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Abstract. In this paper, we introduce and investigate a sparse additive
model for subspace clustering problems. Our approach, named SASC
(Sparse Additive Subspace Clustering), is essentially a functional exten-
sion of the Sparse Subspace Clustering (SSC) of Elhamifar & Vidal [7] to
the additive nonparametric setting. To make our model computationally
tractable, we express SASC in terms of a finite set of basis functions,
and thus the formulated model can be estimated via solving a sequence
of grouped Lasso optimization problems. We provide theoretical guar-
antees on the subspace recovery performance of our model. Empirical
results on synthetic and real data demonstrate the effectiveness of SASC
for clustering noisy data points into their original subspaces.

1 Introduction

This paper deals with the problem of subspace clustering which assumes that a
collection of data points lie near a union of unknown linear subspaces and aims to
fit these data points to their original subspaces. This is an unsupervised learning
problem in that we do not know in advance to which subspace these data points
belong. It is thus of interest to simultaneously cluster the data points into multi-
ple subspaces and uncover the low-dimensional structure of each subspace. Sub-
space clustering has been widely applied in numerous scientific and engineering
domains, including computer vision [30,35], data mining [20,1], networks anal-
ysis [8,10], switched system identification in control [2,16] and computational
biology [17,11]. In many such applications, the lower dimensional representa-
tions are characterized by multiple low-dimensional manifolds which can be well
approximated by subspaces with only slightly higher dimensions than those of
the underlying manifolds. For example, in a video sequence, geometric argument
shows that trajectories of same rigid-body motion lie on a subspace of dimen-
sion 4 [25]. The partitions of observed trajectories correspond to different rigid
objects and thus are useful for understanding the scene dynamics. The task of
finding these partitions serves as a standard application of subspace clustering
which is known as multi-body motion segmentation [30] in computer vision.

1.1 Problem Setup and Motivation

Assume that the underlying K subspaces {Sk}Kk=1 of Rp have unknown dimen-
sions {dk}Kk=1 respectively. Let Y ⊂ R

p be a given data set of cardinality n which
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may be partitioned as Y =
⋃K

k=1 Yk with each Yk being a collection of nk vec-
tors that are distributed around subspace Sk. The task of subspace clustering is
to approximately segment the point points in Y into their respective underlying
subspaces. Due to the presence of noise, it is usually assumed in real applications
that each observation y = [y(1), ..., y(p)]� ∈ Y is generated from the following
superposition stochastic model [24]:

y = x+ e,

where x is a sample belonging to one of the subspaces and e is a random per-
turbation term with a bounded Euclidean norm. For noiseless samples, it is
intuitive to assume that these points are distributed uniformly at random on
each subspace. The state-of-the-art robust subspace clustering algorithms take
advantage of the so-called self-expressiveness property of linear subspaces, i.e.,
each noiseless data point from one of the subspaces can be reconstructed by a
combination of the other noiseless data points from the same subspace. Formally,
the self-expressiveness model is defined as:

Definition 1 (Self-Expressiveness (SE) property [7]). For each data point
xi, there exist coefficients {θij} such that xi =

∑
j �=i θijxj.

Note that the coefficients {θij} are sparse as we assume that the subspace
Sk has dk-dimensionality. Ideally, it is expected that the non-zero coefficients
are from those points belonging to the same subspace as xi, and thus the joint
parameter matrix Θ = (θij) ∈ R

n×n has block diagonal structure with blocks
corresponding to clusters. Since yi = xi+ei, the SE property of clean data leads
to the following noisy linear representation model for the noisy observations:

yi =
∑

j �=i

θijyj + zi, (1)

where the perturbation term zi = ei −
∑

j �=i θijej . Inspired by this intuitive
property, Elhamifar & Vidal [7] introduced the SSC (Sparse Subspace Cluster-
ing) approach using sparse reconstruction coefficients as similarity measures; the
sparse coefficients are obtained by reconstructing each sample yi using all the rest
samples {yj}j �=i, while regularizing the coefficient vector by �1-norm to promote
sparsity. Hence SSC amounts to solving a sequence of �1-minimization problems
(for noiseless data) or Lasso problems (for noisy data) which are computationally
tractable and statistically efficient in high dimensional setting [24][23]. The task
of clustering is then finalized by applying a spectral clustering method [18] to a
symmetric affinity matrix constructed from these representation coefficients.

While SSC has strong theoretical guarantees and impressive practical per-
formances, it essentially fits the data with a high dimensional linear regression
model in (1). Unfortunately, due to the presence of distortion beyond random
additive perturbation, real-world observations often do not conform exactly to
such a linear model assumption.
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1.2 Our Contribution

In this paper, we relax the strong linear model assumption made by SSC and in-
vestigate a novel class of nonparametric subspace clustering models called SASC
(Sparse Additive Subspace Clustering). We assume that for each observed data
point yi, there exists a potentially nonlinear transformation fi such that the
transformed data point {fi(yi)} obeys the noisy SE model in (1). This problem
setup is more challenging than SSC in the sense that the transformations {fi},
subspaces {Sk} and random noises are all unknown. Indeed, SSC is a special
case of SASC when fi(a) = a. Our method combines the ideas from SSC and
SpAM which is a sparse additive model for nonparametric regression tasks [22].
To make our model computationally tractable, we follow SpAM to project the
unknown fi onto a functional subspace with a known basis (e.g., the truncated
Fourier basis). While the two methods share some common principles, there are
two fundamental differences between SASC and SpAM: i) obviously the problem
setups are different; ii) as the regressors are dependent on noisy data, we need
to deal with noisy design matrix which was not addressed by SpAM.

We provide some theoretical guarantees on the subspace recovery capabil-
ity of our model. Since there are no “true” parameters to compare the solution
against, a subspace clustering algorithm succeeds if each data point is represented
by those data points belonging to the same subspace. Therefore, it is desirable
that the output representation coefficients matrix has block diagonal structure
(under proper arrangement of data). We conduct a deterministic sparsity re-
covery analysis for our model followed by a stochastic extension. Our results
show that under mild conditions, the underlying diagonal block structure of the
representation matrix can be efficiently recovered with high probability. We test
the numerical performance of our model on simulated and real data. The exper-
imental results show that in many cases our model significantly outperforms the
state-of-the-art methods in in terms of clustering accuracy.

1.3 Notation and Outline

Notation. We denote scalars by lower case letters (e.g., x and a), and vec-
tors/matrices by bold face letters (e.g. x and A). The Euclidean norm of a
vector x is denoted by ‖x‖. Given a disjoint group structure G over a vector x,
we use the notation xg as the tuple formed by the components of x belonging
to group g ∈ G. We define ‖x‖G,2 =

∑
g∈G ‖xg‖ and ‖x‖G,∞ = maxg∈G ‖xg‖.

With this notation, we extend the signum function as sgn(xg) = xg/‖xg‖ in
which we adopt the convention that sgn(0) can be taken to be any vector with
norm less than or equal to one. Also, given a disjoint group structure G over the
rows of a matrix A, we denote ‖A‖G,∞ = maxi ‖Ai,·‖G,2 where Ai,· is the i-th
row of A. For T ⊆ G, we define T c = G \ T . The element-wise infinity norm of
a matrix A is denoted by ‖A‖∞,∞ and the row-wise infinity norm by ‖A‖∞.
Outline. The remainder of this paper is organized as follows: Some prior works
are briefly reviewed in §2. We introduce in §3 the sparse additive subspace clus-
tering model along with statistical analysis. Monte-Carlo simulations and real
data experiments are presented in §4. Finally, we conclude this paper in §5.
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2 Prior Work

In the last decade, various algorithms have been proposed for subspace cluster-
ing. A vast body of these algorithms are contributed by researchers in computer
vision to address problems such as multi-body motion segmentation, face clus-
tering and image compression. Among them, several representative algorithms
include factorization based methods [6], algebraic methods such as General-
ized Principal Component Analysis (GPCA) [29] and Local Subspace Affinity
(LSA) [34], sparsity/low-rank induced methods such as Sparse Subspace Clus-
tering (SSC) [7] and Low Rank Representation (LRR) [12,19], to name a few.
Some other well-known methods include K-plane [3] and Spectral Curvature
Clustering (SCC) [4]. For a comprehensive review and comparison of subspace
clustering algorithms, we refer the interested readers to the tutorial [28] and
references there in.

In the current investigation, we are particularly interested in a popular class of
subspace clustering methods which are built upon the SE property as defined in
Definition 1. Inspired by this intuitive property, Elhamifar & Vidal [7] introduced
the SSC approach using sparse reconstruction coefficients as similarity measures.
An identical framework was independently considered by Cheng et al. [5] to
construct �1-graph for subspace learning and semi-supervised image analysis. In
order to further capture the global structures of data, Liu et al. [12] proposed
LRR to compute the reconstruction collaboratively by penalizing the nuclear
norm of the joint representation matrix. They also provided a robust version
to resist random perturbation and element-wise sparse outliers. More recently,
Lu et al. [15] proposed a unified convex optimization framework for SE based
subspace clustering of which SSC and LRR can be taken as special cases. Most
existing SE based subspace clustering methods are restricted to linear or affine
models. There is a recent trend to extend SE models to nonlinear manifolds. For
example, Patel et al. [21] proposed Non-Linear Latent Space SSC (NLS3C) as
a nonlinear extension of SSC via kernel embedding. Our work advances in this
line of research.

Theoretical justification of SSC has received significant interests from com-
puter vision researchers as well as statisticians. It is shown in [7] that when sub-
spaces are disjoint, i.e. they are not overlapping, the block structure of affinity
matrix can be exactly recovered. Similar block structure guarantees were estab-
lished for LRR and LSR (Least Square Regression) [15]. When data is noise free,
Soltanolkotabi & Candès[23] provided a geometric functional analysis for SSC
which broadens the scope of the results significantly to the case where subspaces
are allowed to be overlapping. Under the circumstances of corrupted data, Wang
& Xu[32] and Soltanolkotabi et al. [24] independently showed that high statisti-
cal efficiency could still be achieved by SSC when the underlying subspaces are
well separated and the noise level does not exceed certain geometric gap.

As nonparametric extensions of linear models, additive models [9] assume
that the nonlinear multivariate regression function admits an additive combina-
tion of univariate functions, one for each covariate. In high dimensional analysis,
progress has been made on additive models by imposing various sparsity-inducing
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functional penalties [22,36]. More recently, the idea of component-wise nonpara-
metric extensions has been investigated in Gaussian graphical models learning
[14,13,33]. Our approach shares some spirits with these methods in the sense that
we model for each data point a nonlinear transformation.

3 Sparse Additive Subspace Clustering (SASC)

In this section, we propose the SASC (Sparse Additive Subspace Clustering)
method. We first introduce in §3.1 an additive self-expressive model as a non-
parametric extension of the SE model (1). Then we investigate the related pa-
rameter estimation and clustering issues in §3.2. Finally, we provide some sparse
recovery guarantees on SASC in §3.3.

3.1 Additive Self-Expressive Model

Our method follows the same problem setup as discussed in §1.1. We further as-
sume that there exist n univariate functions {fi(·)}ni=1 such that the transformed
data points {fi(yi)}ni=1 obey the following superposition model:

fi(yi) = xi + ei,

where fi(yi) = [fi(y
(1)
i ), ..., fi(y

(p)
i )]� and ei’s are random noises. From the SE

property of the clean data points{xi},

fi(yi) =
∑

j �=i

θijfj(yj) + zi. (2)

Clearly, this is a nonparametric extension of the noisy linear model (1). It de-
pends on {fi} as well as the coefficient matrix Θ, all of which are unknown in
advance and need to be estimated from data. In this paper, we assume fi �≡ 0
to avoid degeneration.

Remark 1. One may compare the additive self-expressive model in (2) with the
SpAM model for sparse nonparametric regression [22]. Given a random response
y and a fixed regressor x = (xj), SpAM considers the additive regression model
y =

∑
j fj(xj) + ε in which fj ’s are unknown. Although the basic ideas are

similar, the model in (2) is more general than SpAM as its response fi(yi) is
also nonparametric. Moreover, the regressors {fj(yj)}j �=i in (2) are random.
Such differences contrast our method to SpAM.

Remark 2. It is noteworthy that Patel et al. [21] recently proposed NLS3C as a
kernel extension of SSC to nonlinear manifolds. Without imposing latent space
assumption, NLS3C essentially considers the following linear model in a extended
feature space F :

φ(yi) =
∑

j �=i

θijφ(yj) + zi,
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where φ(·) is a feature map from R
p to F . By using standard kernel trick, NLS3C

can be formulated as an �1-regularized kernel regression problem. Although shar-
ing some similar elements, our model in (2) is apparently different from the above
NLS3C model in two aspects: (i) NLS3C uses an arbitrary feature map φ over
all the data points for nonlinear embedding while our model allows different
nonlinear functions {fi} to be applied to different data points {yi}, without em-
bedding; and (ii) the kernel matrix appeared in NLS3C is typically user specified
while in our model the univariate functions fi are unknown and as we will see
shortly that they can be learned in a data-driven manner.

Identifiability. In the nonparametric SE model (2), since both the coefficients
θij and the functions fi are all unknown, there might be different interpretations
of the same data which lead to different segmentations. For instance, as an ex-
treme example, one could pick fi identically equal to a constant. This would put
all the points in a single cluster, independently from their original distribution.
Thus, in general, the model (2) is unidentifiable.

To make this model tractable, we need to impose certain restrictions on the
space from which the functions fi are drawn. To this end, we propose to express
{fi(yi)} appeared in (2) in terms of basis functions. For each data point yi, we
denote {ψi�(·), � = 1, 2, ...} as a set of uniformly bounded, orthonormal functional
bases with respect to proper Lebesgue measure. We consider

fi(yi) =

q∑

�=1

αi�ψi�(yi), (3)

where q is the truncation order parameter. It is well-known that for sufficiently
large q, the above defined fi can accurately approximate the function f̃i(yi) =∑∞

�=0 αi�ψi�(yi) defined in terms of infinity basis. Therefore, in this paper we will
only pursue the truncated formulation (3) which is more of practical interests.
For the sake of identifiability, we assume that αi� �= 0 for all pairs (i, �). By
combining (2) and (3), we obtain

ψi�(yi) = −
∑

t�=�

αit/αi�ψit(yi) +
∑

j �=i

θij

q∑

t=1

αjt/αi�ψjt(yj) + εi�. (4)

Obviously, this is a linear model with respect to the data image under the
(known) basis functions and thus is generally identifiable. Next, we will show
how to use such a linear model for nonlinear subspace clustering.

Re-Parametrization. One issue with the linear model (4) is that its parame-
ters αi� and θij are coupled which complicates the optimization and analysis. To
address this challenge, we introduce the following re-parametrization scheme:

βi�
it := αit/αi�, for t �= � ; βi�

jt := θijαjt/αi�, for j �= i.
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Then, for each pair (i, �) ∈ {1, ..., n} × {1, ..., q}, we arrive at the following
Additive Self-Expressive (ASE) model:

ψi�(yi) =
∑

t�=�

βi�
itψit(yi) +

∑

j �=i

q∑

t=1

βi�
jtψjt(yj) + εi�, (5)

where {βi�
it , t = 1, ..., �− 1, � + 1, ..., q} and {βi�

jt, j �= i, t = 1, ..., q} are unknown
parameters to be estimated.

Remark 3. Note that the introduced re-parametrization is not invertible, and
thus it is hopeless to recover the parameters θij and αi� (i.e., fi) of the original
model in (4) from those of the ASE model in (5). Fortunately, for the purpose
of subspace clustering, what really matters in (4) is the sparse pattern of the
parameters θij rather than their exact values and the values of αi�. Since we have
assumed αi� �= 0, it is immediately known that βi�

jt = 0 if and only if θij = 0. That
is, the sparse pattern of coefficients θij is encoded in the group sparse structure
of βi�

jt. One interesting implication of this observation is that we may hopefully
estimate the sparse pattern of the original model in (4) via estimating that of
the re-parameterized model in (5). As we will see shortly that an appealing merit
of expression (5) is that it suggests a convex solver which eases the consequent
optimization and analysis. Therefore, in the following analysis, we choose to use
expression (5) for sparse pattern discover, even though its parameters cannot be
readily used to estimate the nonlinear functions {fi}.

As discussed in Remark 3, it is expected that the parameters {βi�
jt, j �= i, t =

1, ..., q} exhibit group-level sparsity in terms of the groups defined over the q
bases. In the next subsection, we will propose to use grouped Lasso programming
to estimate these parameters.

3.2 Parameter Estimation and Clustering

Let us abbreviate ψi� = ψi�(yi), Ψi = [ψi1, ...,ψiq] and Ψ = [Ψ1,Ψ2, ...,Ψn].
With obvious notations βi = [βi1, ..., βiq]

� and β = [β�
1 , ...,β

�
n ]

�. Based on
these notations, we naturally define a group structure as G = {1, 2, ..., n}, i.e.,
the elements inside each βi form a group. In order to estimate ASE model (5)
at a given pair of (i, �), we consider a grouped lasso estimator which is defined
as the solution to the following convex optimization problem:

β̂i� = argmin
β

1

2p
‖ψi� − Ψβ‖2 + λ‖β‖G,2 subject to βi� = 0, (6)

where λ > 0 is the regularization strength parameter and the constraint βi� = 0
is imposed to leave out trivial solutions. The above grouped Lasso estimator is
strongly convex, and thus admits a unique global minimizer. In this paper, we use
a standard proximal gradient descent algorithm [27] to find the optimal solution

β̂i�. After recovering β̂i� for each index pair (i, �), we define a similarity matrix

W = (wij) in which wij =
√∑q

�=1

∑q
t=1(β

i�
jt)

2 and set the affinity matrix to be
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C = |W | + |W |�. Then we construct clusters by applying spectral clustering
algorithms (e.g., [18] as conventionally used in literature) to the affinity matrix
C. A high level summary of our SASC method is described in Algorithm 1.

Algorithm 1. Sparse Additive Subspace Clustering (SASC)

Input : A collection of data vectors Y = {yi ∈ R
p}ni=1 and a set of pre-fixed

functional bases {ψi�(·), i = 1, ..., n, � = 1, ..., q}.
1. Compute ψi� = ψi�(yi) and set Ψi = [ψi1, ...,ψiq ], Ψ = [Ψ1,Ψ2, ...,Ψn].
2. for (i, �) ∈ {i = 1, 2, ...n} × {1, ..., q} do

Estimate the minimizer β̂i� of the grouped Lasso programming (6).
end
3. Construct the n-by-n similarity matrix W with entry (i, j) defined as

wij =
√∑q

�=1

∑q
t=1(β

i�
jt)

2. Form the affinity matrix by C = |W |+ |W |�.

4. Let γ1 ≥ γ2 ≥ ... ≥ γn be the sorted eigenvalues of the normalized Laplacian
matrix of C. Estimate the number of clusters as

K̂ = n− argmax
i=1,...,n−1

(γi − γi+1).

5. Apply a spectral clustering method to the affinity matrix C to produce K̂

disjoint clusters {Yk}K̂k=1 of the data.

Output: Constructed Clusters {Yk}K̂k=1 of Y.

3.3 Theoretical Analysis

This subsection is devoted to analyzing the sparse recovery performance of
SASC. We are particularly interested in the conditions under which the grouped
Lasso estimator (6) may reliably select out points sharing the same underlying

subspace as yi over those not. In other words, the hope is that whenever β̂i�
j �= 0,

yi and yj belong to the same subspace. This is formally defined as the following
concept of additive subspace detection property:

Definition 2 (Additive Subspace Detection Property). LetW be the con-
structed similarity matrix of Step 3 of Algorithm 1. We say the additive subspace
detection property holds if (1) for all (i, j) obeying wij �= 0, xi and xj belong to
the same subspace; (2) for all i, the entries {wij}j �=i are not all zero.

This property ensures that the weight matrixW has a block diagonal structure
with each block representing a subspace cluster, and thus the affinity matrix C.
In the subsequent subsections, we will provide some sufficient conditions under
which the additive subspace detection property holds for Algorithm 1. We start
with a deterministic analysis and then extend the results to stochastic settings.

A Deterministic Analysis. Let us consider the ASE model in (5) as a de-
terministic model. Without loss of generality, we assume that the columns of
Ψ are arranged as Ψ = [ΨT1 , ...,ΨTK ] in which the sub-matrix ΨTk

contains
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those columns associated with Y(k) from the subspace Sk. Let β̄
i� be the true

parameter vector for the ASE model in (5), i.e.,

ψi�(yi) =
∑

t�=�

β̄i�
itψit(yi) +

∑

j �=i

q∑

t=1

β̄i�
jtψjt(yj) + εi�.

The following is our deterministic result on the additive subspace detection prop-
erty of SASC.

Theorem 1. Assume that there exists a universal constant δ ∈ (0, 1) such that
for any k ∈ {1, ...,K}, ‖(Ψ�

Tk
ΨTk

)−1Ψ�
Tk
ΨT c

k
‖T c

k
,∞ ≤ 1− δ. If for any yi ∈ Y(k),

the regularization parameter λ satisfies the following two conditions

(i) ∀� ∈ {1, ..., q},

λ >

∥
∥
∥Ψ�

T c
k
ψi� − Ψ�

T c
k
ΨTk

(Ψ�
Tk
ΨTk

)−1Ψ�
Tk
ψi�

∥
∥
∥
T c
k ,∞

pδ
,

(ii) ∃� ∈ {1, ..., q},yj ∈ Y(k), t ∈ {1, ..., q} such that

λ <
|β̄i�

jt|∥
∥
∥
∥

(
1
pΨ

�
Tk
ΨTk

)−1
∥
∥
∥
∥
Tk,∞

−
∥
∥
∥
∥
1

p
Ψ�

Tk
(ψi� − Ψβ̄i�)

∥
∥
∥
∥
Tk,∞

,

then the additive subspace detection property holds.

A proof of this result is provided in Appendix A.

Remark 4. The constant δ ∈ (0, 1) in the theorem is known as incoherence pa-
rameter in compressive sensing literature [31]. The main message this theorem
conveys is that if the K subspaces respectively spanned by the basis {ΨTk

}Kk=1

are weakly correlated to each other, and the regularization parameter λ is well
bounded from both sides, then the additive subspace detection property holds.
Concerning the compatibility between the condition (i) and condition (ii), if the
residual term ψi

� − Ψβ̄i� is well bounded and minjt |β̄i�
j,t| is sufficiently large,

then these two conditions are compatible. This point will be made more explicit
in the following statistical analysis

A Statistical Analysis. We further consider the ASE model (5) as a stochastic
model in which the design Ψ and the noise ε are both random. In this setting,
we assume that the ‖Ψ‖∞,∞ ≤ c (which is reasonable as the basis functionals
{ψi�(·)} are assumed to be uniformly bounded) and the noise levels are bounded
by σ. The following is our main result on such a stochastic model.

Theorem 2. Assume that there exist two universal constants δ ∈ (0, 1) and
l > 0 such that for any k ∈ {1, ...,K}, ∥∥E[(Ψ�

Tk
ΨTk

)−1Ψ�
Tk
ΨT c

k
]
∥
∥
T c
k ,∞

≤ 1 − 2δ

and maxk{‖E[( 1pΨ�
Tk
ΨTk

)−1]‖Tk,∞} ≤ 0.5l. If p is sufficiently large and for any

yi ∈ Y(k) the regularization parameter λ satisfies the following two conditions
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(i) ∀� ∈ {1, ..., q},
λ >

cσ

δ

√
n

pη
,

(ii) ∃� ∈ {1, ..., q},yj ∈ Y(k), t ∈ {1, ..., q} such that

λ <
|β̄i�

jt|
l

− cσ

√
n

pη
,

then the additive subspace detection property holds with probability at least 1−nη.
A proof of this theorem is provided in Appendix B.

Remark 5. Clearly, when |β̄i�
jt| > (1 + 1/δ)lcσ

√
n/(pη), the conditions (i) and

(ii) are compatible, i.e., the feasible interval of regularization parameter λ is not
empty. In this theorem, the dependence of the bounds on p and n is by no means
optimal. Indeed, we use the relatively loose Chebyshev’s inequality throughout
the derivation to bound the concentration behavior. The reason that the much
tighter Chernoff’s inequality is not directly applicable here is that the entries
of each basis vector ψi� are dependent to each other when p ≥ dk. Although
it is still possible to obtain sharper bounds using Chernoff’s inequality with
stronger assumptions and more involved analysis, we choose not to pursue in that
direction for the sake of presentation clarity. Moreover, in the high dimensional
settings where p� n, the bounds stated in Theorem 2 are still meaningful.

4 Experiments

We evaluate the performance of SASC for robust subspace clustering on syn-
thetic and real data sets. We first investigate subspace detection performance
using Monte-Carlo simulation, and then we apply our method to a motion seg-
mentation benchmark data set.

4.1 Monte-Carlo Simulation

This is a proof-of-concept experiment. The purpose of this experiment is to
confirm that when the observed data points from each subspace are contaminated
by a highly nonlinear transformation, our approach can be significantly superior
to existing subspace clustering models for inferring.

Simulated Data. In our simulation study, we generate 5 overlapping subspaces
{Sk}5k=1 ⊂ R

1000 whose bases {Uk}5k=1 are generated by Uk+1 = RUk, 1 ≤ k ≤
4, where R represents a random rotation matrix and U1 a random orthogonal
matrix of dimensions 1000 × 50. Thus each subspace has a dimension of 50.
20 data vectors are sampled from each subspace by X(k) = UkDk, 1 ≤ k ≤
5 with Dk being a 50 × 20 matrix whose entries are i.i.d. standard Gaussian
variables. The observed samples are generated as Y (k) = f−1(X(k)+ε(k)) where
f is a smooth invertible function and ε(k) is Gaussian noise. We consider two
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transformations: (i) the polynomial transform: f(a) = (x − 0.2)3; and (ii) the
logarithm transform: f(a) = − log a. Note that f is unknown to our algorithm.
For the former transformation, we fit the data to ASE model (5) with polynomial
basis, and Fourier basis for the latter.

Comparison of Models and Evaluation Criterion. We compare the per-
formance of our estimator to two representative SE based subspace clustering
methods: SSC [7] and LRR [12]. Since the subspace information of the data
is available, we measure the performance by Detection Precision of the top k
links on the constructed graph (corresponding to the top 2k entries in the affin-
ity matrix C). A link is regarded as true if and only if it connects two data
points belonging to the same subspace. Also, we use the clustering accuracy as
a measurement to evaluate the overall clustering performance.

Results. Figure 1 shows the subspace link detection precision curves on the sim-
ulated data. From these curves we can see that SASC is significantly better than
SSC and LRR. The clustering accuracies of the considered methods are listed in
Table 1. It can be seen that SASC succeeds while SSC and LRR perform poorly
on these two synthetic data sets. This result makes sense as SASC explicitly
models the underlying nonlinear perturbations which are not addressed by SSC
and LRR. Concerning the running time, SASC is slightly slower than SSC be-
cause it needs to decompose each data point into the combination of multiple
basis and then apply grouped Lasso programming on these extracted basis.

4.2 Motion Segmentation Data

We further evaluate SASC on Hopkins 155 motion dataset [26] which is a bench-
mark for subspace clustering study. This data set consists of 120 sequences of
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Fig. 1. Precision of the detected top k subspace links on the simulated data

Table 1. Clustering accuracies on the simulated data

Methods SASC SSC LRR

Poly. Trans. f(a) = (a− 0.2)3 1.00 0.58 0.36
Log. Trans. f(a) = − log a 1.00 0.91 0.72
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two motions and 35 sequences of three motions (a motion corresponding to a
subspace). Each sequence is a sole segmentation task and so there are 155 sub-
space segmentation tasks totally. On average, each sequence of two motions has
N = 266 point trajectories and F = 30 frames, while each sequence of three
motions has N = 398 point trajectories and F = 29 frames. We compare the
performance of SASC with SSC and LRR which are two representative state-of-
the-art subspace clustering algorithms on this data. We follow the experimental
protocol in [7] to apply the considered algorithms on the original 2F -dimensional
trajectories and on the 4n-dimensional subspace (n is the number of subspaces)
extracted by PCA. In this experiment, we implement SASC with Fourier basis.

Table 2(a) lists the mean and median clustering errors of the considered meth-
ods on the original 2F -dimensional data points. It can be clearly seen from this
table that SASC performs favorably. Table 2(b) lists the clustering errors of the
considered methods on the 4n-dimensional data points obtained by applying
PCA. In this setting, SASC achieves the lowest clustering errors on two motion
sequences and all sequences, while SCC is the best on three motion sequences.
Overall, the observation is that SASC performs the best in most cases. This
group of results reveal that the motion trajectories in Hopkins 155 might be
contaminated by nonlinear distortions that can be robustly captured by SASC.

Table 2. Hopkins 155: Mean and median clustering errors (%) of the three considered
algorithms

(a) 2F -dimensional data points

Methods 2 Motions 3 Motions All
Mean Med. Mean Med. Mean Med.

SASC 0.90 0 3.33 0.60 1.45 0
SSC 1.52 0 4.40 0.56 2.18 0
LRR 2.13 0 4.03 1.43 2.56 0

(b) 4n-dimensional data points by PCA

Methods 2 Motions 3 Motions All
Mean Med. Mean Med. Mean Med.

SASC 0.91 0 4.46 0.81 1.71 0
SSC 1.83 0 4.40 0.56 2.41 0
LRR 3.41 0 4.86 1.47 3.74 0

5 Conclusions

In this paper, we proposed SASC as a novel nonparametric subspace clustering
method. The main idea is to assume that there exists an unknown function for
each data point such that the elementwise transformed data point lies near a
subspace. This assumption allows us to capture complex perturbations beyond
additive random noises in the observed data. In order to make our model compu-
tationally tractable, we project the unknown univariate mapping functions onto
proper truncated functional spaces. Based on the self-expressiveness property of
the clean data, SASC can be formulated as a sequence of nonparametric additive
models whose parameters can be estimated via grouped Lasso programming. Sta-
tistical analysis shows that under mild conditions, with high probability, SASC
is able to successfully recover the underlying subspace structure. Experimen-
tal results show that SASC is consistently better than or comparable to the
best state-of-the-art methods in clustering accuracy, at a cost of only slightly
increased computational time.
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A Proof of Theorem 1

We need a technical lemma before proving the theorem. Given a response z ∈ R
p

and a design matrix Ψ ∈ R
p×n, let us consider the following general grouped

Lasso estimator associated with a disjoint group structureG over the parameters:

β̂ = argmin
β

1

2p
‖z − Ψβ‖2 + λ‖β‖G,2. (7)

Lemma 1. Let T ⊆ G be a subset of the groups. Assume that there exists a
universal constant δ ∈ (0, 1) such that ‖(Ψ�

T ΨT )
−1Ψ�

T ΨT c‖T c,∞ ≤ 1 − δ. If the
regularization parameter λ satisfies

λ >
‖Ψ�

T cz − Ψ�
T cΨT (Ψ

�
T ΨT )

−1Ψ�
T z‖T c,∞

pδ
,

then

(a) any optimal solution

β̂ = argmin
β

1

2p
‖z − Ψβ‖2 + λ‖β‖G,2

must satisfy β̂T c = 0.
(b) Moreover, for any β̄ satisfying β̄T c = 0, the element-wise estimation error

is bounded by

‖β̂ − β̄‖∞ ≤
∥
∥
∥
∥
∥

(
1

p
Ψ�

T ΨT

)−1
∥
∥
∥
∥
∥
T,∞

(∥
∥
∥
∥
1

p
Ψ�

T (z − Ψβ̄)
∥
∥
∥
∥
T,∞

+ λ

)

.

A proof of this lemma is given in the supplementary material. We are now in
the position to prove Theorem 1.

Proof (of Theorem 1). Let us consider a fixed data point yi ∈ Y(k). From the

condition (i) and the part (a) of Lemma 1 we know that ∀� ∈ {1, ..., q}, β̂i�
T c
k
= 0.

From the condition (ii) and the part (b) of Lemma 1 we obtain that ∃� ∈
{1, ..., q},yj ∈ Y(k), t ∈ {1, ..., q}, such that β̂i�

jt �= 0. Combining these two

results and from the construction ofW we get that wij = 0 whenever yj /∈ Y(k),
and ∃yj ∈ Y(k), j �= i such that wij �= 0. This verifies the additive subspace
detection property.
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B Proof of Theorem 2

We start with a technical lemma needed in the proof. Let us consider the fol-
lowing stochastic model

z = Ψβ̄ + ε,

where the design Ψ is random and ε = [ε1, ..., εp] are p i.i.d. Gaussian noisewith
zero mean and variance σ2.

The following lemma is a statistical extension of Lemma 1.

Lemma 2. Let T ⊆ G be a subset of the groups. Assume that there exists a
constant δ ∈ (0, 1) and a constant l > 0 such that

∥
∥E[(Ψ�

T ΨT )
−1Ψ�

T ΨT c ]
∥
∥
T c,∞ ≤ 1− 2δ,

∥
∥
∥
∥
∥
E

[(
1

p
Ψ�

T ΨT

)−1
]∥
∥
∥
∥
∥
T,∞

≤ 0.5l.

If p is sufficiently large and the regularization parameter λ satisfies

λ >
cσ

δ

√
n

pη
,

then with probability at least 1− η

(a) any optimal solution

β̂ = argmin
β

1

2
‖z − Ψβ‖2 + λ‖β‖G,2

must satisfy β̂T c = 0.
(b) Moreover, for any β̄ satisfying β̄T c = 0, then the element-wise estimation

error is bounded by

‖β̂ − β̄‖∞ ≤ ‖(Ψ�
T ΨT )

−1‖T,∞(‖Ψ�
T (z − Ψβ̄)‖T,∞ + λ).

A proof of this lemma is provided in the supplementary material. Now we prove
Theorem 2.

Proof (of Theorem 2). Let us consider a fixed data point yi ∈ Y(k). From the

condition (i) and the part (a) of Lemma 2 we know that ∀� ∈ {1, ..., q}, β̂i�
T c
k
= 0

holds with probability at least 1− η. It is easy to check that with probability at
least 1− η

∥
∥
∥
∥
1

p
Ψ�

Tk
(ψi

� − Ψβ̄i�)

∥
∥
∥
∥
Tk,∞

=

∥
∥
∥
∥
1

p
Ψ�

Tk
εi�

∥
∥
∥
∥
Tk,∞

≤ cσ

√
n

pη
.

When p is sufficiently large, from the condition (ii) and the part (b) of Lemma 2

we obtain that ∃� ∈ {1, ..., q},yj ∈ Y(k), t ∈ {1, ..., q}, such that β̂i�
jt �= 0 holds

with probability 1 − η. Combining these two results and from the construction
of W we get that wij = 0 whenever yj /∈ Y(k), and ∃yj ∈ Y(k), j �= i such that
wij �= 0 holds with probability 1− η. By union of probability, we know that the
additive subspace detection property holds with probability at least 1−nη. This
proves the claim.



658 X.-T. Yuan and P. Li

References

1. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. In: Proceedings of the
1998 ACM SIGMOD International Conference on Management of Data (SIGMOD
1998), pp. 94–105 (1998)

2. Bako, L.: Identification of switched linear systems via sparse optimization. Auto-
matica 47(4), 668–677 (2011)

3. Bradley, P.S., Mangasarian, O.L.: K-plane clustering. Journal of Global Optimiza-
tion 16(1), 23–32 (2000)

4. Chen, G., Lerman, G.: Spectral curvature clustering (scc). International Journal
of Computer Vision 81(3), 317–330 (2009)

5. Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.: Learning with �1-graph for image
analysis. IEEE Transactions on Image Processing 19(4), 858–866 (2010)

6. Costeira, J., Kanade, T.: A multibody factorization method for independently mov-
ing objects. International Journal of Computer Vision 29(3), 159–179 (1998)

7. Elhamifar, E., Vidal, R.: Sparse subspace clustering: Algorithm, theory, and appli-
cations. IEEE Transactions on Pattern Analysis And Machine Intelligence 35(11),
2765–2781 (2013)

8. Eriksson, B., Balzano, L., Nowak, R.: High-rank matrix completion. In: Proceed-
ings of the 15th International Conference on Artificial Intelligence and Statistics
(AISTATS 2012), pp. 373–381 (2012)

9. Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman & Hall/CRC
(1990)

10. Jalali, A., Chen, Y., Sanghavi, S., Xu, H.: Clustering partially observed graphs via
convex optimization. In: Proceedings of the Twenty-Eighth International Confer-
ence on Machine Learning (ICML 2011). ACM (2011)
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