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Abstract. Constrained local models (CLM) are frequently used to lo-
cate points on deformable objects. They usually consist of feature re-
sponse images, defining the local update of object points and a shape
prior used to regularize the final shape. Due to the complex shape vari-
ation within an object class this is a challenging problem. However in
many segmentation tasks a simpler object representation is available
in form of sparse landmarks which can be reliably detected from im-
ages. In this work we propose ShapeForest, a novel shape representation
which is able to model complex shape variation, preserves local shape
information and incorporates prior knowledge during shape space infer-
ence. Based on a sparse landmark representation associated with each
shape the ShapeForest, trained using decision trees and geometric fea-
tures, selects a subset of relevant shapes to construct an instance specific
parametric shape model. Hereby the ShapeForest learns the association
between the geometric features and shape variability. During testing,
based on the estimated sparse landmark representation a constrained
shape space is constructed and used for shape initialization and regular-
ization during the iterative shape refinement within the CLM framework.
We demonstrate the effectiveness of our approach on a set of medical seg-
mentation problems where our database contains complex morphological
and pathological variations of several anatomical structures.

1 Introduction

The ability to delineate deformable objects from images is critical for many com-
puter vision tasks. In most cases low-level information based on the local image
appearance is combined with high-level information based on a shape model to
estimate the final object in the image. The low-level information can be noisy
due to missing or incomplete image gradients. Thus the shape model is used to
regularize the results. The success of these approaches is highly dependent on
the way shape priors are modeled, how the low-level information is computed
from the images and what optimization approach is utilized to fit the shape
model to the low-level information. One of the first approaches was the Active
Contour Model proposed by Kass et al. [13]. Hereby, the shape prior is repre-
sented as a general regularity term during the optimization, assuming that the
shape should deform like a thin plate. Further, more object-specific shape priors
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Fig. 1. Examples of complex variation observed among shapes within an object class
for the liver (top row), the AV (middle row) and the LVOT (bottom row)

became prevalent, where the shape priors are learned from a set of training sam-
ples, such as Active Shape Models (ASM) [2]. Many extensions of this method
were proposed within the last decade.

In current literature, shape models confront major challenges. First, shape
variations are usually complex and therefore difficult to model using standard
linear parametric models. Figure 1 illustrates the complex shape variation within
our medical data set, showing three examples of the liver (top row), the aortic
valve — AV (middle row) and the left ventricle outflow tract — LVOT (bottom
row). Second, shape variation is often local. Shape models should be able to
preserve local shape detail in the training data even if it is not statistically
significant. Third, even though the final shape consists of hundreds or thousands
of vertices a lower level representation using a small number of sparse landmarks
associated with each shape is often available. These points define salient locations
in the image and are located on or around the object of interest. These landmarks
can be robustly detected using object detection algorithms. Shape models should
exploit this information during shape alignment and refinement. r

In this paper we introduce a novel constrained statistical shape model, the
ShapeForest, which addresses the main challenges presented above in an uni-
fied framework. Based on a set of sparse landmarks, which we assume can be
detected reliably in the images, we infer an instance specific statistical shape
model used for shape initialization and during the iterative shape refinement.
We use randomized decision trees to learn the shape-manifold based on geo-
metric features defined by the sparse landmark representation. During testing
a subset of shapes is selected and used to construct a constrained parametric
statistical shape model. We show that this approach can approximate accu-
rately the shape variation compared to the classical statistical shape model and
other multi-modal shape representations. We demonstrate the performance of
the ShapeForest in a range of medical image segmentation problems — the aortic
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valve, the left ventricle outflow tract, and the liver. In addition we show the
effects of different choices for the training parameters.

2 Related Work

There is a wide range of literature on matching statistical shape models to images
starting with Active Shape Models [2]. Hereby an iterative approach is pursued
with an alternating strategy. First an update for each point is found in a small
neighborhood of the current shape estimate with a suitably trained detector.
Then the shape model parameters are adjusted to match the updated shape
points. Active Appearance Models [3] align both models of shape and texture
using an efficient parameter update schema. Pictorial structures define a collec-
tion of parts arranged in a deformable geometric configuration representing an
object model [9]. Each part has an Active Appearance Model representation and
the deformable geometric configuration is represented as spring-like connections
between pairs of parts. An efficient method was introduced to fit the pictorial
structure to an image. Constrained Local Models (CLM) [16,6,15] compute re-
sponse images, measuring the fit of a specific shape point throughout the whole
image. Based on the response images a shape model is matched to the data,
estimating the best overall combination of points based on geometric criteria.

In the context of shape modeling, extensions to the classical SSM have been
proposed to model multi-modal distributions within the shape prior. A simple
extension is to use a mixture of Gaussian to represent the shape model [4]. Mani-
fold learning can also be used to represent the non-linear shape prior [8,18,14]. A
data-base guided approach was proposed in [11] whereby a nearest-neighborhood
search is used to find the closest shape based on a data-base of shapes. However
in most cases the number of clusters is defined a priori.

Another difficulty with SSM is the inability to preserve local details of the
input shape when such details are present in the training data but not statisti-
cally significant. As PCA performs eigenanalysis and extracts eigenvectors with
the largest eigenvalues the discarded eigenvectors are statistically insignificant,
but they may contain important local details. Some relevant work can alleviate
this problem. Sparse PCA obtains sparser modes and produces near-orthogonal
components [17,19]. Thus each mode only affects locally clustered landmarks and
captures more detail information. However in most sparse methods the number of
training samples used for the sparse shape representation, especially with shapes
which contain large number of vertices, is limited as it increases significantly the
computational complexity. Some other methods divide the shape model into sev-
eral independently modeled parts [7], such as the hierarchical approach. Since
the smaller parts exhibit less variation, they can be captured with fewer training
samples than the variations for the full shape.

Most existing shape segmentation methods pursue a hierarchical estimation
approach. Based on lower level information such as a set of sparse landmarks
a shape model is initialized and refined to fit the image data. These landmarks
represent salient, corner-like structures in the images and are located either on
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the shape or in close proximity. In our medical imaging domain the problem
is further simplified as only one occurrence of each landmark can appear in an
image. Given a large database of landmark annotations, state-of-the art detec-
tion algorithms can be trained to detect those points reliably. A sliding window
approach using discriminative classifiers with descriptive image features is often
used in such settings [20]. Regression based approaches could also be utilized to
detected the landmarks by exploiting the spatial correlation of image features
and landmark positions [10,5]. In our work we assume this workflow as given.

Our method automatically selects a subset of relevant shapes from the training
data for a new instance based on geometric features extracted from the detected
landmarks. Thus there is no need to define a priori the number of clusters within
our database of shapes. In addition the ShapeForest will learn a distance func-
tion between the landmarks and the remaining shape variation. Our approach
is more robust compared to an Euclidean distance norm in the feature space
as it discards non-informative and noisy features. The ShapeForest will select
the most relevant geometric features to minimize the variance within the re-
maining subset of shapes. Thus the shapes that are selected will share geometric
properties such as local geometric detail.

3 Shape Modeling

Given a population of n instances of a shape S = {s1, sz, ..., S, } that have been
aligned to a common coordinate system using Generalized Procrustes Analysis
(GPA) and share point correspondences, each aligned shape instance s,, can be
represented as a set of k points s, = {s%1, ¥ 521 ... 52k sUk g2k} G can be
viewed as a point cloud in 3k-dimensional space. A generative shape model,
represented as a linear Gaussian parametric model, can be constructed by com-
puting the Principal Component Analysis (PCA) on S. Later each shape s, can

be approximated using the following linear model:
sy =T(5+ Pb) (1)

Here, 5 is the mean of all shapes in S after GPA, Pb is the linear uni-modal
Gaussian parametric model with the eigenvectors P that represent the main
modes of variation in S and the coefficients b, and T is a global transformation
that maps § to the coordinate system of s,,. Hereafter we will refer to this model
as the global SSM or ¢SSM [12].

The ShapeForest instead identifies a subset of shape instances S within S that
share similar geometric characteristics based on geometric features extracted
from an image I. The subset of shapes S is later used to generate a constrained
version of the global SSM:

su = T(3+ Pb) (2)

where § is the mean shape computed from a subset of shape instances Sc S
after GPA, and Pb represents the corresponding modes of variation. We will
later refer to this shape model as the constrained SSM or ¢SSM.
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Fig. 2. Sparse Landmark representation L = {l1, l2,13, 14,15, ls, 7} for the left ventricle
outflow tract (LVOT) in a 3D CT image. Each landmark represents a salient location
in the image.

3.1 Landmarks

To select S we use geometric features derived from m sparse landmarks L which
are detected from the image I. Each landmark corresponds to a salient anatom-
ical point in the image I and can be easily identified and reliably detected us-
ing standard object detection algorithms. Landmarks do not need to lie on the
shape itself but can also be in close proximity to it. It is important to note that
m < k. Figure 2 illustrates seven sparse landmarks associated with a shape
(LVOT). Here, 5 landmarks lie directly on the shape itself, while the remaining
2 represent nearby stable points.

3.2 Geometric Features

From the identified m landmarks L, we compute two simple geometric features:
distance features and random plane features. As the variability of the landmarks
is strongly correlated with the shape points, these features are powerful to char-
acterize the morphological and geometric properties of individual shapes.

Given a set of m landmarks associated with a shape, distance features (fa;st)
are generated for each unique pair of landmarks (p, ¢) as the Euclidean distance
between landmarks p and g:

fdzst Db, q Z p _q (3)

i€{z,y,z}

By comparison, random plane features (f,,) are generated for each individ-
ual landmark p as the shortest distance between landmark p and a randomly
generated plane:

ap® + bpY 4+ cp® 4+ d

o) =" T

s ar+by+cz+d=0 (4)
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Fig. 3. Geometric features computed based on the sparse landmark representation
L = {l1,l2,13,l4,15,16,17} for the LVOT (left). An example of a distance feature fqis:
is shown in the middle and a random plane feature f,, on the right.

Distance and random plane features are illustrated in Figure 3. Here, the left
diagram shows distance feature (fa;st (I1,5)), which calculates the Euclidean dis-
tance between landmarks [; and 5 associated with the shape. The right diagram
shows random plane feature (fr, (I4)), which calculates the shortest distance be-
tween landmark [, associated with the shape, and a randomly selected plane.

In practice, fgist and fr, were found to be highly complementary when utilized
within the ShapeForest, with optimal results produced where given m landmarks,
the combined feature set {fgist U frp} was computed for each shape s, resulting
in a feature set size of (m? —m)/2 + m unique features.

3.3 ShapeForest

Spatial features are used in the ShapeForest to obtain a subset of shapes S
and compute the corresponding constrained SSM. The ShapeForest itself is con-
structed as a forest of un-pruned decision trees, similar to Breiman’s random
forest ensemble classifier [1]. At each tree, each non-leaf node contains a fea-
ture fo € {faist U frp} and threshold value 7, with both leaf and non-leaf nodes
further containing a subset of shapes S; € S. Thus the ShapeForest learns the
distance function between the geometric features and the shape variance, clus-
tering shape instances with similar shape characteristics in the leaf nodes. A
set of m landmarks L = {ly,la,...,1,,} that is the GPA aligned mean of sparse
landmarks associated with each shape in S; is additionally kept at each node in
order to facilitate an optional Shape Selection Optimization step as detailed in
Section 3.3.

Training. During training, a subset of shapes S; = {s1, s2, ..., S } is randomly
sampled for each tree, taken from a population of training shapes. Corresponding
sets of LM; = {L1ULsU...UL,} are obtained, where each L, is the set of sparse
landmarks associated with shape s, in S, and spatial features are computed
using these landmarks as in Section 3.2. S; and LM, are placed at root nodes in
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their respective trees, and the following training algorithm is executed for every
tree in the ShapeForest:

1.

For each feature type fyp € {faist U frp}, construct a set of splitting can-
didates ¢ = (fy,7), where each 7 represents one of a number of threshold
values, equally spaced between min(fo(LM)) and max(fg(LM)).

. For each ¢, partition the set of shapes at the current node S; into left and

right subsets:
Si(@) = {su|sy € St N fo(Ly) <7} (5)

Sr(9) = {sv]s0 € St A fo(Ly) > 7} (6)

Using GPA, align shapes within subsets S;, S;(¢) and S,(¢) to produce
aligned sets S¢*, Sj*(¢) and SZ(¢).

. For each ¢, compute the information gain I(St, ¢) achieved from splitting S;

into S;(¢) and S,(¢) as:

I(Sp¢) = ) log(d(s)) = > XD less) | (M)

seSy ie{l,r} \s€S{(¢)

Here, 6(s) = s — 5§ is the deviation of aligned shape s from the mean shape 5
that is calculated from the set of shapes s belongs to (S¢, S;*(¢) or S&(¢)),
similar to as in [2].

. Find ¢*, the splitting candidate that produces the largest information gain:

¢" = argmax I(S;, ¢) (8)
®

. If I(S,, ¢*) is greater or equal to a minimum splitting criteria and tree is not

at maximum depth, split the node into children, letting S; = S;(¢*) at the
left node and Sy = S, (¢*) at the right node. Update LM, at each child node
accordingly. Finally, save at current node Sy, fg and 7 from ¢*, and L as the
GPA-aligned mean of landmarks that are associated with each shape in S;.

. Repeat steps 1 to 5 of the algorithm at each child node until each tree is

fully grown.

cSSM Construction and Tree Aggregation. When presented with a set

of

sparse landmarks L, that are associated with a shape, the ShapeForest first

computes the feature values for Ly, fo(Ly) € {faist(Lu) U frp(Ly)}. Each indi-
vidual decision tree is then traversed from their root node through the evaluation

of
of

fo(Ly) against 7 at each node, branching left or right based on the outcome
this comparison, until a leaf node is reached.
To construct the constrained SSM, the sets of shapes S; found at the leaf nodes

traversed to are returned from every decision tree and aggregated. A shape-

frequency histogram is constructed, with the most frequently occurring shapes
found across all trees used to set S and calculate § and Pb of the constrained

SSM.
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Decision Trees in ShapeForest
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T(3 + Pb) generated from {s,,5,,Sg, So}

Fig. 4. Example of ShapeForest training and constrained SSM inference

Figure 4 summarizes this process of tree traversal and aggregation described
above, showing how a subset of the most frequently occurring shapes (in this
case, {s2, 87, s, 89} can be selected to construct a constrained SSM given the
landmarks L.

Shape Selection Optimization (SSO). An optional shape selection opti-
mization step can be applied to all trees in the ShapeForest. This step attempts
to utilize the spatial correlation between L, (the set of sparse landmarks asso-
ciated with an original shape) and L (the set of GPA-aligned mean landmarks
stored at a node) to improve node selection after tree traversal, augmenting the
set of shapes selection used to construct the constrained SSM.

Selection improvement results in the following algorithm being executed at
each tree prior to tree aggregation, starting from selected leaf nodes:

1. At the current node, use GPA to align L,, and L and compute corresponding
aligned sets L and L®. Calculate §.(L%) = 6(L%) — 6(L%), the deviation
between both set of landmarks.

2. Repeat Step 1, but using L obtained from the current node’s’ parent to
calculate 6,(L%) = 6(L%) — 6(L%)

3. Calculate A = §.(L%) — 6,(L%) as the difference in deviation between L,
and mean landmarks at the current node after alignment, and L, and mean
landmarks at the parent node after alignment. If A is greater or equal to a
pre-set minimum required value, traverse upwards to the parent node.

4. Repeat Steps 1 to 3 until A is less than the pre-set value, or current node is
root node.
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4 Experiments

To evaluate the ShapeForest, a series of experimental tests were performed.
First, in Section 4.2, we evaluated the ability of the ShapeForest to represent
complex shape variations. Hereby we compare the ability of the ShapeForest to
reconstruct new shapes. Second, in Section 4.3, we integrate the ShapeForest
in a standard hierarchical shape segmentation approach (CLM) and compare it
with other approaches.

For each experiment, three-fold cross validation experiments were performed.
Unless otherwise noted, 100 decision trees of depth 20, each containing 30% of
overall training data, were used to construct the ShapeForest, with the top 30%
most frequently occurring shapes used to generate each constrained SSM. Where
shape selection optimization was used, the A threshold was set to 0.

4.1 Datasets

Three data sets were used for our quantitative experiments, each consisting of
3D images containing a specific human anatomy — the left ventricle outflow tract
or LVOT (283 shapes), the aortic valve root or AV (633 shapes), and the liver
(372 shapes). Each element within each data set contained a three dimensional
CT image, a manually annotated shape model s and sparse landmarks set L
associated with each shape. Figure 1 illustrates examples of liver shapes (top),
AV shapes (middle) and LVOT shapes (bottom).

4.2 Reconstruction Error Evaluation

First we evaluate the ability of the ShapeForest to construct constrained SSMs
that can accurately reconstruct new shapes. Given a SSM, the reconstruction
error for an unseen shape s, is computed as follows:

1. Calculate s as s, after GPA-alignment with the mean shape defined by the
SSM.

2. Project s onto the subspace defined by the SSM. Calculate s, as the recon-
struction of s% in the SSM subspace using PCA coefficients that correspond
to 90% of total variability within the parametric model.

3. Align s, and s, using GPA and calculate the reconstruction error as the sum
of Euclidean distances between corresponding points in s, and s,,.

Table 1 summarizes mean reconstruction error results of constrained SSMs
produced by the ShapeForest when compared against both the global SSM as
well as a multi-modal parametric shape modeling approach, based on methods
discussed in [4]. In this alternative approach, the shape model is represented as
a mixture of Gaussian parametric models generated by the K-Means cluster-
ing of shapes based on their associated landmarks (represented in the table as
MixModel2 and MixModel5 depending on the number of mixture components
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Fig. 5. Effects on segmentation performance of the ShapeForest based on different
parameter selection for the LVOT anatomy

used). These experiments show the ShapeForest to consistently be able to recon-
struct shapes with a lower error than both the global SSM and the multi-modal
parametric shape modeling approach.

In addition we evaluated the ability of the ShapeForest to approximate the
shape manifold with respect to both reconstruction accuracy and specificity for
the AV anatomy. The reconstruction accuracy is measured for several instances of
shape variability as mentioned in the previous paragraph. The specificity is mea-
suring the ability of the SSM to synthesize realistic shapes, similar to shapes from
the ground-truth database. Hereby we synthesize 150 shapes by randomly sam-
pling the shape space coefficients b of the corresponding eigenvectors P within
+2 times the standard deviation. For the specificity evaluation we measure the
distance between the synthetically generated shapes and the closest shape from
the ground truth database. Hereby we compared the cSSM+SSO with the gSSM
for several percentage of preserved variance in the statistical shape models (see
Figure 6). Our proposed method (¢SSM+SSO) has better reconstruction accu-
racy compared to the gSSM with improved or similar specificity for 80%, 90%,
95% and 95% of preserved shape variance. For 99% preserved shape variance
the ¢SSM+SSO reconstruction is in similar rage (¢SSM+SSO has 1.39% lower
reconstruction accuracy) however the specificity improvement using cSSM+SSO
is 18.6%.
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Table 1. Comparison of reconstruction accuracy of our proposed constrained SSM
(and ¢SSM+SSO) trained with ShapeForest, the global SSM and the Gaussian mix-
ture SSM. The error measurements are computed as the mean Euclidean distance (in
millimeters) between the reconstructed shape and the ground-truth test shape. During
reconstruction 90% of total variability within the parametric model was used for each
SSM approach.

gSSM ¢SSM ¢SSM+4SSO MixModel2 MixModel5

LVOT Dataset Error 0.84 0.75 0.71 0.81 0.80
AV Dataset Error 0.78 0.66 0.63 0.71 0.74
Liver Dataset Error 3.27 3.15 3.11 3.32 3.46
0.5
]
0.45
— 0.8 —_
£ £
g 08 :‘:j 0.35
§0.4 E .
02 0.25
0 0.2
80 85 90 95 100 80 85 90 95 100
Shape Variance Shape Variance
(a) Reconstruction accuracy experi- (b) Specificity experiment
ment

Fig. 6. Reconstruction experiment for the AV anatomy showing the reconstruction ac-
curacy and specificity for both gSSM (blue) and our proposed method, the cSSM+SSO
(red)

4.3 Shape Segmentation Evaluation

To examine the performance of the constrained SSMs produced by the Shape-
Forest, we integrated the ¢SSM into a hierarchical CLM workflow to segment
surface shapes from 3D CT images, as illustrated in Figure 7. We apply the same
workflow to segment the AV, LVOT and the liver.

Based on a large set of annotations, we train a position detector for each
of the landmarks L independently. We use a discriminative learning approach
(Probabilistic Boosting Tree) trained with Haar-like features [20] to delineate the
points in the images. Based on the landmarks the constrained SSM is constructed
using the ShapeForest. For the Gaussian mixture model the cluster (representing
an unique Gaussian parametric model) was selected based on the Euclidean
distance of the aligned detected landmarks L to the cluster mean landmark
model.

Based on the detected landmarks and one of the shape space representations
an initial shape model is fitted to the image data. Hereby we use the Pow-
ell optimization consecutively to estimate the coefficients for the first 5 largest
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Fig. 7. Hierarchical shape segmentation workflow

eigenvectors. Starting with the largest eigenvector the best value is found to
match accurately the landmarks L in the images. Hereby no image information
is used to fit the model. Finally an iterative CLM method is applied to locally
refine the initialized shape. The feature response images are computed with the
probabilistic boosting tree and steerable features. Iteratively the current shape
is adjusted along its local curvature based on the feature response images. Later
the updated shape is projected along the basis vectors of each corresponding
shape space, covering 99% of the shape variation in the training data.

Using this workflow, tests were performed to quantitatively evaluate the accu-
racy of shape models produced with constrained SSM’s generated by the Shape-
Forest against shape models produced with the global SSM, and the multi-modal
parametric shape modeling approach described in Section 4.2. Table 2 summa-
rizes the results of these experiments, showing CLM with constrained SSMs
produced by the ShapeForest to consistently outperform both the global SSM
and the multi-modal parametric shape model in each data set. For the LVOT and
AV data set the mixture model improved the accuracy compared to the global
SSM. However it failed for the liver data as the parametric model assignment
based on the Euclidean distance between landmarks was inadequate in many
cases. Execution overhead as a result of utilizing constrained SSMs was minimal
(< 0.02 second per segmented shape) across all data sets.

Figure 8 shows examples of shapes which are used to construct the global
SSM (left column) and the constrained SSM (middle and left column) for the
LVOT, AV and the liver. It demonstrates how the ShapeForest clusters shapes
with similar geometric properties, preserving local detail in the selected shape
population. Parametric models inferred by the ShapeForest approximate more
accurately the variation for a new instance, compared to parametric models build
from the complete shape population.

4.4 Effect of ShapeForest Parameters

To examine the influence of the ShapeForest parameter selection used for con-
strained SSM construction, experiments were performed within the CLM seg-
mentation framework for the LVOT data set. Using the parameters in the ex-
periments as described in Section 4.3 with no SSO applied as a baseline, each of
the five primary parameters that control constrained SSM construction in the
ShapeForest were varied. Results of these experiments are summarized in Figure
5.
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Table 2. Comparison of segmentation accuracy of our proposed constrained SSM (and
¢SSM+SSO0) trained with ShapeForest, the global SSM and the Gaussian mixture SSM.
The error measurements are computed as the mean Euclidean distance (in millimeters)
between the segmented shape and the manually annotated ground-truth shape. 99%
of total variability within the parametric model was used for each SSM approach.

Error in Initial Model Error in Final Model

Method Dataset Shapes Landm Mean STD Median Improv Mean STD Median Improv
gSSM LVOT 283 7 1.65 0.61 1.51 - 1.02 0.41 0.89 —
cSSM LVOT 283 7 1.32 0.59 1.26 +19.69% 0.84 0.33 0.79 +17.64%
cSSM+SSO LVOT 283 7 1.29 0.56 1.23 +21.81% 0.81 0.25 0.78 +20.58%
MixModel2 LVOT 283 7 1.51 0.53 1.46 +8.4% 0.88 0.33 0.80 +13.7%
MixModel5 LVOT 283 7 1.50 0.51 1.38 +9.1% 0.87 0.31 0.76 +14.7%
MixModell0 LVOT 283 7 2.73 1.19 242 -65.5% 1.82 1.48 1.32 -78.4%
gSSM AV 633 13 0.99 0.50 0.85 - 0.83 0.20 0.82 —
cSSM AV 633 13 0.80 0.38 0.79 +19.19% 0.69 0.29 0.63 +16.87%
cSSM+4SSO AV 633 13 0.78 0.32 0.62 +21.21% 0.66 0.19 0.61 +420.48%
MixModel2 AV 633 13 0.85 0.15 0.84 +14.1% 0.76 0.21 0.70 +8.4%
MixModel5 AV 633 13 0.93 0.19 0.91 +10.0% 0.78 0.24 0.75 +6.0%
MixModel10 AV 633 13 1.25 0.64 1.08 -26.3% 0.88 0.20 0.87 -6.0%
gSSM Liver 372 20 3.99 0.95 3.82 - 2.85 0.92 2.68 -
cSSM Liver 372 20 3.42 1.19 3.37 +14.28% 2.29 0.90 2.16 +19.64%
cSSM+SSO Liver 372 20 3.34 1.29 2.86 +16.29% 2.20 0.76 2.16 +22.8%
MixModel2 Liver 372 20 4.05 0.99 3.89 -1.5% 2.88 1.23 2.67 -1.0%
MixModel5 Liver 372 20 4.44 1.28 4.37 -11.2% 3.54 1.54 3.31 -24.2%
MixModel10 Liver 372 20 4.82 1.26 4.94 -20.1% 4.13 1.41 4.16 -44.9%

Number of Decision Trees: The effect of increasing the number of decision
trees used in the ShapeForest has on segmentation accuracy is shown in Figure
5(a). Here, increasing the number of trees decreased the mean error progres-
sively, until reaching a plateau once the number of trees had been increased to
100. Increasing the number of trees beyond this point had negligible impact on
segmentation accuracy while considerably increasing the memory requirements
of the ShapeForest.

Depth of Decision Trees: The effect of increasing the depth of each decision
trees is shown in Figure 5(b). A progressive decrease in mean error was noted
as depth was increased, with optimal results found when trees were left to grow
completely unbounded. Utilizing deeper decision trees increases the memory re-
quirements of the ShapeForest considerably, although contributes only minimal
additional overhead to execution time.

Sampled Data at Each Decision Tree: The degree that the amount training
data used to construct each decision tree can affect mean error is shown in Figure
5(c), with optimal values observed when 30% of all training data is randomly
sampled at each tree. Sampling a small amount of data resulted in trees that
shared an insufficient amount of shapes to accurately obtain a set of frequently
occurring shapes, while sampling a large amount of data resulted in individual
trees being too similar to each other, minimizing the benefit gained from random
sampling.
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Percentage of Shapes used in SSM Construction: Figure 5(d) shows the
effects of increasing the percentage of frequently occurring shapes used to con-
struct the constrained SSM, based on the shape frequency histogram computed
based on the aggregation of the results of all decision trees in the ShapeForest.
Taking the top 30% most frequently occurring shapes produced the lowest error.

Shape Selection Optimization: Usage of the optimal SSO step was found to
be able to improve the accuracy of shape detection, as shown in Figure 5(e),
with optimal values found in the range of —0.05 to +0.05. Progressively lower
values caused each tree to move back to their root node, with progressively higher
values preventing any traversal upwards from the selected leaf node.

Fig. 8. Aligned Shapes using GPA for the global SSM (left) and inferred shapes with

ShapeForest used to compute the constrained (mid, right) SSMs for the LVOT (top),
AV (mid) and Liver (bottom) anatomy

5 Conclusion

In this paper we have presented ShapeForest, a novel shape model representa-
tion trained with decision trees and geometric features. It enables modeling of
complex shape variation, preserves local detail in the training data and incor-
porates lower-level information in form of sparse landmarks during shape space
learning and shape inference. Quantitative experiments on three separate med-
ical data sets have shown that the usage of the constrained statistical shape
model produced by the ShapeForest leads to substantial improvement in shape
modeling and shape segmentation when incorporated in a Constrained Local
Model framework.
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