
Spatial Pyramid Pooling in Deep Convolutional

Networks for Visual Recognition

Kaiming He1, Xiangyu Zhang2,�, Shaoqing Ren3,�, and Jian Sun1

1 Microsoft Research, China
2 Xi’an Jiaotong University, China

3 University of Science and Technology of China

Abstract. Existing deep convolutional neural networks (CNNs) require
a fixed-size (e.g. 224×224) input image. This requirement is “artificial”
and may hurt the recognition accuracy for the images or sub-images
of an arbitrary size/scale. In this work, we equip the networks with a
more principled pooling strategy, “spatial pyramid pooling”, to elimi-
nate the above requirement. The new network structure, called SPP-net,
can generate a fixed-length representation regardless of image size/scale.
By removing the fixed-size limitation, we can improve all CNN-based
image classification methods in general. Our SPP-net achieves state-of-
the-art accuracy on the datasets of ImageNet 2012, Pascal VOC 2007,
and Caltech101.

The power of SPP-net is more significant in object detection. Us-
ing SPP-net, we compute the feature maps from the entire image only
once, and then pool features in arbitrary regions (sub-images) to gener-
ate fixed-length representations for training the detectors. This method
avoids repeatedly computing the convolutional features. In processing
test images, our method computes convolutional features 30-170× faster
than the recent leading method R-CNN (and 24-64× faster overall), while
achieving better or comparable accuracy on Pascal VOC 2007.1

1 Introduction

We are witnessing a rapid, revolutionary change in our vision community,
mainly caused by deep convolutional neural networks (CNNs) [18] and the
availability of large scale training data [6]. Deep-networks-based approaches
have recently been substantially improving upon the state of the art in im-
age classification [16,31,24], object detection [12,33,24], many other recognition
tasks [22,27,32,13], and even non-recognition tasks.

However, there is a technical issue in the training and testing of the CNNs:
the prevalent CNNs require a fixed input image size (e.g., 224×224), which
limits both the aspect ratio and the scale of the input image. When applied to
images of arbitrary sizes, current methods mostly fit the input image to the fixed

� This work was done when X. Zhang and S. Ren were interns at Microsoft Research.
1 A longer technical report of our paper is in http://arxiv.org/abs/1406.4729v1.

pdf

D. Fleet et al. (Eds.): ECCV 2014, Part III, LNCS 8691, pp. 346–361, 2014.
c© Springer International Publishing Switzerland 2014

http://arxiv.org/abs/1406.4729v1.pdf
http://arxiv.org/abs/1406.4729v1.pdf


Spatial Pyramid Pooling in Deep Convolutional Networks 347

crop warp

spatial pyramid pooling

crop / warp

conv layersimage fc layers output

image conv layers fc layers output

Fig. 1. Top: cropping or warping to fit a fixed size. Middle: a conventional deep con-
volutional network structure. Bottom: our spatial pyramid pooling network structure.

size, either via cropping [16,31] or via warping [7,12], as shown in Fig. 1 (top).
But the cropped region may not contain the entire object, while the warped
content may result in unwanted geometric distortion. Recognition accuracy can
be compromised due to the content loss or distortion. Besides, a pre-defined scale
(e.g., 224) may not be suitable when object scales vary. Fixing the input size
overlooks the issues involving scales.

So why do CNNs require a fixed input size? A CNN mainly consists of two
parts: convolutional layers, and fully-connected layers that follow. The convolu-
tional layers operate in a sliding-window manner and output feature maps which
represent the spatial arrangement of the activations (Fig. 2). In fact, convolu-
tional layers do not require a fixed image size and can generate feature maps
of any sizes. On the other hand, the fully-connected layers need to have fixed-
size/length input by their definition. Hence, the fixed-size constraint comes only
from the fully-connected layers, which exist at a deeper stage of the network.

In this paper, we introduce a spatial pyramid pooling (SPP) [14,17] layer to
remove the fixed-size constraint of the network. Specifically, we add an SPP
layer on top of the last convolutional layer. The SPP layer pools the features
and generates fixed-length outputs, which are then fed into the fully-connected
layers (or other classifiers). In other words, we perform some information “ag-
gregation” at a deeper stage of the network hierarchy (between convolutional
layers and fully-connected layers) to avoid the need for cropping or warping at
the beginning. Fig. 1 (bottom) shows the change of the network architecture by
introducing the SPP layer. We call the new network structure SPP-net.

We believe that aggregation at a deeper stage is more physiologically sound
and more compatible with the hierarchical information processing in our brains.
When an object comes into our field of view, it is more reasonable that our
brains consider it as a whole instead of cropping it into several “views” at the
beginning. Similarly, it is unlikely that our brains distort all object candidates
into fixed-size regions for detecting/locating them. It is more likely that our
brains handle arbitrarily-shaped objects at some deeper layers, by aggregating
the already deeply processed information from the previous layers.

Spatial pyramid pooling [14,17] (popularly known as spatial pyramid matching
or SPM [17]), as an extension of the Bag-of-Words (BoW) model [25], is one of
the most successful methods in computer vision. It partitions the image into
divisions from finer to coarser levels, and aggregates local features in them. SPP
has long been a key component in the leading and competition-winning systems



348 K. He et al.

filter #175

filter #55

(a) image (b) feature maps (c) strongest activations

filter #66

filter #118

(a) image (b) feature maps (c) strongest activations

Fig. 2. Visualization of the feature maps. (a) Two images in Pascal VOC 2007. (b)
The feature maps of some conv5 (the fifth convolutional layer) filters. The arrows
indicate the strongest responses and their corresponding positions in the images. (c)
The ImageNet images that have the strongest responses of the corresponding filters.
The green rectangles mark the receptive fields of the strongest responses.

for classification (e.g., [30,28,21]) and detection (e.g., [23]) before the recent
prevalence of CNNs. Nevertheless, SPP has not been considered in the context
of CNNs. We note that SPP has several remarkable properties for deep CNNs: 1)
SPP is able to generate a fixed-length output regardless of the input size, while
the sliding window pooling used in the previous deep networks [16] cannot; 2)
SPP uses multi-level spatial bins, while the sliding window pooling uses only a
single window size. Multi-level pooling has been shown to be robust to object
deformations [17]; 3) SPP can pool features extracted at variable scales thanks
to the flexibility of input scales. Through experiments we show that all these
factors elevate the recognition accuracy of deep networks.

The flexibility of SPP-net makes it possible to generate a full-image represen-
tation for testing. Moreover, it also allows us to feed images with varying sizes
or scales during training, which increases scale-invariance and reduces the risk of
over-fitting. We develop a simple multi-size training method to exploit the prop-
erties of SPP-net. Through a series of controlled experiments, we demonstrate
the gains of using multi-level pooling, full-image representations, and variable
scales. On the ImageNet 2012 dataset, our network reduces the top-1 error by
1.8% compared to its counterpart without SPP. The fixed-length representa-
tions given by this pre-trained network are also used to train SVM classifiers
on other datasets. Our method achieves 91.4% accuracy on Caltech101 [9] and
80.1% mean Average Precision (mAP) on Pascal VOC 2007 [8] using only a
single full-image representation (single-view testing).

SPP-net shows even greater strength in object detection. In the leading ob-
ject detection method R-CNN [12], the features from candidate windows are
extracted via deep convolutional networks. This method shows remarkable de-
tection accuracy on both the VOC and ImageNet datasets. But the feature
computation in R-CNN is time-consuming, because it repeatedly applies the
deep convolutional networks to the raw pixels of thousands of warped regions
per image. In this paper, we show that we can run the convolutional layers only
once on the entire image (regardless of the number of windows), and then ex-
tract features by SPP-net on the feature maps. This method yields a speedup



Spatial Pyramid Pooling in Deep Convolutional Networks 349

of over one hundred times over R-CNN. Note that training/running a detector
on the feature maps (rather than image regions) is actually a more popular idea
[10,5,23,24]. But SPP-net inherits the power of the deep CNN feature maps and
also the flexibility of SPP on arbitrary window sizes, which leads to outstand-
ing accuracy and efficiency. In our experiment, the SPP-net-based system (built
upon the R-CNN pipeline) computes convolutional features 30-170× faster than
R-CNN, and is overall 24-64× faster, while has better or comparable accuracy.
We further propose a simple model combination method to achieve a new state-
of-the-art result (mAP 60.9%) on the Pascal VOC 2007 detection task.

2 Deep Networks with Spatial Pyramid Pooling

2.1 Convolutional Layers and Feature Maps

Consider the popular seven-layer architectures [16,31]. The first five layers are
convolutional, some of which are followed by pooling layers. These pooling layers
can also be considered as “convolutional”, in the sense that they are using sliding
windows. The last two layers are fully connected, with an N-way softmax as the
output, where N is the number of categories.

The deep network described above needs a fixed image size. However, we no-
tice the requirement of fixed sizes is only due to the fully-connected layers that
demand fixed-length vectors as inputs. On the other hand, the convolutional lay-
ers accept inputs of arbitrary sizes. The convolutional layers use sliding filters,
and their outputs have roughly the same aspect ratio as the inputs. These out-
puts are known as feature maps [18] - they involve not only the strength of the
responses, but also their spatial positions. In Fig. 2, we visualize some feature
maps. They are generated by some filters of the conv5 layer.

It is worth noticing that we generate the feature maps in Fig. 2 without fixing
the input size. These feature maps generated by deep convolutional layers are
analogous to the feature maps in traditional methods [2,4]. In those methods,
SIFT vectors [2] or image patches [4] are densely extracted and then encoded,
e.g., by vector quantization [25,17,11], sparse coding [30,28], or Fisher kernels
[21]. These encoded features consist of the feature maps, and are then pooled
by Bag-of-Words (BoW) [25] or spatial pyramids [14,17]. Analogously, the deep
convolutional features can be pooled in a similar way.

2.2 The Spatial Pyramid Pooling Layer

The convolutional layers accept arbitrary input sizes, but they produce outputs
of variable sizes. The classifiers (SVM/softmax) or fully-connected layers require
fixed-length vectors. Such vectors can be generated by the Bag-of-Words (BoW)
approach [25] that pools the features together. Spatial pyramid pooling [14,17]
improves BoW in that it can maintain spatial information by pooling in local
spatial bins. These spatial bins have sizes proportional to the image size, so the
number of bins is fixed regardless of the image size. This is in contrast to the



350 K. He et al.

convolutional layers

feature maps of conv
5

(arbitrary size)

fixed-length representation

input image

16×256-d 4×256-d 256-d

…...

…...

spatial pyramid pooling layer

fully-connected layers (fc
6
, fc

7
)

Fig. 3. The network structure with a spatial pyramid pooling layer

sliding window pooling of the previous deep networks [16], where the number of
sliding windows depends on the input size.

To adopt the deep network for images of arbitrary sizes, we replace the pool5
layer (the pooling layer after conv5) with a spatial pyramid pooling layer. Fig. 3
illustrates our method. In each spatial bin, we pool the responses of each filter
(throughout this paper we use max pooling). The outputs of SPP are 256M -
d vectors with the number of bins denoted as M (256 is the number of conv5
filters). The fixed-dimensional vectors are the input to the fc layer (fc6).

With SPP, the input image can be of any sizes; this not only allows arbitrary
aspect ratios, but also allows arbitrary scales. We can resize the input image
to any scale (e.g., min(w, h)=180, 224, ...) and apply the same deep network.
When the input image is at different scales, the network (with the same filter
sizes) will extract features at different scales. The scales play important roles
in traditional methods, e.g., the SIFT vectors are often extracted at multiple
scales [19,2] (determined by the sizes of the patches and Gaussian filters). We
will show that the scales are also important for the accuracy of deep networks.

2.3 Training the Network with the Spatial Pyramid Pooling Layer

Theoretically, the above network structure can be trained with standard back-
propagation [18], regardless of the input image size. But in practice the GPU
implementations (such as convnet [16] and Caffe [7]) are preferably run on fixed
input images. Next we describe our training solution that takes advantage of
these GPU implementations while still preserving the SPP behaviors.

Single-Size Training. As in previous works, we first consider a network taking
a fixed-size input (224×224) cropped from images. The cropping is for the pur-
pose of data augmentation. For an image with a given size, we can pre-compute
the bin sizes needed for spatial pyramid pooling. Consider the feature maps



Spatial Pyramid Pooling in Deep Convolutional Networks 351

[pool3x3]

type=pool

pool=max

inputs=conv5

sizeX=5

stride=4

[pool2x2]

type=pool

pool=max

inputs=conv5

sizeX=7

stride=6

[pool1x1]

type=pool

pool=max

inputs=conv5

sizeX=13

stride=13

[fc6]

type=fc

outputs=4096

inputs=pool3x3,pool2x2,pool1x1

Fig. 4. An example 3-level pyramid pooling in the convnet style [16]. Here sizeX is the
size of the pooling window. This is for a network whose feature map size of conv5 is
13×13, so pool3×3, pool2×2, and pool1×1 will have 3×3, 2×2, and 1×1 bins respectively.

after conv5 that have a size of a×a (e.g., 13×13). With a pyramid level of
n×n bins, we implement this pooling level as a sliding window pooling, where
the window size win = �a/n� and stride str = �a/n� with �·� and �·� denoting
ceiling and floor operations. With an l-level pyramid, we implement l such layers.
The next fc layer (fc6) will concatenate the l outputs. Fig. 4 shows an example
configuration of 3-level pyramid pooling (3×3, 2×2, 1×1) in the convnet style
[16].

The main purpose of our single-size training is to enable the multi-level pooling
behavior. Experiments show that this is one reason for the gain of accuracy.

Multi-size Training. Our network with SPP is expected to be applied on
images of any sizes. To address the issue of varying image sizes in training,
we consider a set of pre-defined sizes. We use two sizes (180×180 in addition to
224×224) in this paper. Rather than crop a smaller 180×180 region, we resize the
aforementioned 224×224 region to 180×180. So the regions at both scales differ
only in resolution but not in content/layout. For the network to accept 180×180
inputs, we implement another fixed-size-input (180×180) network. The feature
map size after conv5 is a×a = 10×10 in this case. Then we still use win = �a/n�
and str = �a/n� to implement each pyramid level. The output of the SPP layer
of this 180-network has the same fixed length as the 224-network. As such, this
180-network has exactly the same parameters as the 224-network in each layer.
In other words, during training we implement the varying-size-input SPP-net by
two fixed-size-input networks that share parameters.

To reduce the overhead to switch from one network (e.g., 224) to the other
(e.g., 180), we train each full epoch on one network, and then switch to the other
one (copying all weights) for the next full epoch. This is iterated. In experiments,
we find the convergence rate of this multi-size training to be similar to the above
single-size training. We train 70 epochs in total as is a common practice.

The main purpose of multi-size training is to simulate the varying input
sizes while still leveraging the existing well-optimized fixed-size implementa-
tions. In theory, we could use more scales/aspect ratios, with one network for
each scale/aspect ratio and all networks sharing weights, or we could develop a
varying-size implementation to avoid switching. We will study this in the future.

Note that the above single/multi-size solutions are for training only. At the
testing stage, it is straightforward to apply SPP-net on images of any sizes.



352 K. He et al.

Table 1. Error rates in the validation set of ImageNet 2012. All the results are based
on a single network. The number of views in Overfeat depends on the scales and
strides, for which there are several hundreds at the finest scale.

method test scale test views top-1 val top-5 val

(a) Krizhevsky et al.[16] 1 10 40.7 18.2

(b1) Overfeat (fast) [24] 1 - 39.01 16.97
(b2) Overfeat (fast) [24] 6 - 38.12 16.27
(b3) Overfeat (big) [24] 4 - 35.74 14.18

(c1) Howard (base) [15] 3 162 37.0 15.8
(c2) Howard (high-res) [15] 3 162 36.8 16.2

(d1) Zeiler & Fergus (ZF) (fast) [31] 1 10 38.4 16.5
(d2) Zeiler & Fergus (ZF) (big) [31] 1 10 37.5 16.0

(e1) our impl of ZF (fast) 1 10 35.99 14.76
(e2) SPP-net4, single-size trained 1 10 35.06 14.04
(e3) SPP-net6, single-size trained 1 10 34.98 14.14
(e4) SPP-net6, multi-size trained 1 10 34.60 13.64
(e5) SPP-net6, multi-size trained 1 8+2full 34.16 13.57

3 SPP-Net for Image Classification

3.1 Experiments on ImageNet 2012 Classification

We trained our network on the 1000-category training set of ImageNet 2012. Our
training details follow the practices of previous work [16,31,15]. The images are
resized so that the smaller dimension is 256, and a 224×224 crop is picked from
the center or the four corners from the entire image2. The data are augmented
by horizontal flipping and color altering [16]. Dropout [16] is used on the two
fully-connected layers. The learning rate starts from 0.01, and is divided by 10
(twice) when the error plateaus. Our implementation is based on the publicly
available code of convnet [16]. Our experiments are run on a GTX Titan GPU.

As our baseline model, we implement the 7-layer network of Zeiler and Fer-
gus’s (ZF) “fast” (smaller) model [31], which produces competitive results with
a moderate training time (two weeks). The filter numbers (sizes) of the five con-
volutional layers are: 96(7×7), 256(5×5), 384(3×3), 384(3×3), and 256(3×3).
The first two layers have a stride of 2, and the rest have a stride of 1. The first
two layers are followed by (sliding window) max pooling with a stride of 2, win-
dow size of 3, and contrast normalization operations. The outputs of the two
fully-connected layers are 4096-d. At the testing stage, we follow the standard
10-view prediction in [16]: each view is a 224×224 crop and their scores are av-
eraged. Our replication of this network gives 35.99% top-1 error (Tab. 1 (e1)),
better than 38.4% (Tab. 1 (d1)) as reported in [31]. We believe this margin is
because the corner crops are from the entire image (rather than from the corners
of the central 256×256 square), as is reported in [15].

Tab. 1 (e2)(e3) show our results using single-size training. The training and
testing sizes are both 224×224. In these networks, the convolutional layers have
the same structures as the ZF fast model, whereas the pooling layer after conv5
is replaced with the SPP layer. We use a 4-level pyramid. The pyramid is {4×4,

2 In [16], the four corners are picked from the corners of the central 256×256 crop.



Spatial Pyramid Pooling in Deep Convolutional Networks 353

Table 2. Error rates in the validation set of ImageNet 2012 using a single view. The
images are resized so min(w, h) = 256. The crop view is the central 224×224

method test view top-1 val

SPP-net6, single-size trained 1 crop 38.01
SPP-net6, single-size trained 1 full 37.55

SPP-net6, multi-size trained 1 crop 37.57
SPP-net6, multi-size trained 1 full 37.07

3×3, 2×2, 1×1}, totally 30 bins and denoted as SPP-net4 (e2), or {6×6, 3×3,
2×2, 1×1}, totally 50 bins and denoted as SPP-net6 (e3). In these results, we
use 10-view prediction with each view a 224×224 crop. The top-1 error of SPP-
net4 is 35.06%, and of SPP-net6 is 34.98%. These results show considerable
improvement over the no-SPP counterpart (e1). Since we are still using the same
10 cropped views as in (e1), this gain is solely because of multi-level pooling.
Note that SPP-net4 has even fewer parameters than the no-SPP model (fc6 has
30×256-d inputs instead of 36×256-d). So the gain of the multi-level pooling is
not simply due to more parameters. Rather, it is because the multi-level pooling
is robust to the variance in object deformations and spatial layout [17].

Tab. 1 (e4) shows our result using multi-size training. The training sizes are
224 and 180, while the testing size is still 224. In (e4) we still use the 10 cropped
views for prediction. The top-1 error drops to 34.60%. Note the networks in (e3)
and (e4) have exactly the same structure and the same method for testing. So
the gain is solely because of the multi-size training.

Next we investigate the accuracy of the full-image views. We resize the image
so that min(w, h)=256 while maintaining its aspect ratio. The SPP-net is applied
on this full image to compute the scores of the full view. For fair comparison, we
also evaluate the accuracy of the single view in the center 224×224 crop (which is
used in the above evaluations). The comparisons of single-view testing accuracy
are in Tab. 2. The top-1 error rates are reduced by about 0.5%. This shows the
importance of maintaining the complete content. Even though our network is
trained using square images only, it generalizes well to other aspect ratios.

In Tab. 1 (e5), we replace the two center cropped views with two full-views
(with flipping) for testing. The top-1 error is further reduced to 34.16%. This
again indicates that the full-image views are more representative than the cropped
views3. The SPP-net in (e5) is better than the no-SPP counterpart (e1) by 1.8%.

There are previous CNN solutions [24,15] that deal with various scales/sizes,
but they are based on model averaging. In Overfeat [24] and Howard’s method
[15], the single network is applied at multiple scales in the testing stage, and the
scores are averaged. Howard further trains two different networks on low/high-
resolution image regions and averages the scores. These methods generate much
more views (e.g., over hundreds), but the sizes of the views are still pre-defined
beforehand. On the contrary, our method builds the SPP structure into the

3 However, the combination of the 8 cropped views is still useful.



354 K. He et al.

Table 3. Classification mAP in Pascal VOC 2007

model (a) plain net (b) SPP-net (c) SPP-net (d) SPP-net
size crop 224×224 crop 224×224 full 224×- full 392×-

conv4 59.96 57.28 - -
conv5 66.34 65.43 - -

pool5 (6×6) 69.14 68.76 70.82 71.67
fc6 74.86 75.55 77.32 78.78
fc7 75.90 76.45 78.39 80.10

Table 4. Classification accuracy in Caltech101

model (a) plain net (b) SPP-net (c) SPP-net
size 224×224 crop 224×224 crop 224×- full

conv4 80.12 81.03 -
conv5 84.40 83.76 -

pool5 (6×6) 87.98 87.60 89.46
SPP pool5 - 89.47 91.44

fc6 87.86 88.54 89.50
fc7 85.30 86.10 87.08

network, and uses multi-size images to train a single network. Our method also
enables the use of full-view as a single image representation.

Our results can be potentially improved further. The usage of the SPP layer
does not depend on the design of the convolutional layers. So our method may
benefit from, e.g., increased filter numbers or smaller strides [31,24]. Multiple-
model averaging also may be applied. We will study these in the future.

3.2 Experiments on Pascal VOC 2007 Classification

With the networks pre-trained on ImageNet, we extract representations from the
images in other datasets and re-train SVM classifiers [1] for the new datasets. In
the SVM training, we intentionally do not use any data augmentation (flip/multi-
view). We l2-normalize the features and fix the SVM’s soft margin parameter C
to 1. We use our multi-size trained model in Tab. 1 (e5).

The classification task in Pascal VOC 2007 [8] involves 9,963 images in 20
categories. 5,011 images are for training, and the rest are for testing. The perfor-
mance is evaluated by mAP. Tab. 3 summarizes our results for different settings.

We start from a baseline in Tab. 3 (a). The model is the one in Tab. 1 (e1)
without SPP (“plain net”). To apply this model, we resize the image so that
min(w, h) = 224, and crop the center 224×224 region. The SVM is trained via
the features of a layer. On this dataset, the deeper the layer is, the better the
result is. In col.(b), we replace the plain net with our SPP-net. As a first-step
comparison, we still apply the SPP-net on the center 224×224 crop. The results
of the fc layers improve. This gain is mainly due to multi-level pooling.

Tab. 3 (c) shows our results on the full images which are resized so that
min(w, h) = 224. The results are considerably improved (78.39% vs. 76.45%).
This is due to the full-image representation that maintains the complete content.

Because the usage of our network does not depend on scale, we resize the
images so that min(w, h) = s and use the same network to extract features. We



Spatial Pyramid Pooling in Deep Convolutional Networks 355

Table 5. Classification results for Pascal VOC 2007 (mAP) and Caltech101 (accuracy).
†numbers reported by [2]. ‡our implementation as in Tab. 3 (a)

method VOC 2007 Caltech101

VQ [17]† 56.07 74.41±1.0
LLC [28]† 57.66 76.95±0.4

FK [21]† 61.69 77.78±0.6

DeCAF [7] - 86.91±0.7

Zeiler & Fergus [31] 75.90‡ 86.5±0.5
Oquab et al.[20] 77.7 -

ours 80.10 91.44±0.7

find that s = 392 gives the best results (Tab. 3 (d)) based on the validation
set. This is mainly because the objects occupy smaller regions in VOC 2007 but
larger regions in ImageNet, so the relative object scales are different between
the two sets. These results indicate scale matters in the classification tasks, and
SPP-net can partially address this “scale mismatch” issue.

Tab. 5 summarizes our results and the comparisons with previous state-of-
the-art methods. Among these methods, VQ [17], LCC [28], and FK [21] are all
based on spatial pyramids matching, and [7,31,20] are based on deep networks.
Our method outperforms these methods. We note that Oquab et al.[20] achieves
77.7% with 500 views per image, whereas we achieve 80.10% with a single
full-image view. Our result may be further improved if data argumentation,
multi-view testing, or network fine-tuning is used.

3.3 Experiments on Caltech101

Caltech101 [9] contains 9,144 images in 102 categories (one background). We
randomly sample 30 images/category for training and up to 50 images/category
for testing. We repeat 10 random splits and average the accuracy.

Tab. 4 summarizes our results. There are some common observations in the
Pascal VOC 2007 and Caltech101 results: SPP-net is better than the plain net
(Tab. 4 (b) vs. (a)), and the full-view representation is better than the crop ((c)
vs. (b)). But the results in Caltech101 have some differences with Pascal VOC.
The fully-connected layers are less accurate, and the pool5 and SPP layers are
better. This is possibly because the object categories in Caltech101 are less re-
lated to those in ImageNet, and the deeper layers are more category-specialized.
Further, we find that the scale 224 has the best performance among the scales
we tested on this dataset. This is mainly because the objects in Caltech101 also
occupy large regions of the images, as is the case of ImageNet.

Tab. 5 summarizes our results compared with several previous state-of-the-art
methods on Caltech101. Our result (91.44%) exceeds the previous state-of-the-
art results (86.91%) by a substantial margin (4.5%).

4 SPP-Net for Object Detection

Deep networks have been used for object detection. We briefly review the recent
state-of-the-art R-CNN method [12]. R-CNN first extracts about 2,000 candidate



356 K. He et al.

windows from each image via selective search [23]. Then the image region in each
window is warped to a fixed size (227×227). A pre-trained deep network is used
to extract the feature of each window. A binary SVM classifier is then trained
on these features for detection. R-CNN generates results of compelling quality
and substantially outperforms previous methods (30% relative improvement!).
However, because R-CNN repeatedly applies the deep convolutional network to
about 2,000 windows per image, it is time-consuming.

Our SPP-net can also be used for object detection. We extract the feature
maps from the entire image only once. Then we apply the spatial pyramid pooling
on each candidate window of the feature maps to pool a fixed-length represen-
tation of this window (see Fig. 5). Because the time-consuming convolutional
network is only applied once, our method can run orders of magnitude faster.

Our method extracts window-wise features from regions of the feature maps,
while R-CNN extracts directly from image regions. In previous works, the De-
formable Part Model (DPM) [10] extracts from windows in HOG [5] feature
maps, and Selective Search [23] extracts from windows in encoded SIFT feature
maps. The Overfeat detection method [24] also extracts from windows in CNN
feature maps, but needs to pre-define the window size. On the contrary, our
method enables feature extraction in any windows from CNN feature maps.

4.1 Detection Algorithm

We use the “fast” mode of selective search [23] to generate about 2,000 candidate
windows per image. Then we resize the image such that min(w, h) = s, and
extract the feature maps of conv5 from the entire image. We use our pre-trained
model of Tab. 1 (e3) for the time being. In each candidate window, we use
a 4-level spatial pyramid (1×1, 2×2, 3×3, 6×6, totally 50 bins) to pool the
features. This generates a 12,800-d (256×50) representation for each window.
These representations are provided to the fully-connected layers of the network.
Then we train a binary linear SVM classifier for each category on these features.

spatial pyramid 

pooling layer

feature maps of conv
5

convolutional layers

fixed-length representation

input image

window

…...

fully-connected layers (fc
6
, fc

7
)

Fig. 5. SPP-net for object detection. The feature maps are computed from the entire
image. The pooling is performed in candidate windows.



Spatial Pyramid Pooling in Deep Convolutional Networks 357

Our implementation of the SVM training follows [23,12]. We use the ground-
truth windows to generate the positive samples. The negative samples are those
overlapping a positive window by at most 30% . Any negative sample is removed
if it overlaps another negative sample by more than 70%. We apply the standard
hard negative mining [10] to train the SVM. This step is iterated once. It takes
less than 1 hour to train SVMs for all 20 categories. In testing, the classifier is
used to score the candidate windows. Then we use non-maximum suppression
[10] (threshold of 30%) on the scored windows.

Our method can be improved by multi-scale feature extraction. We resize the
image such that min(w, h) = s ∈ S = {480, 576, 688, 864, 1200}, and compute
the feature maps of conv5 for each scale. One strategy of combining the features
from these scales is to pool them channel-by-channel. But we empirically find
that another strategy provides better results. For each candidate window, we
choose a single scale s ∈ S such that the scaled candidate window has a number
of pixels closest to 224×224. Then we only use the feature maps extracted from
this scale to compute the feature of this window. If the pre-defined scales are
dense enough and the window is approximately square, our method is roughly
equivalent to resizing the window to 224×224 and then extracting features from
it. Nevertheless, our method only requires computing the feature maps once (at
each scale) from the entire image, regardless of the number of candidate windows.

We also fine-tune our pre-trained network, following [12]. Since our features
are pooled from the conv5 feature maps from windows of any sizes, for simplicity
we only fine-tune the fully-connected layers. In this case, the data layer accepts
the fixed-length pooled features after conv5, and the fc6,7 layers and a new 21-
way (one extra negative category) fc8 layer follow. The fc8 weights are initialized
with a Gaussian distribution of σ=0.01. We fix all the learning rates to 1e-4 and
then adjust to 1e-5 for all three layers. During fine-tuning, the positive samples
are those overlapping with a ground-truth window by [0.5, 1], and the negative
samples by [0.1, 0.5). In each mini-batch, 25% of the samples are positive. We
train 250k mini-batches using the learning rate 1e-4, and then 50k mini-batches
using 1e-5. Because we only fine-tune the fc layers, the training is very fast
and takes about 2 hours on the GPU. Also following [12], we use bounding
box regression to post-process the prediction windows. The features used for
regression are the pooled features from conv5 (as a counterpart of the pool5
features used in [12]). The windows used for the regression training are those
overlapping with a ground-truth window by at least 50%.

We will release the code to facilitate reproduction of the results4.

4.2 Detection Results

We evaluate our method on the detection task of the Pascal VOC 2007 dataset.
Tab. 6 shows our results on various layers, by using 1-scale (s=688) or 5-scale.
Using the pool5 layers (in our case the pooled features), our result (44.9%)
is comparable with R-CNN’s result (44.2%). But using the non-fine-tuned fc6

4 research.microsoft.com/en-us/um/people/kahe/

research.microsoft.com/en-us/um/people/kahe/


358 K. He et al.

Table 6. Detection results (mAP) on Pascal VOC 2007. “ft” and “bb” denote fine-
tuning and bounding box regression. More details are in our technical report

SPP (1-sc) SPP (5-sc) R-CNN

pool5 43.0 44.9 44.2
fc6 42.5 44.8 46.2
ftfc6 52.3 53.7 53.1
ftfc7 54.5 55.2 54.2

ftfc7 bb 58.0 59.2 58.5

conv time (GPU) 0.053s 0.293s 8.96s
fc time (GPU) 0.089s 0.089s 0.07s

total time (GPU) 0.142s 0.382s 9.03s
speedup (vs. RCNN) 64× 24× -

Table 7. Comparisons of detection results on Pascal VOC 2007

method mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

DPM [10] 33.7 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5

SS [23] 33.8 43.5 46.5 10.4 12.0 9.3 49.4 53.7 39.4 12.5 36.9 42.2 26.4 47.0 52.4 23.5 12.1 29.9 36.3 42.2 48.8

Regionlet [29] 41.7 54.2 52.0 20.3 24.0 20.1 55.5 68.7 42.6 19.2 44.2 49.1 26.6 57.0 54.5 43.4 16.4 36.6 37.7 59.4 52.3

DetNet [26] 30.5 29.2 35.2 19.4 16.7 3.7 53.2 50.2 27.2 10.2 34.8 30.2 28.2 46.6 41.7 26.2 10.3 32.8 26.8 39.8 47.0

RCNN ftfc7 54.2 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7

SPP ftfc7 55.2 65.5 65.9 51.7 38.4 32.7 62.6 68.6 69.7 33.1 66.6 53.1 58.2 63.6 68.8 50.4 27.4 53.7 48.2 61.7 64.7

RCNN ftfc7 bb 58.5 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8

SPP ftfc7 bb 59.2 68.6 69.7 57.1 41.2 40.5 66.3 71.3 72.5 34.4 67.3 61.7 63.1 71.0 69.8 57.6 29.7 59.0 50.2 65.2 68.0

layers, our results are inferior. An explanation is that our fc layers are pre-trained
using image regions, while in the detection case they are used on the feature map
regions. The feature map regions can have strong activations near the window
boundaries, while the image regions may not. This difference of usages can be
addressed by fine-tuning. Using the fine-tuned fc layers (ftfc6,7), our results are
comparable with or slightly better than the fine-tuned results of R-CNN. After
bounding box regression, our 5-scale result (59.2%) is 0.7% better than R-CNN
(58.5%), and our 1-scale result (58.0%) is 0.5% worse. In Tab. 7, we show the
results for each category. Our method outperforms R-CNN in 11 categories, and
has comparable numbers in two more categories.

In Tab. 7, Selective Search (SS) [23] applies spatial pyramid matching on
SIFT feature maps. DPM [10] and Regionlet [29] are based on HOG features [5].
Regionlet improves to 46.1% [33] by combining various features including conv5.
DetectorNet [26] trains a deep network that outputs pixel-wise object masks.
This method only needs to apply the deep network once to the entire image, as
is the case for our method. But this method has lower mAP (30.5%).

4.3 Complexity and Running Time

Despite having comparable accuracy, our method is much faster than R-CNN.
The complexity of the convolutional feature computation in R-CNN is O(n ·
2272) with the window number n (∼2000). This complexity of our method is
O(r · s2) at a scale s, where r is the aspect ratio. Assume r is about 4/3.
In the single-scale version when s = 688, this complexity is about 1/160 of
R-CNN’s; in the 5-scale version, this complexity is about 1/24 of R-CNN’s.



Spatial Pyramid Pooling in Deep Convolutional Networks 359

Table 8. Detection results on Pascal VOC 2007 using model combination

method mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

SPP-net (1) 59.2 68.6 69.7 57.1 41.2 40.5 66.3 71.3 72.5 34.4 67.3 61.7 63.1 71.0 69.8 57.6 29.7 59.0 50.2 65.2 68.0

SPP-net (2) 59.1 65.7 71.4 57.4 42.4 39.9 67.0 71.4 70.6 32.4 66.7 61.7 64.8 71.7 70.4 56.5 30.8 59.9 53.2 63.9 64.6

combination 60.9 68.5 71.7 58.7 41.9 42.5 67.7 72.1 73.8 34.7 67.0 63.4 66.0 72.5 71.3 58.9 32.8 60.9 56.1 67.9 68.8

In Tab. 6, we compare the experimental running time of the convolutional fea-
ture computation. The implementation of R-CNN is from the code published by
the authors implemented in Caffe [7]. For fair comparison, we also implement
our feature computation in Caffe. In Tab. 6 we evaluate the average time of
100 random VOC images using GPU. R-CNN takes 8.96s per image, while our
1-scale version takes only 0.053s per image. So ours is 170× faster than R-CNN.
Our 5-scale version takes 0.293s per image, so is 30× faster than R-CNN.

Our convolutional feature computation is so fast that the computational time
of fc layers takes a considerable portion. Tab. 6 shows that the GPU time of
computing the 4,096-d fc7 features (from the conv5 feature maps) is 0.089s per
image. Considering both convolutional and fully-connected features, our 1-scale
version is 64× faster than R-CNN and is just 0.5% inferior in mAP; our 5-scale
version is 24× faster and has better results. The overhead of the fc computation
can be significantly reduced if smaller fc layers are used, e.g., 1,024-d.

We do not consider the window proposal time in the above comparison. The
selective search window proposal [23] takes about 1-2 seconds per image on the
CPU. There are recent works (e.g., [3]) on reducing window proposal time to
milliseconds. We will evaluate this and expect a fast entire system.

4.4 Model Combination for Detection

Model combination is an important strategy for boosting CNN-based classifi-
cation accuracy [16]. Next we propose a simple model combination method for
detection. We pre-train another network in ImageNet, using the same struc-
ture but different random initializations. Then we repeat the above detection
algorithm. Tab. 8 (SPP-net (2)) shows the results of this network. Its mAP is
comparable with the first network (59.1% vs. 59.2%), and outperforms the first
network in 11 categories. Given the two models, we first use either model to score
all candidate windows on the test image. Then we perform non-maximum sup-
pression on the union of the two sets of candidate windows (with their scores).
A more confident window given by one method can suppress those less confident
given by the other method. After combination, the mAP is boosted to 60.9%
(Tab. 8). In 17 out of all 20 categories the combination performs better than
either individual model. This indicates that the two models are complementary.

5 Conclusion

Image scales and sizes are important invisual recognition, but received little consid-
eration in the context of deepnetworks.Wehave suggested a solution to train adeep



360 K. He et al.

network with an SPP layer. The resulting SPP-net shows outstanding accuracy in
classification/detection tasks and greatly accelerates DNN-based detection. Our
studies also show that many time-proven techniques/insights in computer vision
can still play important roles in deep-networks-based recognition.

References

1. Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, TIST (2011)

2. Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details:
An evaluation of recent feature encoding methods. In: BMVC (2011)

3. Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: BING: Binarized normed gradients
for objectness estimation at 300fps. In: CVPR (2014)

4. Coates, A., Ng, A.: The importance of encoding versus training with sparse coding
and vector quantization. In: ICML (2011)

5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR (2005)

6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

7. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell,
T.: Decaf: A deep convolutional activation feature for generic visual recognition.
ArXiv:1310.1531 (2013)

8. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL Visual Object Classes Challenge, VOC 2007 Results (2007)

9. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cate-
gories. CVIU (2007)

10. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. PAMI (2010)

11. van Gemert, J.C., Geusebroek, J.-M., Veenman, C.J., Smeulders, A.W.M.: Kernel
codebooks for scene categorization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part III. LNCS, vol. 5304, pp. 696–709. Springer, Heidelberg (2008)

12. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: CVPR (2014)

13. Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep
convolutional activation features. ArXiv:1403.1840 (2014)

14. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification
with sets of image features. In: ICCV (2005)

15. Howard, A.G.: Some improvements on deep convolutional neural network based
image classification. ArXiv:1312.5402 (2013)

16. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-
lutional neural networks. In: NIPS (2012)

17. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In: CVPR (2006)

18. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Computation (1989)

19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV (2004)



Spatial Pyramid Pooling in Deep Convolutional Networks 361

20. Oquab, M., Bottou, L., Laptev, I., Sivic, J., et al.: Learning and transferring mid-
level image representations using convolutional neural networks. In: CVPR (2014)

21. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale
image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010,
Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)

22. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-shelf:
An astounding baseline for recogniton. In: CVPR 2014, DeepVision Workshop
(2014)

23. van de Sande, K.E., Uijlings, J.R., Gevers, T., Smeulders, A.W.: Segmentation as
selective search for object recognition. In: ICCV (2011)

24. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
Integrated recognition, localization and detection using convolutional networks.
ArXiv:1312.6229 (2013)

25. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching
in videos. In: ICCV (2003)

26. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In:
NIPS (2013)

27. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-
level performance in face verification. In: CVPR (2014)

28. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear
coding for image classification. In: CVPR (2010)

29. Wang, X., Yang, M., Zhu, S., Lin, Y.: Regionlets for generic object detection. In:
ICCV (2013)

30. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using
sparse coding for image classification. In: CVPR (2009)

31. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional neural net-
works. ArXiv:1311.2901 (2013)

32. Zhang, N., Paluri, M., Ranzato, M., Darrell, T., Bourdevr, L.: Panda: Pose aligned
networks for deep attribute modeling. In: CVPR (2014)

33. Zou, W.Y., Wang, X., Sun, M., Lin, Y.: Generic object detection with dense neural
patterns and regionlets. ArXiv:1404.4316 (2014)


	Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition

	1 Introduction
	2 Deep Networks with Spatial Pyramid Pooling
	2.1 Convolutional Layers and Feature Maps
	2.2 The Spatial Pyramid Pooling Layer
	2.3 Training the Network with the Spatial Pyramid Pooling Layer

	3 SPP-Net for Image Classification
	3.1 Experiments on ImageNet 2012 Classification
	3.2 Experiments on Pascal VOC 2007 Classification
	3.3 Experiments on Caltech101

	4 SPP-Net for Object Detection
	4.1 Detection Algorithm
	4.2 Detection Results
	4.3 Complexity and Running Time
	4.4 Model Combination for Detection

	5 Conclusion
	References




