Skip to main content

Computing the Topology of an Arrangement of Implicit and Parametric Curves Given by Values

  • Conference paper
Book cover Computer Algebra in Scientific Computing (CASC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8660))

Included in the following conference series:

Abstract

Curve arrangement studying is a subject of great interest in Computational Geometry and CAGD. In our paper, a new method for computing the topology of an arrangement of algebraic plane curves, defined by implicit and parametric equations, is presented. The polynomials appearing in the equations are given in the Lagrange basis, with respect to a suitable set of nodes. Our method is of sweep-line class, and its novelty consists in applying algebra by values for solving systems of two bivariate polynomial equations. Moreover, at our best knowledge, previous works on arrangements of curves consider only implicitly defined curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer Science, vol. 10. Springer (1987)

    Google Scholar 

  2. Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15, 341–363 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Agarwal, P.K., Sharir, M.: Arrangements and their applications. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 49–119. Elsevier (2000)

    Google Scholar 

  4. Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Mehlhorn, K., Schömer, E.: A computational basis for conic arcs and boolean operations on conic polygons. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 174–186. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Wein, R.: High-level filtering for arrangements of conic arcs. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 884–895. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Eigenwillig, A., Kettner, L., Schömer, E., Wolpert, N.: Exact, efficient and complete arrangement computation for cubic curves. Computational Geometry 35, 36–73 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caravantes, J., Gonzalez-Vega, L.: Improving the topology computation of an arrangement of cubics. Computational Geometry 41, 206–218 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caravantes, J., Gonzalez-Vega, L.: Computing the topology of an arrangement of quartics. In: Martin, R., Sabin, M.A., Winkler, J.R. (eds.) Mathematics of Surfaces 2007. LNCS, vol. 4647, pp. 104–120. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Wolpert, N.: Jacobi curves: Computing the exact topology of arrangements of non-singular algebraic curves. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 532–543. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Plantinga, S., Vegter, G.: Isotopic approximation of implicit curves and surfaces. In: Boissonnat, J.D., Alliez, P. (eds.) Symposium on Geometry Processing. ACM International Conference Proceeding Series, vol. 71, pp. 245–254. Eurographics Association (2004)

    Google Scholar 

  11. Hijazi, Y., Breuel, T.: Computing arrangements using subdivision and interval arithmetic. In: Chenin, P., Lyche, T., Schumaker, L. (eds.) Curve and Surface Design: Avignon 2006, pp. 173–182. Nashboro Press (2007)

    Google Scholar 

  12. Alberti, L., Mourrain, B., Wintz, J.: Topology and arrangement computation of semi-algebraic planar curves. Computer Aided Geometric Design 25(8), 631–651 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mourrain, B., Wintz, J.: A subdivision method for arrangement computation of semi-algebraic curves. In: Emiris, I.Z., Sottile, F., Theobald, T. (eds.) Nonlinear Computational Geometry. The IMA Volumes in Mathematics and its Applications, vol. 151, pp. 165–188. Springer (2010)

    Google Scholar 

  14. Eigenwillig, A., Kerber, M.: Exact and efficient 2d-arrangements of arbitrary algebraic curves. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 122–131. SIAM (2008)

    Google Scholar 

  15. Berberich, E., Emeliyanenko, P., Kobel, A., Sagraloff, M.: Exact symbolic-numeric computation of planar algebraic curves. Theoretical Computer Science 491, 1–32 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Shakoori, A.: Bivariate Polynomial Solver by Values. PhD thesis, The University of Western Ontario (2007)

    Google Scholar 

  17. Hermann, T.: On the stability of polynomial transformations between Taylor, Bézier, and Hermite forms. Numerical Algorithms 13, 307–320 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Berrut, J., Trefethen, L.: Barycentric Lagrange interpolation. SIAM Review 46(3), 501–517 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Higham, N.J.: The numerical stability of barycentric Lagrange interpolation. IMA Journal of Numerical Analysis 24, 547–556 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Demmel, J.W.: Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  21. Corless, R., Diaz-Toca, G., Fioravanti, M., Gonzalez-Vega, L., Rua, I., Shakoori, A.: Computing the topology of a real algebraic plane curve whose defining equations are available only “by values”. Comput. Aided Geom. Des. 30(7), 675–706 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Helmke, U., Fuhrmann, P.A.: Bezoutians. Linear Algebra and Its Applications 122/123/124, 1039–1097 (1989)

    Google Scholar 

  23. Bini, D., Pan, V.: Polynomial and Matrix Computations. Birkhäuser (1994)

    Google Scholar 

  24. Heinig, G., Rost, K.: Algebraic methods for Toeplitz-like matrices and operators. Operator Theory: Advances and Applications 13 (1984)

    Google Scholar 

  25. Corless, R.M.: On a Generalized Companion Matrix Pencil for Matrix Polynomials Expressed in the Lagrange basis. In: Symbolic-Numeric Computation, pp. 1–18. Birkhäuser (2006)

    Google Scholar 

  26. Corless, R., Gonzalez-Vega, L., Necula, I., Shakoori, A.: Topology determination of implicitly defined real algebraic plane curves. In: Proceedings of the 5th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing SYNASC 2003, Universitatea din Timisoara. Analele Universitatii din Timisoara, Matematica - Informatica, vol. XLI, pp. 78–90 (2003)

    Google Scholar 

  27. Eigenwillig, A., Kerber, M., Wolpert, N.: Fast and exact geometric analysis of real algebraic plane curves. In: Proceedings ISSAC 2007 (July 2007)

    Google Scholar 

  28. Alcazar, J., Diaz-Toca, G.: Topology of 2d and 3d rational curves. Comput. Aided Geom. Des. 27, 483–502 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Caravantes, J., Fioravanti, M., Gonzalez–Vega, L., Necula, I. (2014). Computing the Topology of an Arrangement of Implicit and Parametric Curves Given by Values. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2014. Lecture Notes in Computer Science, vol 8660. Springer, Cham. https://doi.org/10.1007/978-3-319-10515-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10515-4_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10514-7

  • Online ISBN: 978-3-319-10515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics