.

• R(M) is the range of a matrix M , that is, the linear space generated by its columns.

• A matrix of full column rank is a matrix basis of its range.

• A matrix Q is unitary if QHQ = I or QQH = I, and such a matrix is called orthogonal if it
is real.

• Suppose an m × n matrix M has rank n (and so m ≥ n). Write (Q,R) = (Q(M), R(M)) to
denote a unique pair of a unitary m × n matrix Q and an upper triangular n × n matrix R
such that M = QR and all diagonal entries of the matrix R are positive [22, Theorem 5.2.3].

• M+ is the unique Moore–Penrose pseudo inverse of M [22, Section 5.5.2], equal to MH if and
only if the matrix M is unitary.

• An m× n matrix M has an n×m left inverse matrix X = M (I) such that XM = In if and
only if it has full column rank n. In this case M+ is a left inverse. The left inverse is unique
if and only if M is a nonsingular matrix, in which case m = n and M (I) = M−1.

• The ǫ-rank of a matrix M is the minimal rank of the matrices in its ǫ-neighborhood. Numerical
rank nrank(M) is the ǫ-rank where ǫ is small in context.

Definition 2.1. Eigenvalues, eigenvectors and eigenspaces.

• A scalar x is an eigenvalue of a matrix M associated with an eigenvector v if Mv = xv.

• The eigenvectors associated with an eigenvalue x or, more generally, with any set of the eigen-
values X ∈ X (M) form the eigenspaces S(M,x) and S(M,X), respectively, associated with
the eigenvalue x and the set X of eigenvalues, respectively. A linear subspace S of Cn×n is an
eigenspace of a matrix M if and only if MS = {Mv : v ∈ S} ⊆ S (see [53, Definition 4.1.1]).

• An eigenvalue x of a matrix M is a root of the characteristic polynomial det(xI −M). The
multiplicity of this root is the algebraic multiplicity of the eigenvalue x, denoted am(x). The
dimension gm(x) = dim(S(M,x)) is the geometric multiplicity of x, never exceeding am(x).
An eigenvalue x is simple if gm(x) = 1.

2.2 The Companion Matrix and the Frobenius Algebra

Let eTn = (0, 0, . . . , 0, 1) denote the nth coordinate vector and write p = (pi/pn)
n−1
i=0 ,

Z = C0 =

0 0

1
. . . 0
. . .

. . .
...

. . . 0 0
1 0

and Cp =

0 −p0/pn

1
. . . −p1/pn
. . .

. . .
...

. . . 0 −pn−2/pn
1 −pn−1/pn

= Z − pTen. (2.1)

Z is the down-shift matrix. Cp is the companion matrix of the polynomial p(x) of (1.1), which is
the characteristic polynomial of this matrix. Hence real root-finding for the polynomial p(x) turns
into real eigen-solving for this matrix.

Zv = (vi−1)
n
i=1, for a vector v = (vi)

n
i=1 and for v0 = 0.

Theorem 2.1. (The Cost of Computations in the Frobenius Matrix Algebra.) The companion
matrix Cp ∈ Rn×n of a polynomial p(x) of (1.1) generates the Frobenius matrix algebra Ap. One
needs O(n) flops for addition and O(n log(n)) for multiplication and inversion in this algebra as well
as for multiplication of a matrix in this algebra by a vector. These cost bounds hold both for exact
computation with no errors and numerically stable approximate computations.

3

Proof. The estimates for the exact computation can be readily deduced from the following expres-
sions from [44] for a matrix C(p, c) in the algebra Ap defined by its first column c = (ci)

n−1
i=0 ,

C(p, c) =

n−1∑

i=0

ciC
i
p =

n−1∑

i=0

ciZ
i + puT , (2.2)

for p of equation (2.1), u = (ui)
n−1
i=0 , u0 = 0, ui =

∑n−1
k=n−i ckρ

k−n+i, for i = 1, . . . , n − 1 and
ρ = −pn−1/pn, so that ρ = 0 if pn−1 = 0. (If c0 = 0, then invert the matrix C(q, cs) = C(p, c) for
q(x) = p(x − s) and a random real or complex shift s.) The algorithm of [12], using the transition
to the so called “Horner’s basis”, performs numerically stable multiplication in the algebra Ap, [62]
performs numerically stable inversion by using O(n log2(n)) flops, which is accelerated by a factor
of log(n) in [43, Section 9.8].

2.3 Decreasing the Size of an Eigenproblem

An eigenvalue x of a matrix M as well as a set of eigenvalues X are dominant if they are absolutely
larger than all the other eigenvalues. An eigenspace is called dominant if it is associated with a
dominant eigenvalue or a dominant set of eigenvalues.

The set X (M) of all eigenvalues of a matrix M is called its spectrum.
The Power Method [22, Section 7.3.1] computes the vector Mkv, for a random vector v and

a sufficiently large integer k. The 1-dimensional vector space {tMkv}, for t ∈ C, is expected to
approximate the eigenspace associated with an eigenvalue x if it is dominant and simple. This would
not work only if the vector v has an absolutely small component along the eigenvector associated
with this eigenvalue x, but such an event is unlikely, for a random vector v. One can choose k = 1 if
the domination of the eigenvalue x in the spectrum of M is strong. Let us extend the Power Method
for k = 1 to the approximation of a strongly dominant eigenspace of a dimension r.

Algorithm 2.1. Approximation of the dominant eigenspace.

Input: an n × n matrix M , the dimension r of its dominant eigenspace U , 0 < r < n, and two
tolerance bounds: a positive integer K and a positive ǫ.

Output: FAILURE (with a low probability) or a unitary matrix U whose range approximates the
eigenspace U .
Computations:

1. Apply the randomized algorithm of [23], which at first generates a standard Gaussian random
n× r+ matrix G for a proper integer r+ > r and then computes the matrix H = MG and the
numerical rank nrank(H).

2. Unless nrank(H) = r, re-apply the algorithm of [23] up toK times until the equation nrank(H) =
r is observed. If it is never observed, output FAILURE (this occurs with a probability near 0).

3. If nrank(H) = r, then compute the QR factorization H = Q(H)R(H), output an n× r unitary
matrix U approximating the first r columns of the matrix Q(H), and stop. (The analysis in
[23, Section 4], [45, Section 7.4], and [50, Theorem 4.3] shows that, with a probability close
to 1, the columns of the matrix U closely approximate a unitary basis of the eigenspace U and
that ||M − UUHM || ≤ ǫ||M ||. The latter bound would certify correctness of the output.)

The arithmetic cost of performing the algorithm is O(n2r+), but decreases to O(nr+(r++log(n)),
for M = CP , by virtue of Theorem 2.1. It increases by a factor of log(r) if the dimension r
of the eigenspace U is not available, but is computed by using binary search that begins with
recursive doubling of the candidate integer values 1, 2, 4, etc. The algorithm generates nr+ random
parameters, but its modification using the structured (so called SRFT) multipliers G involves only n
such parameters and only O(n log(n)) flops for the computation of the product MG (see [23, Section
11] and [45, Section 7.5]). Alternative application of the orthogonal iterations of [22, Section 7.3.2]
requires order of n2r+ flops.

4

Remark 2.1. Actually the algorithm of [23] works even where the input includes an upper bound
r+ on the dimension r of the dominant eigenspace U , rather than the dimension itself, and then the
algorithm can compute this dimension r within the above computational cost as by-product. (The
integer r = nrank(H) can be obtained, e.g., from rank revealing QR factorization of the matrix H.)

Now suppose that we have an eigenspace generated by r eigenvalues of an n×n matrix. Then the
following simple theorem (extending the recipe of the Rayleigh quotients) enables us to approximate
these eigenvalues as the eigenvalues of an auxiliary r × r matrix.

Theorem 2.2. (Decreasing the Eigenproblem Size to the Dimension of an Eigenspace, cf. [60,
Section 2.1].)

Suppose that M ∈ Cn×n, U ∈ Cn×r, and the matrix U has full column rank r ≤ n and generates
the space U = R(U). Then

(i) U is an eigenspace of M if and only if there exists a matrix L ∈ Ck×k such that MU = UL
or equivalently if and only if L = U (I)MU ,

(ii) X (L) ⊆ X (M),
(iii) MUv = xUv if Lv = xv,
(iv) the matrix L is unique, that is, its choice is independent of the choice of a matrix U and its

left inverse U (I), and so L = UHMU , for a unitary matrix U .

The algorithm and the theorem enable us to approximate the r real eigenvalues of a matrix as
the r dominant eigenvalues of an auxiliary matrix. Theorems 2.2 and 2.3 (below) together suggest
a direction to such a reduction, and we achieve it in Sections 3.1 and 3.3.

2.4 Matrix Functions and Eigenspaces

Theorem 2.3. (The Eigenproblems for a Matrix and Its Function.)
Suppose that M is a square matrix and that a rational function f(x) is defined on its spectrum.
(i) Then f(M)v = f(x)v if Mv = xv.
(ii) Let U = Uµ,f denote the eigenspace of the matrix f(M) associated with its eigenvalue µ.

Then this is an eigenspace of the matrix M associated with all its eigenvalues x such that f(x) = µ.
(iii) The space U has dimension 1 and is associated with a single eigenvalue of M if µ is a simple

eigenvalue of f(M).

Proof. We readily verify part (i), which implies parts (ii) and (iii).

Remark 2.2. The matrix Zk, for 1 ≤ k ≤ n, has the single eigenvalue 0 satisfying am(0) = n and
gm(0) = k, and so dim(U0,f) = k, for M = Z, f(x) = xk, and k = 1, . . . , n.

Suppose that we have computed a matrix basis U ∈ C
n×r+ , for an eigenspace U of a matrix

function f(M) of an n×nmatrixM . By virtue of Theorem 2.3, this is a matrix basis of an eigenspace
of the matrix M . We can first compute a left inverse U (I) or the orthogonalization Q = Q(U) and
then approximate the eigenvalues of M associated with this eigenspace as the eigenvalues of the
r+ × r+ matrix L = U (I)MU = QHMQ (cf. Theorem 2.2).

If r = 1, then the matrix U turns into an eigenvector u, shared by the matrices f(M) and M ,

while the matrix L turns into the the Rayleigh Quotient u
TMu

u
T
u

or the simple quotient (Mu)i/ui,
for any i such that ui 6= 0.

2.5 Some Maps in the Frobenius Matrix Algebra

Part (i) of Theorem 2.3 implies that, for a polynomial p(x) of (1.1) and a rational function f(x) de-
fined on the set {xi}ni=1 of its roots, the rational matrix function f(Cp) has the spectrum X (f(Cp)) =
{f(xi)}ni=1. In particular, the maps

Cp → C−1
p , Cp → aCp + bI, Cp → C2

p , Cp →
Cp + C−1

p

2
, and Cp →

Cp − C−1
p

2

5

induce the maps of the eigenvalues of the matrix Cp, and thus induce the maps of the roots of its
characteristic polynomial p(x) given by the equations

y = 1/x, y = ax+ b, y = x2, y = 0.5(x+ 1/x), and y = 0.5(x− 1/x),

respectively. The latter two maps can be only applied if the matrix Cp is nonsingular, so that x 6= 0,
and similarly for the two dual maps below.

By using the reduction modulo p(x), define the five dual maps

y = (1/x) mod p(x), y = ax+ b mod p(x), y = x2 mod p(x),

y = 0.5(x+ 1/x) mod p(x), and y = 0.5(x− 1/x) mod p(x),

where y = y(x) denotes polynomials. Apply the two latter maps recursively, to define two iterations
with polynomials modulo p(x) as follows, y0 = x, yh+1 = 0.5(yh + 1/yh) mod p(x) and y0 =
x, yh+1 = 0.5(yh − 1/yh) mod p(x), h = 0, 1, More generally, define the iteration y0 = x,
yh+1 = ayh + b/yh mod p(x), h = 0, 1, . . . , for any pair of scalars a and b, provided that yh = 0, for
none h.

3 Real Root-finders with Modified Matrix Sign Iterations.

Variations and Extensions

In this section we present some efficient numerical real root-finders based on modification of the
matrix sign classical iterations applied to the companion matrix of the input polynomial.

3.1 A Modified Matrix Sign Iterations

Our first algorithm approximates the r real roots of a polynomial p(x) of (1.1) as the real eigenvalues
of the companion matrix Cp. It applies the matrix iterations

M0 = Cp, Mh+1 = 0.5(Mh −M−1
h), for h = 0, 1, . . . , (3.1)

which modify the matrix sign iterations M̂h+1 = 0.5(M̂h + M̂−1
h) (cf. [24]).

For every eigenvalue xj of the matrix M0 = Cp, define its trajectory made up of the eigenvalues
of the matrices Mh, being its images in the maps M0 → Mh, for h = 1, 2, 3, More generally
iterations (3.2) below modifying the Möbius classical iterations x(h+1) = 1

2 (x
(h) + 1/x(h)), for h =

0, 1, . . . , define a trajectory initiated at any complex point x(0).
Hereafter we write sign(z) =sign(ℜ(z)), for a complex number z (cf. [24, page 107]).

Theorem 3.1. (Convergence of the modified Möbius Iterations.) Fix a complex x = x(0) and define
the modified Möbius iterations

x(h+1) =
1

2
(x(h) − 1/x(h)), for h = 0, 1, (3.2)

(i) The values x(h) are real, for all h, if x(0) is real.

(ii) |x(h) − sign(x)
√
−1| ≤ 2K2h

1−K2h
, for K = |x−sign(x)

x+sign(x) | and h = 0, 1,

Proof. Part (i) is immediately verified. Part (ii) readily extends the similar estimate on [7, page
500].

Theorem 3.1 implies the following result.

Corollary 3.1. As h → ∞, the trajectories of the 2s nonreal eigenvalues of M0 = Cp converge to
±
√
−1 with the quadratic rate of convergence right from the start, whereas the trajectories of the r

real eigenvalues are real, for all h.

6

Algorithm 3.1. Matrix sign iterations modified for real eigen-solving.

Input: two integers n and r, 0 < r < n, and the coefficients of a polynomial p(x) of equation (1.1).

Output: approximations to the real roots x1, . . . , xr of the polynomial p(x) or FAILURE with a
probability close to 0.

Computations:

1. Write M0 = Cp and recursively compute the matrices Mh+1 of (3.1), for h = 0, 1, . . . (cf.
Corollary 3.1).

2. Fix a sufficiently large integer k and compute the matrix M = M2
k + In.

(By extending Corollary 3.1 observe that the map M0 = Cp → M sends all nonreal eigenvalues
of Cp into a small neighborhood of the origin 0 and sends all real eigenvalues of Cp into the
ray {x : x ≥ 1}.)

3. Apply our randomized Algorithm 2.1 in order to approximate a unitary matrix U whose columns
form a basis for the eigenspace associated with the r dominant eigenvalues of the matrix M .

(By virtue of Theorem 2.3, this is expected to be the eigenspace associated with the real eigenval-
ues of the matrix Cp, although with a probability close to 0 the algorithm can output FAILURE,
in which case we stop the computations.)

4. Compute and output approximations to the r eigenvalues of the r × r matrix L = UHCpU .
(They approximate the r real eigenvalues of the matrix Cp by virtue of Theorem 2.2 and
consequently approximate the r real roots of the polynomial p(x).)

Stages 1 and 2 involve O(kn log(n)) flops by virtue of Theorem 2.1. Stage 3 adds O(n2r) flops
and the cost arn of generating n× r standard Gaussian random matrix. Add O(r3) flops performed
at Stage 4 and arrive at the overall arithmetic cost bound O((kn log(n) + nr2) + arn.

Remark 3.1. (Counting Real Eigenvalues.) The binary search can produce the number of real
eigenvalues as the numerical rank of the matrices M2

k + I when this rank stabilizes as k increases.
As the number of real roots increases, so does the size of the matrix L. This has consistently
implied the decrease of the accuracy of the output approximations in our tests (see the test results in
Section 4). One can refine these approximations by applying the inverse Power Method or Newton’s
iterations, but if the accuracy becomes too low, one must extend the precision of computing.

Remark 3.2. (Acceleration by Means of Scaling.) One can dramatically accelerate the initial
convergence of Algorithm 3.1 by applying determinantal scaling (cf. [24]), that is, by replacing the
matrix M0 = Cp by the matrix M0 = 0.5(νCp − (νCp)

−1), for ν = 1/| det(Cp)|1/n = |pn/p0|.

Remark 3.3. Real and Nearly Real Roots.
In the presence of rounding errors Algorithm 3.1 and all our other algorithms approximate both

r real and r+ − r nearly real eigenvalues of the matrix M , for some r+ ≥ r. The r real eigenvalues,
however, are the roots of p(x) and we can refine their approximations very fast (cf. Theorems B.1
and [48]), under some mild assumptions about the isolation of every such a root from the n−1 other
roots. (One can partly relax these assumptions by extending the techniques of [48].) Then we can
readily select the r real eigenvalues among the r+ real and nearly real ones.

Generally, however, the distinction between real and nearly real roots is very slim in our numerical
algorithms. As this was pointed out in [3], in the course of performing the iterations, the real
eigenvalues can become nonreal, due to rounding errors, and then would converge to ±

√
−1. In our

extensive tests we have never observed such a phenomenon, apparently because in these tests the
convergence to ±

√
−1 was much slower for the nearly real eigenvalues than for the eigenvalues with

reasonably large imaginary parts.

7

3.2 Inversion-free Variations of the Modified Matrix Sign Iterations and
Hybrid Algorithms

The overall arithmetic cost of the Modified Matrix Sign Iterations is dominated by the cost of k
matrix inversions, that is, O(kn log2(n)) flops (cf. Theorem 2.1). If all nonreal eigenvalues of the
matrix M0 lie in the two discs D(±

√
−1, 1/2) = {x : |x ±

√
−1| ≤ 1/2}, then we can avoid matrix

inversions in the Modified Matrix Sign Iterations by replacing iterations (3.1) with any of the two
iteration processes

Mh+1 = 0.5(M3
h + 3Mh) (3.3)

and
Mh+1 = −0.125(3M5

h + 10M3
h + 15Mh), (3.4)

for h = 0, 1, Right from the start both iterations send the nonreal roots toward the two points
±
√
−1 with quadratic and cubic convergence rates, respectively. (In order to prove this, extend the

proof of [7, Proposition 4.1].) Both iteration processes keep the real roots real and use O(n log(n))
flops per iteration.

What if the nonreal roots do not lie in these discs? We can apply the following combination of
iterations (3.1)–(3.4) and Corollary D.1 of Section D.

Algorithm 3.2. A Hybrid Algorithm.

Input, Output as in Algorithm 3.1.

Computations: Perform the iterations of Algorithm 3.1 until a test shows that the 2s nonreal
eigenvalues of the input companion matrix are mapped into the discs D(±

√
−1, 1/2). (For testing

this condition, apply the algorithm that supports Corollary D.1. To keep the computational cost down,
apply this test periodically, according to a fixed policy, based on heuristic rules or the statistics of the
previous tests.) Then shift the computations to the inversion-free iterations (3.3) or (3.4) converging
faster and using O(n log(n)) flops per iteration.

Let us recall some alternative matrix iterations for real root-finding without inversions. Recall
that sign(M) = M(M2)−0.5 and apply the Newton–Schultz iterations for the approximation of the
matrix square root [24, equation (6.3)],

Yk+1 = 0.5 Yk(3I − ZkYk), Y0 = M−2,

and
Zk+1 = 0.5 (3I − ZkYk)Zk, Z0 = I,

for k = 0, 1, The iterations keep real eigenvalues real and converge if ||I − M−2||p < 1, for
p = 1, 2, or ∞. This assumption is easy to satisfy by means of scaling M → aM , which keeps real
eigenvalues real, for real a.

The similar coupling technique of [3] is even simpler, because it is applied directly to the modified
matrix sign iterations (3.1), preserving its quadratic convergence to ±

√
−1 right from the start.

In our tests for numerical real root-finding, however, we could perform safely only a small number
of these inversion-free iterations at the initial stage, and then the images of the real eigenvalues of
the matrix Cp grew very large and the condition numbers of the computed matrices blew up.

3.3 Numerical Stabilization of the Modified Matrix Sign Iterations

The images of nonreal eigenvalues of the matrix Cp converge to ±
√
−1 in the iterations of Stage 1

of Algorithm 3.1, but if the images of some real eigenvalues of Cp come close to 0, then at the next
step we would have to invert an ill-conditioned matrix Mh unless we are applying an inversion-free
variant of the iterations of the previous subsection.

We can try to avoid this problem by shifting the matrix (and its eigenvalues), that is, by adding
to the current matrix Mh the matrix sI, for a reasonably small positive scalar s or −s. We can
select this scalar by applying heuristic methods or randomization. In our tests this policy has
preserved convergence quite well, but we have no formal support for this observation. The following

8

stabilization of Algorithm 3.1 involves nonreal values even when the matrix Cp was real, but has
both formal and empirical support.

Algorithm 3.3. Numerical stabilization of the modified matrix sign iterations.

Input, Output and Stages 3 and 4 of Computations are as in Algorithm 3.1, except that the
input includes a small positive scalar α such that no eigenvalues of the matrix Cp have imaginary
parts close to ±α

√
−1 (see Remark 3.4 below), the set of r real roots x1, . . . , xr of the polynomial

p(x) is replaced by the set of its r+ roots having the imaginary parts in the range [−α, α], and the
integer r is replaced by the integer r+ throughout.

Computations:

1. Apply Stage 1 of Algorithm 3.1 to the two matrices M0,± = α
√
−1 I ±Cp, thus producing two

sequences of the matrices Mh,+ and Mh,−, for h = 0, 1,

2. Fix a sufficiently large integer k and compute the matrix M = Mk,+ +Mk,−.

Because of the assumed choice of α, the matrices α
√
−1 I ±Cp have no real eigenvalues, and so

the images of all their eigenvalues, that is, the eigenvalues of the matrices Mk,+ and Mk,−, converge
to ±

√
−1 as k → ∞. Moreover, one can verify that the eigenvalues of the matrix Mk,+ + Mk,−

converge to 0 unless they are the images of the r+ eigenvalues of the matrix Cp having the imaginary
parts in the range [−α, α]. The latter eigenvalues of the matrix Mk,+ + Mk,− converge to 2

√
−1.

This shows correctness and numerical stability of Algorithm 3.3.
The algorithm approximates the r+ roots of p(x) by using O(kn log(n)+nr2+)+ar+n flops, versus

O(kn log(n) + nr2) + arn involved in Algorithm 3.1.

Remark 3.4. We can test the proximity of the roots to a line in two stages: by at first moving the
line into the unit circle {x : |x| = 1} (cf. Theorem A.3) and then applying algorithms that supports
Theorem D.2 or Corollary D.1.

3.4 Square Root Iterations (a Modified Modular Version)

Next we describe a dual polynomial version of Algorithm 3.1. It extends the square root iterations
yh+1 = 1

2 (yh + 1/yh), h = 0, 1, . . . , and at Stage 2 involves the computation of the polynomial
agcd(p, tk), which denotes an approximate greatest common divisor of the input polynomial p = p(x)
and an auxiliary polynomial tk = tk(x). We refer the reader to [38], [29], [4], [61], [11], and [55] for
the definitions of this concept and the algorithms for its computation.

Compared to Algorithm 3.1, we replace all rational functions in the matrix Cp by the same
rational functions in the variable x and reduce them modulo the input polynomial p(x). The
reduction does not affect the values of the functions at the roots of p(x), and it follows that these
values are precisely the eigenvalues of the rational matrix functions computed in Algorithm 3.1.

Algorithm 3.4. Square root modular iterations modified for real root-finding.

Input: two integers n and r, 0 < r < n, and the coefficients of a polynomial p(x) of equation (1.1).

Output: approximations to the real roots x1, . . . , xr of the polynomial p(x).

Computations:

1. (Cf. (3.1).) Write y0 = x and compute the polynomials

yh+1 =
1

2
(yh − 1/yh) mod p(x), h = 0, 1, (3.5)

2. Periodically, for some selected integers k, compute the polynomials tk = y2k + 1 mod p(x).

3. Write gk(x) = agcd(p, tk) and compute dk = deg(gk(x)). If dk = n − r = 2s, compute the
polynomial vk ≈ p(x)/gk(x) of degree r. Otherwise continue the iterations of Stage 1.

9

4. Apply one of the algorithms of [1], [8], and [15] (cf. Theorem C.1) to approximate the r roots
y1, . . . , yr of the polynomial vk. Output these approximations.

Our comments preceding this algorithm show that the values of the polynomials tk(x) at the
roots of p(x) are equal to the images of the eigenvalues of the matrix Cp in Algorithm 3.1. Hence
the values of the polynomials tk(x) at the nonreal roots of p(x) converge to 0 as k → ∞, whereas
their values at the real roots of p(x) stay far from 0. Therefore, for sufficiently large integers k,
agcd(p, tk) turns into the polynomial

∏n
j=r+1(x− xj). This implies correctness of the algorithm.

Its asymptotic computational cost is O(kn log2(n)) plus the cost of computing agcd(p, tk) and
choosing the integer k (see our next remark).

Remark 3.5. The latter algorithm reduces real root-finding essentially to the computation of agcd(p, tk).
One can apply quite efficient heuristic algorithms for this computation (cf. [38], [29], [4], [61], [11],
and [55]), but no good formal estimates are available for their complexity. One can, however, note
that p(x)uk(x) ≈ tk(x)vk(x), and so, assuming that vk(x) is a monic polynomial (otherwise we can
scale it), can obtain its other coefficients (as well as the coefficients of the polynomial uk(x)) from the
least-squares solution to the associated Sylvester linear system of equations. Its well known superfast
divide and conquer solution involves order of n log2(n) arithmetic operations (cf. [36, Chapter 5]),
but the recent numerically stable algorithm of [62] accelerated by a factor of log(n) in [43, Section
9.8] involves only O(n log(n)) flops.

4 Numerical Tests

Extensive numerical tests of the algorithms of this paper, performed in the Graduate Center of the
City University of New York. They are the contribution of the second author (at some points he
was assisted by Ivan Retamoso). The tests recorded the number of iterations and the error of the
approximation of the real roots of benchmark polynomials to which we applied these algorithms. We
have recorded similar data also for the approximation of real eigenvalues of some random matricesM
by means of applying Algorithms 3.1 and 3.3. In the latter case the convergence of these algorithms
and the number of their iterations depended mostly on the characteristic polynomials of M , even
though the estimates for the arithmetic cost of performing each iteration generally grew compared
to the special case where M = Cp.

In some cases we stopped the iterations already when they produced crude approximation to
the roots. This is because, instead of continuing the iterations, we can apply the algorithms of [48]
followed by Newton’s or Ehrlich–Aberth’s iterations (cf. Section B), which refine very fast these
crude approximations.

Finally we note that the test results in the present section are quite encouraging (in spite of our
caveat in Remark 3.1), e.g., the numbers of iterations required for convergence of our algorithms have
grown very slowly (if at all) when we increased the degree of the input polynomials and dimension of
the input matrices from 64 to 1024. We performed all tests with the IEEE standard double precision.

The implementation is available upon request.

4.1 Tests for the Modified Matrix Sign Iterations (Algorithm 3.1)

In the first series of the tests, Algorithm 3.1 has been applied to one of the Mignotte benchmark
polynomials, namely p(x) = xn + (100x − 1)3. It is known that this polynomial has three ill-
conditioned roots clustered about 0.01 and has n− 3 well-conditioned roots. In the tests, Algorithm
3.1 has output the roots within the error less than 10−6 by using 9 iterations, for n = 32 and n = 64
and by using 11 iterations, for n = 128 and n = 256.

In the second series of the tests, polynomials p(x) of degree n = 50, 100, 150, 200, and 250 have
been generated as the products p(x) = p1(x)p2(x), for the rth degree Chebyshev polynomial p1(x)
(having r real roots), r = 8, 12, 16, and p2(x) =

∑n−r
i=0 aix

i, aj being i.i.d. standard Gaussian
random variables, for j = 0, . . . , n− r. Algorithm 3.1 (performed with double precision) was applied
to 100 such polynomials p(x), for each pair of n and r. Table 4.1 displays the output data, namely,

10

the average values and the standard deviation of the numbers of iterations and of the maximum
difference between the output values of the roots and their values produced by MATLAB root-finding
function ”roots()”.

In the third series of the tests, Algorithm 3.1 approximated the real eigenvalues x1, . . . , xr of a
random complex symmetric matrix A = UTΣU , for Σ = diag(x1, . . . , xr, y1, . . . , yn−r), r i.i.d. real
standard Gaussian random variables x1, . . . , xr, n − r i.i.d. complex (non-real) standard Gaussian
random variables y1, . . . , yn−r, and a n× n standard Gaussian random orthogonal matrix U . Table
4.2 displays the mean and standard deviation of the number of iterations and the error bounds in
these tests, for n = 50, 100, 150, 200, 250 and r = 8, 12, 16.

In order to estimate the number of iterations required in our algorithms, we periodically estimated
the numerical rank of the associated matrix in every k successive iterations, for k = 5 in most of our
experiments.

Table 4.1: Number of Iterations and Error Bounds for Algorithm 3.1 on Random Polynomials

n r Iteration-mean Iteration-std Error-mean Error-std

50 8 7.44 1.12 4.18× 10−6 1.11× 10−5

100 8 8.76 1.30 5.90× 10−6 1.47× 10−5

150 8 9.12 0.88 2.61× 10−5 1.03× 10−4

200 8 9.64 0.86 1.48× 10−6 5.93× 10−6

250 8 9.96 0.73 1.09× 10−7 5.23× 10−5

50 12 7.16 0.85 3.45× 10−4 9.20× 10−4

100 12 8.64 1.15 1.34× 10−5 2.67× 10−5

150 12 9.12 2.39 3.38× 10−4 1.08× 10−3

200 12 9.76 2.52 6.89× 10−6 1.75× 10−5

250 12 10.04 1.17 1.89× 10−5 4.04× 10−5

50 16 7.28 5.06 3.67× 10−3 7.62× 10−3

100 16 10.20 5.82 1.44× 10−3 4.51× 10−3

150 16 15.24 6.33 1.25× 10−3 4.90× 10−3

200 16 13.36 5.38 1.07× 10−3 4.72× 10−3

250 16 13.46 6.23 1.16× 10−4 2.45× 10−4

11

Table 4.2: Number of Iterations and Error Bounds for Algorithm 3.1 on Random Matrices

n r Iteration-mean Iteration-std Error-mean Error-std

50 8 10.02 1.83 5.51× 10−11 1.65× 10−10

100 8 10.81 2.04 1.71× 10−12 5.24× 10−12

150 8 14.02 2.45 1.31× 10−13 3.96× 10−13

200 8 12.07 0.94 2.12× 10−11 6.70× 10−11

250 8 13.59 1.27 2.75× 10−10 8.14× 10−10

50 12 10.46 1.26 1.02× 10−12 2.61× 10−12

100 12 10.60 1.51 1.79× 10−10 3.66× 10−10

150 12 11.25 1.32 5.69× 10−8 1.80× 10−7

200 12 12.36 1.89 7.91× 10−10 2.50× 10−9

250 12 11.72 1.49 2.53× 10−12 3.84× 10−12

50 16 10.10 1.45 1.86× 10−9 5.77× 10−9

100 16 11.39 1.70 1.37× 10−10 2.39× 10−10

150 16 11.62 1.78 1.49× 10−11 4.580× 10−11

200 16 11.88 1.32 1.04× 10−12 2.09× 10−12

250 16 12.54 1.51 3.41× 10−11 1.08× 10−10

12

4.2 Tests for the Stabilized Matrix Sign Iterations (Algorithm 3.3)
Applied to Polynomials

We tested Algorithm 3.3 on various modified benchmark polynomials from the website of MPSolve
(http://numpi.dm.unipi.it/mpsolve-2.2/). With the exception of the polynomials of Type IV below,
we tested benchmark polynomials that had only trivial real roots 0 and ±1, and we multiplied them
by Chebyshev polynomials of degree r, for r = 8, 12, and 16, which have only real roots.

Having generated such a polynomial p = p(x) and its companion matrix Cp, we computed the
condition numbers of the matrices Nk = Cp + 27+kIn with k = 1, 2, . . . and selected an integer k
such that κ(Nk) < 105. Clearly, this is ensured for sufficiently large integers k defining diagonally
dominant matrices Nk, but in our tests k was less than five in most cases.

Having fixed k and Nk and following the description of Algorithm 3.3, we computed at first the
matrices Y1 = αIn +Nk and Y2 = αIn −Nk, for α = 0.0001

√
−1, and then successively the matrices

Yi+1,j =
1
2 (Yi,j − Y −1

i,j) with Y0,j = Yj , for j = 1, 2 (cf. Algorithms 3.1 and 3.3).

We have observed that with our real shifts by 27+kIn at the initial stage, non-real eigenvalues of
Y1 and Y2 were never close to ±

√
−1 at the first 7+ k iterations. So we began checking convergence

only when we have performed these initial iterations, and since that moment we checked convergence
in every five iterations. As soon as we observed that nrank(Y ′

i) = r, for Y ′
i = Yi,1 + Yi,2 and for r

denoting the number of distinct real roots of p(x), r = 8, 12,16, we stopped the iterations and moved
to the final stage of the algorithm, that is, approximated the real eigenvalues of matrix Cp, equal to
the real roots of the polynomial p(x).

We have run numerical tests on polynomials of five types having degree n = 64, 128, 256, 512, 1024,
and we compared our results with the outputs of MATLAB function ”roots()”. We defined polyno-
mial p(x) of Types I–III and V as the products p(x) = p1(x)p2(x) where p1(x) is the r-th degree
Chebyshev polynomial and p2(x) are the following polynomials:

I. p2(x) = xn−r − 1,
II. p2(x) = 1 + 2x+ 3x2 + · · ·+ (n− r + 1)xn−r,
III. p2(x) = (x+ 1)(x+ a)(x+ a2) · · · (x+ an−r−1), with a = i

100 , and
V. p2(x) =

∑n
k=0 akx

k, with a0, . . . , an being i.i.d. standard random variables.
We also tested the following polynomials of Type IV,

IV. p(x) = xn−r − (ax− 1)3, where a = 60, 80, 100.
Tables 4.3–4.6 display the number of iterations and the maximum error bounds, for the polyno-

mials of Types I–IV (cf. our Remark 3.1). Table 4.7 shows the average error bounds and the average
numbers of iterations in 50 tests with the polynomials of Type V.

13

http://numpi.dm.unipi.it/mpsolve-2.2/

Table 4.3: Number of Iterations and Error Bounds for Algorithm 3.3 on Type I Polynomials

n r Iterations Errors

64 8 10 1.03E − 10
64 12 23 1.32E − 08
64 16 23 3.97E − 06
128 8 10 1.60E − 10
128 12 23 4.91E − 04
128 16 23 2.22E − 03
256 8 10 6.18E − 06
256 12 28 1.75E − 09
256 16 28 3.54E − 06
512 8 15 8.05E − 13
512 12 28 1.71E − 08
512 16 28 2.78E − 05
1024 8 15 2.33E − 12
1024 12 28 1.27E − 09
1024 16 28 2.19E − 05

Table 4.4: Number of Iterations and Error Bounds for Algorithm 3.3 on Type II Polynomials

n r Iterations Errors

64 8 10 1.53E − 11
64 12 23 1.30E − 07
64 16 23 1.40E − 05
128 8 28 9.42E − 11
128 12 10 7.51E − 08
128 16 28 2.27E − 04
256 8 28 1.92E − 11
256 12 28 2.21E − 07
256 16 28 1.69E − 03
512 8 28 3.68E − 12
512 12 28 2.17E − 06
512 16 33 1.53E − 02
1024 8 28 2.96E − 11
1024 12 33 5.00E − 07
1024 16 33 3.58E − 03

14

Table 4.5: Number of Iterations and Error Bounds for Algorithm 3.3 on Type III Polynomials

n r Iterations Errors

64 8 28 4.63E − 11
64 12 23 1.69E − 07
64 16 28 7.36E − 06
128 8 28 3.83E − 12
128 12 23 1.45E − 08
128 16 28 1.68E − 05
256 8 28 1.58E − 12
256 12 23 1.02E − 04
256 16 28 6.50E − 04
512 8 28 7.69E − 13
512 12 23 5.00E − 09
512 16 28 8.60E − 06
1024 8 28 9.90E − 14
1024 12 23 1.45E − 09
1024 16 28 2.64E − 05

Table 4.6: Number of Iterations and Error Bounds Algorithm 3.3 on Type IV Polynomials

n a Iterations Errors

64 60 41 2.43E − 04
64 80 42 7.98E − 04
64 100 43 1.72E − 05
128 60 41 1.12E − 03
128 80 42 4.43E − 04
128 100 43 1.31E − 04
256 60 41 2.10E − 04
256 80 42 1.91E − 04
256 100 43 1.34E − 04
512 60 41 3.37E − 04
512 80 42 1.80E − 04
512 100 43 8.33E − 05
1024 60 36 1.10E − 01
1024 80 42 1.16E − 04
1024 100 43 1.76E − 04

15

Table 4.7: Number of Iterations and Error Bounds for Algorithm 3.3 on Type V Polynomials

n r Iterations Errors

128 8 22.3 5.33E − 06
128 12 24.6 4.85E − 05
128 16 24.94 3.59E − 03
256 8 26.02 1.11E − 06
256 12 27.01 2.37E − 05
256 16 30.18 1.80E − 03
512 8 27.54 2.73E − 08
512 12 28.00 2.27E − 06
512 16 38.18 2.39E − 03

16

4.3 Tests for the Stabilized Matrix Sign Iterations (Algorithm 3.3) on
Gaussian Random Matrices

We tested Algorithm 3.3 on randomly generated matrices of two types:
Type I: Gaussian random tridiagonal matrices of dimension n = 64, 128, 256, 512, 1024. We

generated each entry in the tridiagonal part independently by using standard Gaussian distribution
and set the other entries to 0. Our tables show the error bounds equal to the maximal difference
of the outputs of our algorithm and MATLAB function ”eig()”. We generated 100 matrices, for
each n, and recorded the mean and standard deviation of the error bounds and of the numbers of
iterations.

Type II: Random matrices A with a fixed number of real eigenvalues. At first we generated a
diagonal matrix Σ with r diagonal entries under the standard real Gaussian distribution and n− r
diagonal entries under the standard complex Gaussian distribution, for n = 64, 128, 256, 512, 1024
and r = 8, 12, 16. Then we generated a standard Gaussian random orthogonal matrix Q. Finally
we computed the matrices A = QTΣQ. We generated 100 such matrices A, for each pair of n and r,
and recorded the mean and standard deviation of the error bounds and of the numbers of iterations.

The following two tables summarize the performance data, showing a low number of iterations
required for ensuring the approximation of the eigenvalues with a reasonable precision.

Table 4.8: Number of Iterations and Error Bounds for Root-finding Algorithm 3.3 on Type I matrices

n Iteration-mean Iteration-std Error-mean Error-std

64 10.70 2.36 1.78E − 06 1.14E − 05
128 12.16 3.34 5.68E − 07 4.49E − 06
256 12, 97 3.97 3.26E − 06 1.35E − 05
512 15.46 9.82 8.80E − 04 8.44E − 03
1024 16.52 10.26 2.43E − 03 2.25E − 02

Table 4.9: Number of Iterations and Error Bounds for Algorithm 3.3 on Type II matrices

n r Iteration-mean Iteration-std Error-mean Error-std

64 8 11.65 2.47 3.69E − 08 2.29E − 07
64 12 11.75 2.50 3.98E − 10 2.71E − 09
64 16 11.60 2.45 4.10E − 09 3.88E − 08
128 8 13.75 2.79 1.17E − 08 7.56E − 08
128 12 13.70 2.90 4.41E − 09 2.73E − 08
128 16 13.65 2.55 1.23E − 07 1.34E − 06
256 8 14.55 3.26 5.59E − 09 5.58E − 08
256 12 14.15 3.70 1.38E − 07 1.38E − 06
256 16 14.70 2.54 3.06E − 11 1.93E − 10
512 8 13.65 5.59 5.08E − 10 4.88E − 09
512 12 15.65 9.47 7.46E − 04 7.46E − 03
512 16 16.55 10.26 2.78E − 03 5.47E − 03
1024 8 18.20 15.35 2.33E − 10 1.22E − 09
1024 12 20.85 17.60 1.27E − 07 3.36E − 07
1024 16 24.35 19.56 2.19E − 03 4.33E − 03

17

4.4 Tests for the Hybrid Matrix Algorithm (Algorithm 3.2) on Bench-
mark Polynomials

We performed numerical tests of a hybrid algorithm. We began with Algorithm 3.1 and after
sufficiently many iterations continued with its variation avoiding matrix inversion.

Namely, we first applied a real shift βI to the companion matrix Cp, such that the matrix
M = Cp + βI had condition number less than 105. Based on our previous tests, we expected that,
for such inputs, at least T = log2 β iterations Mi+1 = 1

2 (Mi − M−1
i) would be required in order

to move the complex nonreal eigenvalues close enough to ±
√
−1. After the first T iterations, we

periodically (in every 5 iterations) applied two iterations Mi+1 = 1
2 (M

3
i + 3Mi), which converged

with cubic rate provided that all complex eigenvalues have distance less than 1
2 from

√
−1 or −

√
−1.

Before switching to the iterations of the second type, we performed the following transformation in
order to avoid problems of numerical stability:

Step 1: Compute P = 0.5M+
√
−1 I

0.5M+
√
−1 I

, which maps the real line into the unit circle.

Step 2: Compute Y = 2
√
−1
3 (P − P−1), mapping the unit circle onto the interval [−2/3, 2/3].

Note that these two maps together keep the values ±
√
−1 unmoved.

We tested polynomials of Types II and IV of the previous section. For polynomials of Types I,
III, and V, the test results were similar to those for polynomials of Type II, apparently due to the
shared Chebyshev factors. The test results on Type IV polynomials indicate the strength of this
algorithm in the case of clustered roots.

The number of iterations required and the error bound are displayed in the tables below.

Table 4.10: Number of Iterations and Error Bounds for Hybrid Algorithm on Type II Polynomials

n r Iterations Errors

64 8 10 3.69E − 10
64 12 23 4.96E − 08
64 16 23 4.97E − 03
128 8 10 2.28E − 11
128 12 28 1.97E − 07
128 16 23 8.68E − 02
256 8 28 6.56E − 12
256 12 28 3.64E − 07
256 16 28 3.82E − 04
512 8 15 8.05E − 13
512 12 28 1.71E − 08
512 16 28 2.78E − 05
1024 8 28 3.72E − 11
1024 12 28 1.09E − 08
1024 16 33 2.19E − 05

Table 4.11: Number of Iterations and Error Bounds for Hybrid Algorithm on Type IV Polynomials

n Iterations Errors

64 33 7.32E − 05
128 33 6.12E − 06
256 38 1.60E − 05
512 38 1.08E − 04
1024 38 9.19E − 01

18

4.5 Tests for the Modular Square Root Iterations (Algorithm 3.4)

Table 4.12 displays our test results for Algorithm 3.4, that is, for the iterations fi+1(x) ≡ 1
2 (fi(x)−

fi(x)
−1) mod p(x), which computed polynomial inverses modulo p(x) by solving the associated

Sylvester linear systems of equations. We applied the tests to polynomials of Types I and II.
Already after a small number of iterations, that is, for small integers i, the tests have consistently

produced polynomials fi(x) whose roots approximated the complex roots of the polynomial p(x) of
(1.1) within the fixed tolerance bound ǫ = 10−5. At this stage of our tests we applied the MATLAB
function ”roots()” in order to avoid actual computation of agcds. Namely, as soon as we observed
that the polynomial p(x) shared all its complex roots with the polynomial fi(x), we stopped the
iterations.

Table 4.12: Number of Iterations for Algorithm 3.4 on Polynomials of Types I and II

n r Type I Type II
64 8 9 14
64 12 4 16
64 16 2 17
128 8 9 14
128 12 12 16
128 16 2 17
256 8 9 14
256 12 12 16
256 16 8 17
512 8 9 14
512 12 12 16
512 16 8 17
1024 8 10 14
1024 12 12 16
1024 16 11 17

Acknowledgements: This work has been supported by NSF Grant CCF–1116736 and PSC
CUNY Award 67699-00 45. We are also grateful to Dario A. Bini and two anonymous reviewers,
for thoughtful and helpful comments and to Ioannis Z. Emiris and Bernard Mourrain for pointing
us out the bibliography on the distribution of real roots of a polynomial.

References

[1] Ben-Or, M., Tiwari, P.: Simple algorithms for approximating all roots of a polynomial with
real roots. J. Complexity, 6(4), 417–442 (1990)

[2] Bini, D.: Numerical computation of polynomial zeros by means of Aberth’s method. Nu-
merical Algorithms, 13, 179–200 (1996)

[3] Bini, D. A.: private communication (2014)

[4] Bini, D.A., Boito, P.: A fast algorithm for approximate polynomial GCD based on struc-
tured matrix computations. In: Operator Theory: Advances and Applications, vol. 199,
pp. 155–173. Birkhäuser Verlag, Basel (2010)

[5] Bini, D. A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision poly-
nomial rootfinder. Numerical Algorithms, 23, 127–173 (2000)

19

[6] Bini, D., Pan, V. Y.: Polynomial and Matrix Computations, Volume 1: Fundamental
Algorithms. Birkhäuser, Boston (1994)

[7] Bini, D., Pan, V.Y.: Graeffe’s, Chebyshev, and Cardinal’s processes for splitting a polyno-
mial into factors. J. Complexity, 12, 492–511 (1996)

[8] Bini, D., Pan, V.Y.: Computing matrix eigenvalues and polynomial zeros where the output
is real. SIAM J. on Computing 27(4), 1099–1115 (1998) Proc. version in SODA’1991, pp.
384-393, ACM Press, New York, and SIAM Publications, Philadelphia (1991)

[9] Brunie, C., Picart, P.: A fast version of the Schur–Cohn algorithm. Journal of Complexity,
16, 1, 54–69 (2000)

[10] Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision algo-
rithm. J. Computational and Applied Mathematics, 272, 276–292 (2014)

[11] Boito, P., Ruatta, O.: Extended companion matrix for approximate GCD. Proc. SNC 2011,
pp. 74-80 (2011)

[12] Cardinal, J.P.: On two iterative methods for approximating the roots of a polynomial.
Lectures in Applied Mathematics, vol. 32, pp. 165–188, AMS (1996)

[13] R. M. Corless, S. M. Watt, L. Zhi, QR factoring to compute the GCD of univariate ap-
proximate polynomials. IEEE Transactions on Signal Processing, 52, pp. 3394–340 (2004)

[14] C. D’Andrea, A. Galligo, M. Sombra, Quantitative equidistribution for the solutions of
systems of sparse polynomial equations, arXiv:1203.1843v3 [math.CV] 6 Aug 2014.

[15] Du, Q., Jin, M., Li, T.Y., Zeng, Z.: The quasi-Laguerre iteration. Math. Computation,
66(217), 345–361 (1997)

[16] Eidelman, Y., Gohberg, I., Haimovici, I.: Separable Type Representations of Matrices and
Fast Algorithms, Volumes 1 and 2. Birkhäuser (2013)

[17] Emiris, I. Z., Galligo, A., Tsigaridas, E. P.: Random polynomials and expected complexity
of bisection methods for real solving. arXiv:1005.2001v2 [cs.SC] 31 May 2010. Proceedings
version in Proceedings of the 2010 International Symposium on Symbolic and Algebraic
Computation (ISSAC 2010), 235–242, ACM Press, New York (2010)

[18] Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bulletin
AMS, 32(1), 1–37 (1995)

[19] Emiris, I. Z., Pan, V. Y., Tsigaridas, E.: Algebraic algorithms. Chapter 10 of Computing
Handbook (Third edition), Volume I: Computer Science and Software Engineering (Allen
B. Tucker, Teo Gonzales, and Jorge L. Diaz-Herrera, editors). Taylor and Francis Group
(2014). Available at arXiv 1311.3731 [cs.DS]

[20] P. Erd ös and P. Turán, On the distribution of roots of polynomials, Ann. of Math. (2) 51
(1950), 105–119.

[21] Fortune, S.: An iterated eigenvalue algorithm for approximating roots of univariate poly-
nomials. J. of Symbolic Computation, 33(5), 627–646 (2002)

[G90] W. Gautschi, How Unstable are Vandermonde Systems? International Symposium on
Asymptotic and Computational Analysis: Conference in Honor Frank W. J. Olver’s 65th
Birthday (R. Wong, editor), Lecture Notes in Pure and Applied Mathematics, 124, 193–
210, Marcel Dekker, New York, 1990.

[GI88] W. Gautschi, G. Inglese, Lower Bounds for the Condition Number of Vandermonde Matri-
ces, Numerische Mathematik, 52, 241–250, 1988.

20

http://arxiv.org/abs/1203.1843
http://arxiv.org/abs/1005.2001

[22] Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edition. The Johns Hopkins
University Press, Baltimore, Maryland (2013)

[23] Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review 53(2), 217–
288 (2011)

[24] Higham, N.J.: Functions of Matrices. SIAM, Philadelphia (2008)

[25] Householder, A.S.: Dandelin, Lobachevskii, or Graeffe. Amer. Math. Monthly, 66, 464–466
(1959)

[26] P. Henrici, Applied and computational complex analysis, Volume 1: Power se-
ries?integration?conformal mapping?location of zeros, Wiley (1974).

[27] C. P. Hughes and A. Nikeghbali, The zeros of random polynomials cluster uniformly near
the unit circle, Compos. Math. 144 (2008), 734–746.

[28] Kac, M.: On the average number of real roots of a random algebraic equation. Bulletin
AMS, 49, 314–320 and 938 (1943)

[29] E. Kaltofen, Z. Yang, L. Zhi, Structured low rank approximation of a Sylvester matrix. Proc.
2nd Intern. Workshop on Symbolic-Numerical Algorithms (SNC 05), 188–201 (Dongming
Wang and Lihong Zhi, editors), July 2005, Xi’an, China (2005)

[30] Malajovich, G.,. Zubelli, J. P.: Tangent Graeffe iteration. Numerische Mathematik, 89 (4),
749–782 (2001)

[31] McNamee, J.M.: Numerical Methods for Roots of Polynomials, Part 1 (XIX + 354 pages).
Elsevier (2007)

[32] McNamee, J.M., Pan, V.Y.: Numerical Methods for Roots of Polynomials, Part 2 (XXII +
718 pages). Elsevier (2013)

[33] Pan, V.Y.: Complexity of computations with matrices and polynomials. SIAM Review
34(2), 225–262 (1992)

[34] Pan, V.Y.: Optimal (up to polylogarithmic factors) sequential and parallel algorithms for
approximating complex polynomial zeros. In: Proc. 27th Ann. ACM Symp. on Theory of
Computing, pp. 741–750. ACM Press, New York (1995)

[35] Pan, V.Y.: Approximating complex polynomial zeros: modified quadtree (Weyl’s) con-
struction and improved Newton’s iteration. J. of Complexity, 16(1), 213–264 (2000)

[36] Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms. Birk-
häuser, Boston, and Springer, New York (2001)

[37] Pan, V.Y.: A new proximity test for polynomial zeros. Computers and Math. (with Appli-
cations), 41(12), 1559–1560 (2001)

[38] Pan, V.Y.: Numerical computation of a polynomial GCD and extensions. Information and
Computation, 167, 2, 71–85 (2001).

[39] Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization and
rootfinding. J. Symb. Computations 33(5), 701–733 (2002). Proc. version in ISSAC’2001,
pp. 253–267, ACM Press, New York (2001)

[40] Pan, V.Y.: Amended DSeSC power method for polynomial root-finding. Computers and
Math. (with Applications), 49 (9–10), 1515–1524 (2005)

21

[41] Pan, V.Y.: Univariate polynomial root-finding by arming with constraints. Proc. of the
Forth International Workshop on Symbolic-Numerical Computations (SNC ’11), San Jose,
California, June 2011 (edited by M. Moreno Maza), 112–121, ACM Press, New York (2011)

[42] Pan, V.Y.: Root-refining for a polynomial equation. Proceedings of Workshop on Computer
Algebra in Scientific Computing (CASC 2012), (V. P. Gerdt et al. editors), Lecture Notes
in Computer Science, vol. 7442, 271–282, Springer, Heidelberg (2012)

[43] Pan, V.Y.: Transformations of matrix structures work again. Linear Algebra and Its Ap-
plications, 465, 1–32 (2015)

[44] Pan, V.Y.: Numerical root-finding for a univariate polynomial by means of matrix squaring,
preprint (2015)

[45] Pan, V.Y., Qian, G., Yan, X.: Random multipliers numerically stabilize Gaussian and block
Gaussian elimination: proofs and an extension to low-rank approximation. Linear Algebra
and Its Applications, 481, 202–234 (2015)

[46] Pan, V.Y., Qian, G., Zheng, A.: Real and complex polynomial root-finding via eigen-
solving and randomization. Proceedings of Workshop on Computer Algebra in Scientific
Computing (CASC 2012), (V. P. Gerdt et al. editors), Lecture Notes in Computer Science,
vol. 7442, 283–293. Springer, Heidelberg (2012)

[47] Pan, V.Y., Tsigaridas, E.P.: Nearly optimal refinement of real roots of a univariate poly-
nomial. J. of Symbolic Computation, in press. Proc. version in: Proc. Intern. Symposium
on Symbolic and Algebraic Computation (ISSAC 2013), (M. Kauers editor), pp. 299–306,
Boston, MA, June 2013. ACM Press, New York (2013)

[48] Pan, V.Y., Tsigaridas, E.P.: Accelerated approximation of the complex roots of a univari-
ate polynomial. Proc. of the International Conference on Symbolic Numeric Computation
(SNC’2014), 132–134, ACM Press, New York (2014). Also April 18, 2014, arXiv : 1404.4775,
revised in August 2015 [math.NA]

[49] Pan, V.Y., Zheng, A.: Root-finding by expansion with independent constraints. Computers
and Math. (with Applications), 62, 3164–3182 (2011)

[50] Pan, V. Y., Zhao, L.: Numerically Safe Gaussian Elimination with No Pivoting, Linear Al-
gebra Appl. (2017), http://dx.doi.org/10.1016/j.laa.2017.04.007, arXiv: 1501.05385 [cs.CS],
2 Apr 2017.

[51] Renegar, J.: On the worst-case arithmetic complexity of approximating zeros of polynomi-
als, J. of Complexity 3(2), 90–113 (1987)

[52] Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity.
Mathematisches Institut der Universität Tübingen, Germany (1982)

[53] Stewart, G. W.: Matrix Algorithms, Vol II: Eigensystems. SIAM, Philadelphia (2001)

[54] Sagraloff, M., Mehlhorn, K.: Computing real roots of real polynomials. J. of Symbolic
Computation, to appear

[55] Schost, E., Spaenlehauer, P.-J.: A quadratically convergent algorithm for structured low-
rank approximation. Foundations of Computational Mathematics, to appear

[56] Tilli, P.: Convergence conditions of some methods for the simultaneous computations of
polynomial zeros. Calcolo, 35, 3–15 (1998)

[57] Van der Sluis, A.: Upper bounds on the roots of polynomials. Numerische Math., 15,
250–262 (1970)

22

http://dx.doi.org/10.1016/j.laa.2017.04.007

[T94] E. E. Tyrtyshnikov, How Bad Are Hankel Matrices? Numerische Mathematik, 67, 2, 261–
269, 1994.

[58] Vandebril, R., Van Barel, M., Mastronardi, N.: Matrix Computations and Semiseparable
Matrices, Volumes 1 and 2. The Johns Hopkins University Press, Baltimore, Maryland
(2007 and 2008)

[59] Weierstrass, K.: Neuer Beweis des Fundamentalsatzes der Algebra. Mathematische Werker,
Tome III, Mayer und Müller, Berlin, 251–269 (1903)

[60] Watkins, D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods. SIAM,
Philadelphia, PA (2007)

[61] Winkler, J. R. and Hasan, M.: A non-linear structure preserving matrix method for the
low rank approximation of the Sylvester resultant matrix. Journal of Computational and
Applied Mathematics, 234, 3226–3242 (2010)

[62] Xi, Y., Xia, J., Cauley, S., Balakrishnan, V.: Superfast and stable structured solvers for
Toeplitz least squares via randomized sampling. SIAM J. on Matrix Analysis and Applica-
tions, 35, 44–72 (2014)

[63] Xia, J., Xi, J., Gu, M.: A superfast structured solver for Toeplitz linear systems via ran-
domized sampling. SIAM J. on Matrix Analysis and Applications, 33, 837–858 (2012)

Appendix

A Some Maps of the Variables and the Roots

Some basic maps of the roots of a polynomial can be computed at a linear or nearly linear arithmetic
cost.

Theorem A.1. (Root Inversion, Shift and Scaling, cf. [36].)
(i) Given a polynomial p(x) of (1.1) and two scalars a and b, one can compute the coefficients of

the polynomial q(x) = p(ax + b) by using O(n log(n)) arithmetic operations. This bound decreases
to 2n− 1 multiplications if b = 0.

(ii) Reversing a polynomial inverts all its roots by involving no flops, that is,

prev(x) = xnp(1/x) =

n∑

i=0

pix
n−i = pn

n∏

j=1

(1− xxj).

Note that by shifting and scaling the variable, we can move all roots of p(x) into a fixed disc,
e.g., D(0, 1) = {x : |x| ≤ 1}.

Theorem A.2. (Dandelin’s Root Squaring, cf. [25].)
(i) Let a polynomial p(x) of (1.1) be monic. Then q(x) = (−1)np(

√
x)p(−√

x) =
∏n

j=1(x−x2
j).

(ii) One can evaluate p(x) at the k-th roots of unity, for k > 2n, and then interpolate to q(x) by
using O(k log(k)) arithmetic operations overall.

Remark A.1. Recursive root-squaring is prone to numerical stability problems because the coef-
ficients of the iterated polynomials very quickly span many orders of magnitude. It is somewhat
surprising, but the Boolean complexity of the recursive root-squaring process is relatively reasonable
if high output precision is required [34], [39]. Moreover, one can avoid numerical stability problems
and perform all iterations with double precision by applying a special tangential representation of the
coefficients and of the intermediate results proposed in [30]. In this case the computations involve
more general operations than flops; in terms of the CPU time the computational cost per iteration
has the same order as n2 flops, performed with double precision.

23

Theorem A.3. (The Cayley Maps.)
(i) The map y = (x − a

√
−1)/(x + a

√
−1), for any real nonzero scalar a, sends the real axis

{x : x is real} onto the unit circle C(0, 1) = {y : |y| = 1}.
(ii) The converse map x = a

√
−1 (1− y)/(y+1) sends the unit circle C(0, 1) onto the real axis.

B Some Functional Iterations for Polynomial Root-finding

Newton’s and Ehrlich–Aberth’s are two celebrated functional iteration processes for the approxima-
tion of a single root of a polynomial p(x) of (1.1) and all its roots, respectively. They are highly
efficient and popular, but not specialized to our task of approximating real roots, and we only use
them as auxiliary root-refiners.

Hereafter a disc D(X, r) is said to be γ-isolated for a polynomial p(x) and γ > 1 if it contains all
roots of the polynomial lying in the disc D(X, γr). In this case we say that the disc has isolation
ratio at least γ.

Newton’s iterations refine an approximation y(0) to a single root of a polynomial p(x) of (1.1),

y0 = c, y(h+1) = y(h) − p(y(h))/p′(y(h)), h = 0, 1, . . . (B.1)

Ehrlich–Aberth’s iterations refine n simultaneous approximations z
(0)
1 , . . . , z

(n)
1 to all n roots

x1, . . . , xn of such a polynomial,

z
(h+1)
i = z

(h)
i − 1/e

(h)
i , for e

(h)
i = p(z

(h)
i)/p(z

(h)
i)−

∑

j 6=i

1

z
(h)
i − z

(h)
j

, i = 1, . . . , n, (B.2)

See [31], [32] for various other functional iterations.
As we can see next, both iterative algorithms refine very fast the crude initial approximations to

simple isolated roots of a polynomial.

Theorem B.1. Assume a polynomial p = p(x) of (1.1) and let 0 < 3(n − 1)|y0 − x1| < |y0 − xj |,
for j = 2, . . . , n. Then Newton’s iterations (B.1) converge to the root x1 quadratically right from the

start, namely, |yk − x1| ≤ 2|y0 − x1|/22
k

, for k = 0, 1,

Proof. See [56, Theorem 2.4], which strengthens [51, Corollary 4.5].

Theorem B.2. (See [56, Theorem 3.3].) Assume a polynomial p = p(x) of (1.1) and crude initial

approximations y
(0)
j to the roots xj such that 0 < 3

√
n− 1 |y(0)j − xj | < |y(0)j − y

(0)
i |, for i 6= j,

j = 1, . . . , n. Then Ehrlich–Aberth’s iterations converge to the roots xj with the cubic rate right

from the start, namely, |y(k)j − xj | ≤ |y(0)j − xj |/(23
k√

(n− 1)), for j = 1, . . . , n and k = 0, 1,

The paper [56] also proves quadratic convergence of the WDK iterations to all n roots, lying in
some given discs with an isolation ratios at least 3(n− 1)/8. These iterations are due to Weierstrass
[59], but are frequently attributed to its later re-discoveries by Durand in 1960 and Kerner in 1966.

By exploiting the correlations between the coefficients of a polynomial and the power sums of its
roots, the paper [48] had weakened the above assumptions on the initial isolation. More precisely,
assuming that a simple root lies in the disc D(0, 1) and that the disc has an isolation ratio at least
s ≥ 1 + 1/ log2(n), the paper [48] increases it to cnd, for any fixed pair of constants c and d, at
the arithmetic cost O(n), and similarly increased the isolation ratio of the n discs covering all the n
roots at the arithmetic cost O(n log2(n)).

In the case of a single disc, one can assume even an isolation ratio s ≥ 1+ c′/nd′

, for any pair of
constants c′ and d′, and then increase it to s ≥ cnd, for any other pair of constants c and d, at the
arithmetic cost O(n log2(n)). Indeed one can achieve this by performing h root-squaring iterations of
Theorem A.2, for h of order log(n) because each squaring of the roots also squares the isolation ratio.
This lifting process ensures the desired isolation for the lifted roots of the new lifted polynomial,
but the descending back to the original roots can be also achieved by using O(n log2(n)) arithmetic

24

operations [34], [39]. We refer the reader to Remark A.1 on the precision growth in these iterations
and their Boolean complexity.

Can we completely relax the assumption of the initial isolation? Empirically fast global con-
vergence (that is, convergence right from the start) is very strong over all inputs for the WDK,
Ehrlich–Aberth, and some other iterations that approximate simultaneously all n roots of a poly-
nomial p(x) of (1.1). The papers [41], [49], and [42] have challenged the researchers to support this
observation with a formal proof, which is still missing, however.

C Fast Root-finding Where All Roots Are Real

Theorem C.1. Assume that all roots of a polynomial p(x) of (1.1) are real.
(i) Then the modified Laguerre algorithm of [15] converges to all of them right from the start,

uses O(n) flops per iteration, and therefore approximates all the n roots within ǫ = 1/2b by using
O(log(b)) iterations and performing O(n log(b)) flops.

(ii) The latter asymptotic arithmetic cost bound is optimal and is supported by the alternative
algorithms of [1] and [8] as well.

(iii) All these algorithms reach the optimal Boolean cost bound up to polylogarithmic factors.

D Counting the Roots in a Disc. Root Radii, Distances to
the Roots, and the Proximity Tests

In this subsection we estimate the distances to the roots of p(x) from a complex point and the
number of the roots in an isolated disc.

The latter task can be solved by using the following result from [51, Lemma 7.1] (cf. also [26],
[52, Theorem 14.1] and [9]).

Theorem D.1. [51, Lemma 7.1] It is sufficient to perform FFT at n′ = 16⌈log2 n⌉ points (using
1.5n′ log(n′) flops) and O(n) additional flops and comparisons of real numbers with 0 in order to
compute the number of roots of a polynomial p(x) of (1.1) in a 9-isolated disc D(0, r).

Remark D.1. The algorithm of [51] supporting Theorem D.1 only uses the signs of the real and
imaginary parts of the n output values of FFT. For some groups of the values, the pairs of the signs
stay invariant and can be represented by a single pair of signs. Can this observation be exploited in
order to decrease the computational cost of performing the algorithm?

Corollary D.1. It is sufficient to perform O(hn log(n)) flops and O(n) comparisons of real numbers
with 0 in order to compute the number of roots of a polynomial p(x) of (1.1) in an s-isolated disc

D(0, 1), for s = 91/2
h

and any positive integer h.

Proof. Every root-squaring of Theorem A.2 squares all root-radii and the isolation ratios of all discs
D(0, r), for all positive r. Suppose h repeated squaring iterations map a polynomial p(x) into ph(x),
for which the discD(0, 1) is 9-isolated. Then, by applying Theorem D.1, we can compute the number
of roots of ph(x) in this disc, equal to the number of roots of p(x).

In view of Remark A.1, one must apply the slower operations of [30] or high precision computa-
tions in order to support even a moderately long sequence of root-squaring iterations, but in some

cases it is sufficient to apply Corollary D.1, for small positive integers h. Note that 91/2
h

is equal to
1.3160..., for h = 2, to 1.1472..., for h = 3, to 1.0710..., for h = 4, and to 1.0349..., for h = 5.

We can use the following result if we agree to perform computations with extended precision.

Theorem D.2. (The Root Radii Approximation.)
Assume a polynomial p(x) of (1.1) and two real scalars c > 0 and d. Define the n root radii

rj = |xkj
|, for j = 1, . . . , n, distinct k1, . . . , kn, and r1 ≥ r2 ≥ · · · ≥ rn. Then, by using O(n log2(n))

arithmetic operations, one can compute n approximations r̃j to the root radii rj such that r̃j ≤ rj ≤
(1 + c/nd)r̃j , for j = 1, . . . , n.

25

Proof. (Cf. [52], [35, Section 4].) At first fix a sufficiently large integer k and apply k times the
root-squaring of Theorem A.2, which involves O(kn log(n)) arithmetic operations. Then apply the
algorithm of [52] (which uses O(n) arithmetic operations) in order to approximate within a factor

of 2n all root radii r
(k)
j = r2

k

j , j = 1, . . . , n, of the output polynomial pk(x). By taking the 2k-th

roots, approximate the root radii r1, . . . , rn within a factor of (2n)1/2
k

, which is 1 + c/nd, for k of
order log(n).

Alternatively we can approximate the root radii by applying the semi-heuristic method of [2],
used in the packages MPSolve 2000 and 2012 (cf. [5] and [10]) or by recursively applying Theorem
D.1, although neither of these techniques support competitive complexity estimates.

The following two theorems define the largest root radius r1 of the polynomial p(x).

Theorem D.3. (See [57].) Assume a polynomial p(x) of (1.1). Write r1 = maxnj=1 |xj |, rn =
minnj=1 |xj |, and γ+ = maxni=1 |pn−i/pn|. Then γ+/n ≤ r1 ≤ 2γ+.

Theorem D.4. (See [37].) For ǫ = 1/2b > 0, one only needs a(n, ǫ) = O(n + b log(b)) flops to
compute an approximation r1,ǫ to the largest root radius r1 of p(x) such that r1,ǫ ≤ r1 ≤ 5(1+ ǫ)r1,ǫ.
In particular, a(n, ǫ) = O(n), for b = O(n/ log(n)), and a(n, ǫ) = O(n log(n)), for b = O(n).

Both theorems can be immediately extended to the approximation of the smallest root radius rn
because it is the reciprocal of the largest root radius of the reverse polynomial prev(x) = xnp(1/x)
(cf. Theorem A.1). Moreover, by shifting a complex point c into the origin (cf. Theorem A.1), we
can turn our estimates for the root radii into the estimates for the distances to the roots from the
point c. Approximation of the smallest distance from a complex point c to a root of p(x) is called
the proximity test at the point. One can perform such a test by applying Theorems D.1, D.3, or D.4.

Alternatively, for heuristic proximity tests by action at a point c or at n points, one can apply
Newton’s iterations (B.1) or an appropriate functional iterations, such as the Ehrlich–Aberth iter-
ations (B.2), and estimate the distance to the roots by observing convergence or divergence of the
iterations.

Theorem D.4 and all these iterations, including Newton’s, Ehrlich–Aberth’s and WDK’s, can be
applied even where a polynomial p(x) is defined by a black box subroutine for its evaluation rather
than by its coefficients.

26

	1 Introduction
	2 Basic Definitions and Results
	2.1 Some Basic Definitions for Matrix Computations
	2.2 The Companion Matrix and the Frobenius Algebra
	2.3 Decreasing the Size of an Eigenproblem
	2.4 Matrix Functions and Eigenspaces
	2.5 Some Maps in the Frobenius Matrix Algebra

	3 Real Root-finders with Modified Matrix Sign Iterations. Variations and Extensions
	3.1 A Modified Matrix Sign Iterations
	3.2 Inversion-free Variations of the Modified Matrix Sign Iterations and Hybrid Algorithms
	3.3 Numerical Stabilization of the Modified Matrix Sign Iterations
	3.4 Square Root Iterations (a Modified Modular Version)

	4 Numerical Tests
	4.1 Tests for the Modified Matrix Sign Iterations (Algorithm ??)
	4.2 Tests for the Stabilized Matrix Sign Iterations (Algorithm ??) Applied to Polynomials
	4.3 Tests for the Stabilized Matrix Sign Iterations (Algorithm ??) on Gaussian Random Matrices
	4.4 Tests for the Hybrid Matrix Algorithm (Algorithm ??) on Benchmark Polynomials
	4.5 Tests for the Modular Square Root Iterations (Algorithm ??)

	A Some Maps of the Variables and the Roots
	B Some Functional Iterations for Polynomial Root-finding
	C Fast Root-finding Where All Roots Are Real
	D Counting the Roots in a Disc. Root Radii, Distances to the Roots, and the Proximity Tests

