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Abstract

Spatial normalization of positron emission tomography (PET) images is essential for population 

studies, yet work on anatomically accurate PET-to-PET registration is limited. We present a 

method for the spatial normalization of PET images that improves their anatomical alignment 

based on a deformation correction model learned from structural image registration. To generate 

the model, we first create a population-based PET template with a corresponding structural image 

template. We register each PET image onto the PET template using deformable registration that 

consists of an affine step followed by a diffeomorphic mapping. Constraining the affine step to be 

the same as that obtained from the PET registration, we find the diffeomorphic mapping that will 

align the structural image with the structural template. We train partial least squares (PLS) 

regression models within small neighborhoods to relate the PET intensities and deformation fields 

obtained from the diffeomorphic mapping to the structural image deformation fields. The trained 

model can then be used to obtain more accurate registration of PET images to the PET template 

without the use of a structural image. A cross validation based evaluation on 79 subjects shows 

that our method yields more accurate alignment of the PET images compared to deformable PET-

to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller 

error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with 

ground truth segmentations.
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1 Introduction

Deformable medical image registration is essential to aligning a population of images, 

performing voxelwise association studies, and tracking longitudinal changes. While within-

modality spatial normalization of structural medical images has been studied extensively, 

work on anatomically accurate positron emission tomography (PET) spatial normalization 

remains limited. The anatomical alignment of PET images is a difficult problem since they 

reflect metabolism and function rather than anatomy, the observed intensities depend on the 

amount of radiotracer used, and the spatial detail is confounded by radiotracer spillover.
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Whenever available, it is preferable to use a structural image (such as a T1-weighted MRI) 

co-registered with the subject's PET image for registration purposes and to warp the PET 

image accordingly. However, it is important to be able to perform PET spatial normalization 

accurately without guidance from additional images, as structural MR images are not always 

available due to claustrophobia or MR-incompatible implants. Enabling accurate PET spatial 

normalization can obviate the need for structural imaging in certain studies, resulting in 

lower costs, hospitalization time, and patient burden.

Prior work on PET spatial normalization includes modification of the target image 

intensities using a whole-brain principal component analysis model to match more closely to 

the moving image intensities [7, 9], imposing constraints on the PET deformations via a 

statistical control point model based on the deformation parameters of PET-to-MR 

registrations [8], and making use of the 4D data available in dynamic PET studies [3]. While 

these approaches show improvements over simple 3D PET spatial normalization, they do 

not take into account the systematic errors present in PET-to-PET registration due to the 

incorrect inference of anatomical boundaries stemming from spillover effects and the 

preferential binding of the radiotracer to certain parts within structures.

We present a method for the spatial normalization of PET images based on a 

deformationcorrection model learned from structural image registration. The observation 

motivating our method is: PET-to-PET registration produces deformations that are 

systematically biased in certain regions, and these biases can be characterized as a function 

of location and estimated within small neighborhoods. The correction operates on the PET-

to-PET deformation fields obtained from a deformable registration algorithm and uses 

partial least squares regression models learned from a population of subjects relating the 

local PET intensities and deformation fields to the corresponding structural imaging 

deformation fields. The learned relationship between the deformation fields accounts for the 

anatomical inaccuracies present in the alignment of PET images, while the use of PET 

intensity information allows for inter-subject variability in radiotracer binding due to 

differences in physiology.

2 Method

To construct our model, we need the deformation fields that are to be applied to the PET 

images and their structural counterparts to bring the images to a common template. Our 

model is then trained using the resulting deformation fields for the PET and the structural 

images as well as the warped PET image intensities, yielding a correction that can be 

applied to PET deformation fields.

2.1 Image template generation

To create an anatomically accurate PET template image, we rely on the associated structural 

images. The structural images Si(i = 1, …, N), are co-registered rigidly with the subject PET 

images Fi yielding transformation Ri followed by affine registration to a common space with 

transformation Ti.

Bilgel et al. Page 2

Mach Learn Med Imaging. Author manuscript; available in PMC 2014 November 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The affinely coregistered structural images Ŝi = Si (Ri ∘ Ti) are then used to create a 

structural population template image S̄. Let x be in the common space Ω, and ϕi a 

diffeomorphism defined on Ω to transform Ŝi into a new coordinate system by Ŝi ∘ ϕi(x, t), 

with t ∈ [0, 1] and ϕi(x, 0) = x. The square-integrable and continuous vector field νi(x, t) 

parameterizes the diffeomorphism such that  [1]. The population 

template is

(1)

where L is a Gaussian convolution operator regularizing the velocity field, and CC(S̄, Ŝi(ϕi), 

x) is the cross correlation similarity measure with the inner products calculated over a cubic 

window around x [2].

The affine transformations Ti and diffeomorphisms ϕi obtained from the structural image 

template construction are applied to the corresponding PET images in order to bring them 

into the same template space. The PET template F̄ is then defined as the mean of the 

spatially normalized PET images as

(2)

2.2 Computing a training set

Using a set of subjects for whom both a structural image and a PET image are available,we 

perform deformable registration to map the PET images onto the PET template. For each 

subject i = 1, …, n in the training data, the deformable registration consists of an affine 

transformation  followed by a diffeomorphic mapping ψi(x) defined on Ω. We denote the 

PET image registered onto the PET template F̄ by . Constraining the affine 

transformation to be the same as that obtained from the PET-to-PET registration, we then 

perform another registration to find the deformation field φi(x) that must be applied to the 

structural image such that  is in alignment with the structural image 

template S̄.

2.3 Model training

Our goal is to train a model at each voxel x ∈ Ω describing a relationship between the 

estimated PET deformation field ψi(x) and the structural image deformation field φi(x) for 

the training subjects i = 1,…, n. To account for the variability in PET intensities across 

subjects due to differences in function and metabolism, we also include the intensities F̃
i(x) 

as features in the model.

We denote the row vector whose components are the warped PET intensities at each voxel 

in the neighborhood (x) as F̃
i (x)) ∈ ℝ‖ ‖, where ‖ ‖ is the number of voxels in the 
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neighborhood. Similarly, we denote the row vector whose components are the deformation 

field components at each voxel in the neighborhood as ψi ( (x)) ∈ ℝ3‖ ‖. In our setup, we 

use the input features X(x) ∈ ℝn × 4‖ ‖ and the output data Y(x) ∈ ℝn × 3

(3)

compiled across the n subjects to train a partial least squares regression model for predicting 

the structural image deformation vector at the center voxel.

Partial least squares (PLS) is a dimensionality reduction technique that seeks to find asmall 

number of latent variables extracted from the input features that best explain the observed 

data [10]. The number of latent variables, or components, to be retained in the model is 

denoted by c. PLS performs linear decomposition of the input features X ∈ ℝn × p and 

observed data Y ∈ ℝn × q, where n, p, and q are the number of observations, input features, 

and output features, respectively, to obtain X = TPT + V and Y = UQT + W, where T and U 
are the n × c score matrices each consisting of orthogonal columns, with loadings P and Q, 

and residuals V and W. PLS finds the linear decompositions so that the covariance of the 

extracted score matrices is maximized. The coefficient matrix for the multivariate linear 

regression of X on Y is then given by B = XTU (TT XXTU)−1 TTY [10], which is later used 

for prediction.

The choice of the number of components c is important: a small value will yield a model 

that cannot account for the sample variance while a large value will lead to over-fitting. We 

apply a k-fold cross validation as part of the training to determine the best number of PLS 

components to retain in our model. The cross validation involves splitting the training 

subjects into k groups, one of which is used to test the model that is trained on the remaining 

k – 1. This training and testing procedure is repeated to obtain predictions on each of the k 

groups. We find an optimal ĉ for each spatial location using the cross validation results:

(4)

Here, φ̂
i(x; c) is the prediction of the PLS model with c components for test subject i. We 

use this spatially varying choice ĉ(x) in the model at each voxel x.

3 Results

PET scans were performed on a GE Advance scanner immediately following an intravenous 

bolus injection of Pittsburgh compound B (PiB), which binds to the beta-amyloid peptide. 

Dynamic PET data were acquired over 70 minutes, yielding 33 time frames each with 128 × 

128 × 35 voxels. Voxel size was 2 × 2 × 4.25 mm3. Each time frame was cropped to 118 × 

118 × 33 images. The images corresponding to the first 20 minutes were averaged to create a 

static PET image for each subject. Early time frames were chosen as they are mostly 
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reflective of cerebral blood flow and show clearer anatomic boundary less vulnerable to 

modification by beta-amyloid. For structural images, we used MPRAGE scans performed on 

a Philips Achieva 3T scanner with the following acquisition parameters: TR = 6.8 ms, TE = 

3.2 ms, α = 8° flip angle, 256 × 256 matrix, 170 sagittal slices, 1 × 1 mm2 in-plane pixel 

size, 1.2 mm slice thickness. Three subjects had their MPRAGE scan 4 years after the PET, 

and one subject 2 years after the PET. The remaining subjects had both scans during the 

same visit.

The inhomogeneity corrected [11] MPRAGE images for each subject were rigidly aligned 

onto the corresponding static PET and skull-stripped [4]. The intensities of the PET images 

were normalized by the mean intensity within the volume, and thresholded at 80% to 

remove background noise. The MPRAGE and PET population templates were constructed 

using the ANTs package using 79 subjects (http://picsl.upenn.edu/software/ants/). The 

diffeomorphic registration of each subject onto the population template was performed using 

SyN [1], with the same parameters for MPRAGE and PET. The model was validated using 

10-fold cross validation on 79 subjects. Input features for PLS were obtained over 3 × 3 × 3 

neighborhoods, and within each training set, an additional k = 10-fold cross validation was 

used to pick the number of components to keep in the model.

We compared our method against PET-to-PET template registration and an implementation 

of [7] that involved first creating a PET template using corresponding MRIs as in our 

approach, constructing a whole-brain PCA model from the spatially normalized PET 

images, affinely registering the subject's PET onto the template, modifying the template 

using the PCA model to resemble more closely to the subject, and finally performing 

deformable registration using the modified template. Sample PET and MPRAGE images 

warped by deformation fields obtained from the different methods are presented in Fig. 1. 

Ventricle size is overestimated in both PET-to-PET registration and the method described in 

[7], whereas our method achieves better registration as revealed by the difference images. 

The putamen, a structure that exhibits higher activity in the PET image and thus causes 

spillover, is also better aligned by our method.

A comparison of the root mean square (RMS) error of the deformation fields is presented in 

Fig. 2. The deformation field φ obtained from the registration of MPRAGE onto the 

MPRAGE template is used as ground truth in the RMS error calculation. Our method 

achieves the lowest overall RMS error.

To assess the accuracy of anatomical alignment, the FreeSurfer [5] segmentations of the 

original MPRAGE images were brought into the template space by applying the mappings 

from the previously performed registrations. Using the FreeSurfer labels deformed 

according to φ as ground truth, we calculated the Dice coefficients [6] for the deformed 

labels. Table 1 shows the summary statistics for Dice coefficients for gray matter, white 

matter, and ventricular corticospinal fluid (CSF). Dice coefficients for our method are 

statistically different (p < 0.01 for all three tissue types) from both compared methods. Fig. 3 

shows the Dice coefficient box plots for cortical regions. While the method proposed by [7] 

yields mixed results, our method consistently achieves higher Dice coefficients than either 

of the methods compared against. Dice coefficients for our method are statistically different 
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(p < 0.05) from both compared methods for all regions except for cuneus, paracentral lobule, 

precentral gyrus and temporal pole.

4 Discussion and Conclusion

In our dataset, PET-to-PET registration consistently yielded larger ventricles compared to 

MPRAGE-to-MPRAGE registration. We also observed smaller brains and larger subcortical 

gray structures in PET-to-PET registered volumes, but these effects were subtle (Fig. 1).

We presented a deformation correction method to improve the anatomical alignment of PET 

images. Cross validation results show that our deformation correction method reduces the 

deformation field error and improves the anatomical alignment of PET images as evidenced 

by the higher Dice coefficients calculated using the deformed segmentations. Our method 

can compensate for errors in PET-to-PET registration by learning locally from the structural 

image registrations. While we used SyN for registration purposes, the method can be applied 

to any deformable PET-to-PET registration method.

Our method is particularly suited for spatial normalization of PET images in datasets where 

only a subset of the subjects have structural images. Subjects with both PET and structural 

images can be used to train the model, and those with PET images only can then be 

registered onto the PET template, taking into account the deformation correction provided 

by the model. If the dataset contains no concurrent PET and structural images, our 

deformation correction can still be applied given a PET template and an associated 

deformation field correction model that has already been constructed using a separate 

dataset.

The proposed approach could be applied to improve the deformable registration of other 

types of medical images with low resolution, poor contrast, geometric distortions, or 

inadequate anatomical content by using a model trained on corresponding medical images 

that are largely free of such effects.
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Fig.1. 
Visual comparison of deformed images for a sample subject. First row: PET deformed using 

(A) the deformation φ from MPRAGE-to-MPRAGE template registration, (B) the 

deformation ψ from PET-to-PET template registration, (C) the deformation given by [7] (D) 

the deformation φ̂ predicted using our PLS model. Second row: MPRAGE deformed using 

(E) φ, (F) ψ, (G) the deformation given by [7] and (H) φ̂. Third row: (I) MPRAGE template, 

(J) difference of E and F, (K) difference of E and G (L) difference of E and H.
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Fig.2. 
Root mean square (RMS) error (in mm) of the PET deformation fields, calculated across 79 

subjects. Left to right: MPRAGE template, RMS error of ψ, RMS error of the deformation 

given by [7], and RMS error of φ̂ predicted using our PLS model.
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Fig.3. 
Box plots of Dice coefficients for cortical labels across 79 subjects calculated using the 

deformations obtained from PET-to-PET registration (blue), the method proposed by [7] 

(green), and our method (red).
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Table 1

Dice coefficients (mean ± st. dev., N = 79) for major brain tissue types.

PET-to-PET PCA method by [7] Our method

Gray matter 0.64 ± 0.02 0.64 ± 0.03 0.65 ± 0.02

White matter 0.76 ± 0.02 0.76 ± 0.02 0.78 ± 0.02

Ventricular CSF 0.77 ± 0.05 0.78 ± 0.04 0.80 ± 0.04
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