Concrete Semantics

Tobias Nipkow - Gerwin Klein

Concrete Semantics
With Isabelle/HOL

@ Springer

Tobias Nipkow Gerwin Klein

Fakultit fiir Informatik NICTA, Neville Roach Laboratory
Technische Universitit Miinchen Kensington, NSW

Garching Australia

Germany

ISBN 978-3-319-10541-3 ISBN 978-3-319-10542-0 (eBook)

DOI 10.1007/978-3-319-10542-0
Library of Congress Control Number: 2014957301

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(wWww.springer.com)

I wnll not allow books to prove anything.

Jane Austen, Persuasion

Preface

This book is two books. Part I is a practical introduction to working with
the Isabelle proof assistant. It teaches you how to write functional programs
and inductive definitions and how to prove properties about them in Isa-
belle’s structured proof language. Part II is an introduction to the semantics
of imperative languages with an emphasis on applications like compilers and
program analysers. The distinguishing features are that every bit of mathe-
matics has been formalized in Isabelle and that much of it is executable. Part I
focusses on the details of proofs in Isabelle. Part II can be read even without
familiarity with Isabelle’s proof language: all proofs are described in detail
but informally. The Isabelle formalization, including the proofs, is available
online: all the material, including accompanying slides, can be downloaded
from the book’s home page http://www.concrete-semantics.org.

Although the subject matter is semantics and applications, the not-so-
hidden agenda is to teach the reader two things: the art of precise logical
reasoning and the practical use of a proof assistant as a surgical tool for formal
proofs about computer science artefacts. In this sense the book represents a
formal approach to computer science, not just semantics.

Why?

This book is the marriage of two areas: programming languages and theo-
rem proving. Most programmers feel that they understand the programming
language they use and the programs they write. Programming language se-
mantics replaces a warm feeling with precision in the form of mathematical
definitions of the meaning of programs. Unfortunately such definitions are of-
ten still at the level of informal mathematics. They are mental tools, but their
informal nature, their size, and the amount of detail makes them error prone.
Since they are typically written in ITEX, you do not even know whether they

VIII Preface

would type-check, let alone whether proofs about the semantics, e.g., compiler
correctness, are free of bugs such as missing cases.

This is where theorem proving systems (or “proof asistants”) come in, and
mathematical (im)precision is replaced by logical certainty. A proof assistant is
a software system that supports the construction of mathematical theories as
formal language texts that are checked for correctness. The beauty is that this
includes checking the logical correctness of all proof text. No more ‘proofs’
that look more like LSD trips than coherent chains of logical arguments.
Machine-checked (aka “formal”) proofs offer the degree of certainty required
for reliable software but impossible to achieve with informal methods.

In research, the marriage of programming languages and proof assistants
has led to remarkable success stories like a verified C compiler [53] and a
verified operating system kernel [47]. This book introduces students and pro-
fessionals to the foundations and applications of this marriage.

Concrete?

e The book shows that a semantics is not a collection of abstract symbols
on sheets of paper but formal text that can be checked and ezecuted
by the computer: Isabelle is also a programming environment and most
of the definitions in the book are executable and can even be exported
as programs in a number of (functional) programming languages. For a
computer scientist, this is as concrete as it gets.

e Much of the book deals with concrete applications of semantics: compilers,
type systems, program analysers.

e The predominant formalism in the book is operational semantics, the most
concrete of the various forms of semantics.

e Foundations are made of concrete.

Exercises!

The idea for this book goes back a long way [65]. But only recently have
proof assistants become mature enough for inflicting them on students without
causing the students too much pain. Nevertheless proof assistants still require
very detailed proofs. Learning this proof style (and all the syntactic details
that come with any formal language) requires practice. Therefore the book
contains a large number of exercises of varying difficulty. If you want to learn
Isabelle, you have to work through (some of) the exercises.

A word of warning before you proceed: theorem proving can be addictive!

Preface IX
Acknowledgements

This book has benefited significantly from feedback by John Backes, Harry
Butterworth, Dan Dougherty, Andrew Gacek, Florian Haftmann, Peter John-
son, Yutaka Nagashima, Andrei Popescu, René Thiemann, Andrei Sabelfeld,
David Sands, Sean Seefried, Helmut Seidl, Christian Sternagel and Carl Witty.
Ronan Nugent provided very valuable editorial scrutiny.

The material in this book has been classroom-tested for a number of years.
Sascha Bohme, Johannes Holzl, Alex Krauss, Peter Lammich and Andrei
Popescu worked out many of the exercises in the book.

Alex Krauss suggested the title Concrete Semantics.

NICTA, Technische Universitdt Miinchen and the DFG Graduiertenkolleg
1480 PUMA supported the writing of this book very generously.

We are very grateful for all these contributions.

Munich TN
Sydney GK
October 2014

Contents

Part I Isabelle

1 Introduction 3
2 Programming and Proving......... 5
2.1 BasiCs. ... 5
2.2 Types bool, nat and last.. i 7
2.3 Type and Function Definitions 15
2.4 Induction Heuristics 19
2.5 Simplification 21
3 Case Study: IMP Expressions 27
3.1 Arithmetic Expressions.o, 27
3.2 Boolean EXpressionst 32
3.3 Stack Machine and Compilation 35
4 Logic and Proof Beyond Equality 37
4.1 Formulas 37
4.2 Sebs e 38
4.3 Proof Automation 39
4.4 Single Step Proofs 42
4.5 Inductive Definitions............ 45
5 Isar: A Language for Structured Proofs................. ... 53
5.1 Isar by Example..........cooitini i 54
5.2 Proof Patterns 56
5.3 Streamlining Proofs........ 58

5.4 Case Analysis and Induction, 61

XII Contents

Part II Semantics

6 Introduction........ 73
7 IMP: A Simple Imperative Language 75
7.1 IMP Commands.........coininiiiii i 75
7.2 Big-Step Semantics 77
7.3 Small-Step Semantics 85
7.4 Summary and Further Reading 90
8 Compiler 95
8.1 Instructions and Stack Machine 95
8.2 Reasoning About Machine Executions...................... 98
8.3 Compilation 99
8.4 Preservation of Semantics il 102
8.5 Summary and Further Reading 112
9 Ty Des 115
9.1 TypedIMP 117
9.2 Security Type Systems i 128
9.3 Summary and Further Reading............ 140
10 Program Analysis 143
10.1 Definite Initialization Analysis, 145
10.2 Constant Folding and Propagation......................... 154
10.3 Live Variable Analysisouinininiiiinnn., 164
10.4 True LIVenessttt 172
10.5 Summary and Further Reading............ 178
11 Denotational Semantics............. 179
11.1 A Relational Denotational Semantics....................... 180
11.2 Summary and Further Reading................ 188
12 Hoare Logic 191
12.1 Proof via Operational Semantics 191
12.2 Hoare Logic for Partial Correctness 192
12.3 Soundness and Completeness 203
12.4 Verification Condition Generation 208
12.5 Hoare Logic for Total Correctness 212

12.6 Summary and Further Reading.......... 215

Contents XIII
13 Abstract Interpretation............ L. 219
13.1 Informal Introduction 220
13.2 Annotated Commands i 224
13.3 Collecting Semantics.couuiiiiinii.. 225
13.4 Abstract Values ... 236
13.5 Generic Abstract Interpreter 241
13.6 Executable Abstract States L. 253
13.7 Analysis of Boolean Expressions..............cooiii... 259
13.8 Interval Analysiscovriiii 264
13.9 Widening and Narrowingouvreneneninennn.. 270
13.10 Summary and Further Reading............... 279
A Auxiliary Definitions 281
B Symbols ... 283
C Theoriesoo i e e 285
References e 287
Index . ..o 293

	Preface
	Contents

