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Abstract. In this paper we propose a monitoring system of a data cen-
ter that is able to infer when the data center is getting into an anoma-
lous behavior by analyzing the power consumption at each server and
the data center network traffic. The monitoring system is non-intrusive
in the sense that there is no need to install software on the data cen-
ter servers. The monitoring architecture embeds two Elman Recurrent
Networks (RNNs) to predict power consumed by each data center com-
ponent starting from data center network traffic and viceversa. Results
obtained along six mounts of experiments, within a data center, show
that the architecture is able to classify anomalous system behaviors and
normal ones by analyzing the error between the actual values of power
consumption and network traffic and the ones inferred by the two RNNs.
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1 Introduction

Data centers represent the continuously-growing core infrastructure of every dig-
ital service and a basic pillar of our economy. Thus it is imperative to increase
their resiliency to failures of internal components like switches, wires, servers,
storage etc in order that the failure of one or a few components will not have
a major degradation on the performance and on the availability of the software
services hosted by the data center. Assuming that components can fail unex-
pectedly during service operation, to increase such resiliency there is the need of
advanced monitoring system at data center scale that are able to infer if some-
thing is going wrong in order to take appropriate actions at due time. Almost
all such monitoring systems are developed as intrusive software in the sense that
they need to install an agent on each monitored system, sharing resources with
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the monitored system. Apart of the disturbance that agents can provoke to the
monitored system, this approach imposes a large usage of human resource to in-
stall and to keep updated the monitoring agents with the consequent explosion of
operative cost. Thus a suitable approach to datacenter monitoring should mini-
mize the deployment and management costs being also agnostic with respect to
applications running in the data center. Agnosticness can be achieved by using
a black-box approach to monitoring.

For black-box monitoring we mean the monitoring system can only have
access to external health indicators such as: temperature, humidity, network
flows, power consumption. In a previous work [5] we considered network traffic
exchanges among the data center servers and their power consumption showing
the there is a sharp correlation between these two metrics. In this paper we
exploit this result in order to detect an anomalous behavior of data center servers.

Thus we present NITREC, a non-intrusive monitoring architecture that takes
as input data center network traffic and the aggregate of servers’ power consump-
tion. The network traffic is used to infer data center power consumption and vice
versa. Thus NiTREC is able to recognize any deviation of the data center be-
havior by evaluating the error between inferred values and actual values. Two
Elman Recurrent Networks (RNNs) are used in Nitrec to infer the aggregate
power consumption and data center network traffic.

In order to assess NITREC capabilities, we did an extensive experimental
evaluation in a real data center owned by the Italian Ministry of Economy and
Finance. After an accurate training of the RNNs, we show that NiTREC is able
to recognize deviations from the normal system behavior with a high level of
accuracy. We also compare accuracy obtained by each of the two RNNs.

2 Background

To better understand the architecture functioning, some details about non-
intrusive monitoring and about Artificial Neural Networks are required. After
these details, NI TREC architecture is presented.

Non-intrusive Monitoring An intrusive approach to monitoring relies on in-
stalling software probes on each single monitored component (e.g., blade servers).
The management cost of the monitoring system (installation, configuration,
etc.), in terms of human and economic resources, in such complex environments
can be excessive or even prohibitive for many organizations. Conversely, a non-
intrusive approach does not require to install software on each server. Instead, it
relies on a small number of hardware probes properly deployed leading to more
affordable management costs. For this reason a non-intrusive approach is often
an appealing solution, to be deployed together to legacy monitoring systems.
We considered two quantities that can be monitored without installing soft-
ware on observed systems: network traffic and power consumption. Network
traffic can be monitored directly at the network switches level, using network
sniffers deployed in strategic positions of the data centers. Indicators like packet



Towards a non-Intrusive Recognition of Anomalous System Behavior... 3

rate, bandwidth, message size can be in this way easily computed. Power con-
sumption can be monitored by deploying very precise energy meters, in order
to solve the problem due to the fact that blade servers-based systems aggregate
the consumption. Active power, Reactive power and phase displacement can be
measured.

Artificial Neural Networks An Artificial Neural Network (ANN) is a machine
learning computational model capable to approximate any non-linear function
of its input, widely used for pattern recognition and forecasting. ANN are struc-
tured as a weighted interconnection system of neurons spread in levels, where
the input level contains the neurons corresponding to the features, the output
level contains the neurons with the estimated resulted values and in the middle,
in order to improve the prediction accuracy, one or more hidden levels could be
insert. The weights of each neuron interconnection are tuned by a learning al-
gorithm, generally based on gradient-descent as the Backpropagation, the most
popular one [19]. Time-series forecasting, in particular for power electric load, is
a well-known problem often addressed with ANNs [11, 13, 7].

Our aim is to exploit the ANN capabilities to infer real-time power consump-
tion starting from network traffic observation and viceversa: to infer network
traffic starting from power consumption measurement. The core concept that
made this possible is the correlation among the two metrics found in [5].

3 NITREC architecture

The architecture that we present here has been named NiTREC, Non-inTrusive
deviation Recognizer Exploiting Correlation. It is designed to monitor in a non-
intrusive way a single enclosure of a datacenter, to learn the correct system
behavior and to recognize deviations from that. Considering the advantages of
having a non-intrusive system to monitor and enhance resiliency of a critical
infrastructure data center, we designed and implemented the NiTREC architec-
ture so as to measure and to correlate network data and power consumption in
real time, using artificial neural networks. NITREC is able to recognize devia-
tions from the correct system behavior after an initial phase of training. The
architecture is depicted in Figure 1. The whole architecture lives inside a cen-
tralizer, an ordinary computer or a blade server, collecting measurement from
the network traffic and the power consumption probes. It takes in input (i) n
streams of network packets®, directly produced by n probes (network sniffers
that capture packets from the switches of the observed system) and (ii) a stream
of power consumption data from the smart-PDUs (that measure with high pre-
cision the power consumption of the monitored enclosure) developed by Over
[1]. The architecture produces in output alerts as soon as the monitoring sys-
tem recognizes deviations from the correct enclosure behavior. Three modules
compose the architecture, a description of them is now provided:

3 In the well-known pcap format.
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Fig. 1. NiTREC, a non-intrusive deviation recognizer exploiting correlation between
power consumption and network traffic.
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MergeCAP a software module that takes in input n streams of captured packets
and gives in output a single network stream opportunely merged?.

Network Statistics Calculator a software module that takes in input the network
stream and, according to a set of parameters, produces in real-time indicators
(e.g., message rate, bandwidth, message size, message rate per physical machine).
The indicators are grouped in tuples and produced in real-time with a given fre-
quency, for instance, one tuple per second. This led to have a snapshot of the
observed system per second, for example, if we consider message rate, bandwidth,
tcp messages, average message size, we would have a tuple, like the following,
per second:< sec : 3;4387msg/s; 14042896bps; 2632tcp_msgs; 400byte > mean-
ing that during the third second of observation there have been 4387 messages, a
mean bandwidth of 14042896 bit per second, 2632 tcp messages and an average
message size of 400 bytes.

ANN Inferential Engine a software module that using indicators tuples received
from the previous module and power consumption data, correlates them and
according to an implementation of artificial neural network, triggers timely alerts
if it recognizes deviations from correct system behavior. The ANN Inferential
Engine is a crucial part of the architecture, which requires an accurate learning
phase in order to build a knowledge base regarding the observed system, more
details are provided in Sec. 4.

4 Experimental analysis

We conducted a six months long experimental session along with Sogei s.p.a., a
company of Italian Ministry of Economic and Finance (MEF) that manage the
IT of the ministry. In particular we deployed the NI TREC architecture in order

4 Merging network traces is a solved problem, several tools are available. A synchro-
nization of the probes is required e.g., a NTP server.
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to monitor a single enclosure of one of the data centers of MEF. For this initial
part of the work, we collected traces for off-line processing only. Note that all the
probes were passive with respect to the monitored system and connected to each
other through a switch external to the data center. Therefore, the monitoring did
not introduce additional traffic or delays in the monitored system.Please refer
to [5] for details about probes deployment and dataset creation.

4.1 Testbed and Dataset

The data center is a medium-size facility, featuring 80 physical servers; 250 vir-
tual servers; 20 network devices; 8 security devices; more than 50 different Web
Applications; 2 Storage Area Network with more than 6 TB of disk space; more
than 1000 internal users and more 80.000 external managed single users; We mon-
itored a single enclosure that embeds 5 blade servers, 40 virtual machines, 4 net-
work switches®. Each blade server has 24 cores and 64 GB of RAM. We recorded
a mean packet rate around 2000 pps, with spikes from 10000 to 25000000 pps
while the active power consumed is between 1550 and 1600 watts. The dataset
created is composed by approximately 2.5 TB of pcap network traces and power
consumption data, representing the behavior of the monitored servers from a
network and power consumption point of view, during the period 31 July 2013
- 31 January 2014.

4.2 Neural Networks Implementation and details

For this work we used Encog 3.2.0 [2] as machine learning framework to employ
two Elman Recurrent Networks, namely: RNN1, which is designed to infer power
consumption having packet rate as input and RNN2, which is designed to infer
packet rate having power consumption as input. In particular, RNN1 and RNN2
are both 4-5-1 networks: 4 inputs nodes, a single hidden layer of 5 nodes and the
output node. RNN1 takes as input packet rate, day, hour and power consumption
at the last-seen instant. It produces as output the inferred power consumption.
RNN2 takes as input power consumption and traffic rate at the last-seen instant,
day and hour. It produce as output the inferred packet rate.

Both the RNNs are trained using Resilient Backpropagation algorithm[12] as
long as the choice of the input node variables is due to a hybrid approach between
time-series and features, as suggested in [4].

4.3 Preliminary results

The idea of the experimental campaign is to evaluate the ability of the approach
in recognizing deviations from normal behavior of the observed system. In par-
ticular, we evaluated two cases: estimating power consumption from packet rate
and viceversa. In order to do that, we used RNN1 and RNN2 after a learning

5 Network traffic has been monitored through 4 hardware probes attached to the
switches
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phase. We used a small part of the dataset (10 days) as training set and a differ-
ent part (3 days) as validation set. Note that the validation phase is performed
off-line, using traces, but is completely equivalent to a physical deployment of the
architecture, in detection mode. Not having the possibility to inject faults in the
observed system®, during the validation, we introduced a deviation in the metric
used to infer the other and we observed how the deviation reflects on values
inferred by the RNN. The idea behind this approach is that a deviation (e.g., an
unjustified augment of power consumption), may reveal a faulty behavior of soft-
ware or hardware components. We found the percent error § = 100 x |v_v"%
where Vi, ferreq is the inferred value and v is the actual value to be an effective

metric to detect deviations. When the percent error exceeds a given threshold h) ,
we trigger an alert. The threshold & has been chosen in order to maximize the
F-measure (see below) but more complex approaches can be considered. Figure
2 and Figure 3 graph the behavior of active power, packet rate and percent error
during time. The chosen threshold of percent error has been depicted and the
samples over this that have been highlighted as well. In the first case, represented
in Figure 2, we deployed RNN2, which infers packet rate starting from power
consumption. In the first part of the graph, until 12:00, the ability of RNN2 in its
inference task can be appreciated. After that, we started to progressively increase
the power consumption at 12.00 causing an increase of the percent error. Even
small unattended increases of power consumption quickly cause an augment of
alert, due to augments of percentage error. In the second case (see Figure 3)
we deployed RNN1, in order to infer power consumption starting from network
traffic. Also in this case, during the first part of the graph (until time 12:00) the
ability of RNN1 its inference task can be appreciated, which is better respect
the RNN2 case. After that, we started to inject spare packets incrementally. The
inferred power consumption started to deviate from the measured power, thus
augmenting the percent error, as soon as the packet rate reached 10000 pps.
In this case a more relevant deviation is required in order to have appreciable
variation in the inferred value. Note that, according to the low error obtained
during the period of normal functioning, an augment of the error can fairly be
assumed as an uncommon situation.

In order to better evaluate the accuracy of the proposed approach in both
cases, we computed the metrics reported in Tab. 1 and Tab. 2, where Ny, (num-
ber of true positives) indicates the number of alerts correctly produced, i.e.,
during a deviation from the correct system behavior; Ny, (number of true nega-
tives) is the number of samples of percent error that correctly are under the alert
threshold, i.e., during correct system behavior; Ny, (number of false positive) is
the number of alerts incorrectly produced, i.e., during correct system behavior
and finally Ny, (number of false negatives) is the number samples that incor-
rectly are under the alert threshold, during a deviation from the correct system
behavior.

5 The system is not a test environment but a real Critical Infrastructure datacenter
enclosure in production.
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Fig. 2. RNN2 results. Packet rate is inferred with a good accuracy until 12:00, where
the power consumption has been progressively increased causing an augment of the

error. Some false positives can be seen before 9:00. The first true positive alert has
been triggered at 12:00.
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Fig. 3. RNNI1 results. Power consumption is inferred with a better accuracy until 12:00,
w.r.t. RNN2. After that, spare packets have been injected in the network trace causing
an augment of the error. Some false positives can be seen before 11:00. The first true
positive alert has been triggered at 12:40.
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Precision: p = #’QM 85.34%| |Precision: p = #ﬁiﬁp 90.67%
Recall (TP rate): r = #ﬂm 87.45%| |Recall (TP rate): r = Nﬁith 71.42%
F-measure: F = 2 x zi: 86.38%| |F-measure: F = 2 X Zi: 79.90%
FP Rate: f.p.r. = % 3.00%| |FP Rate: f.p.r. = % 1.47%
Table 1. RNN1 accuracy Table 2. RNN2 accuracy.

In both cases we can see a very low false positive rate and a F-measure of at
least of 79.9%, attesting promising future developments of the approach.

5 Related Work

Monitoring based only on network traffic is recognized to be non-intrusive and
black-box, meaning that (i) no application-level knowledge is needed to perform
the monitoring [18, 3, 6], and (ii) the monitor mechanism does not install software
on the monitored system [6]. In [6] CASPER is presented, a non-intrusive and
black-box approach to monitor air traffic control systems. It uses network traffic
only in order to represent the system health so as to recognize deviations thus
triggering failure predictions. At the best of our knowledge, this is the only
work that is both non-intrusive and black-box. Other monitoring systems that
adopt a black-box approach are Tiresias [18] and ALERT [14], however they are
intrusive as they require monitoring software installed on the monitored system.
For what concern power consumption monitoring in data centers, studies have
been conducted in the context of power management and energy efficiency [10,
16, 17]. None of these works, however, concerns dependability and resiliency. In
[8] and [15] network traffic is monitored with the aim of consolidating traffic flows
onto a small set of links and switches so as to shut down unused network elements,
thereby reducing power consumption. However, there is no attempt to correlate
network traffic and power consumption. In [9] a study on correlation between
power consumption data and utilization statistics (CPU load and network traffic)
is presented. This work shows a strong correlation between power consumption
and CPU load of desktop computers. Our previous work [5] investigates the
correlation between power consumption and network traffic to support the design
of a non-intrusive black-box failure prediction system for improving data center
resiliency. The paper reports the results of a period of experimentation conducted
in one of the data centers of the Italian Ministry of Economic and Finance (MEF)
during which a large dataset of network traffic and power consumption data is
collected and analyzed, thus showing that correlation between these data exists
in many periods. To the best of our knowledge this was the first work that
explored the possibility to exploit correlation between power consumption and
network traffic to support dependability of a system. In this work we used the
same dataset.
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6 Conclusions and future work

This work is a first step in exploiting in a non-intrusive way the correlation
between network data and power consumption to recognize and predict compo-
nent failures in data centers. During a preliminary 6-months long experimental
campaign we created a dataset (in a completely non-intrusive way) with respect
to the data center’s components (network and servers). The dataset allowed us
to train two neural networks in order to estimate power consumption observing
network traffic and vice versa. We found that the neural networks can be used
to effectively detect anomalous system behavior looking at deviations from data
center network traffic and an aggregate of power consumption of each data cen-
ter component. A deviation from the behavior, learnt during the training phase,
can be used to trigger alerts. As future work, we need to reduce the level of
granularity of the study by looking at correlation on the behavior of a single
data center component. In this paper we are only considering correlation be-
tween aggregate measures, namely network traffic and power consumption. We
are finally developing more complex alert techniques in order to provide a more
effective detection with respect to the threshold mechanism used in this work.
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