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Abstract. We present a novel method to generate salient montages from
unconstrained videos, by finding “montageable moments” and identify-
ing the salient people and actions to depict in each montage. Our method
addresses the need for generating concise visualizations from the increas-
ingly large number of videos being captured from portable devices. Our
main contributions are (1) the process of finding salient people and mo-
ments to form a montage, and (2) the application of this method to
videos taken “in the wild” where the camera moves freely. As such, we
demonstrate results on head-mounted cameras, where the camera moves
constantly, as well as on videos downloaded from YouTube. Our approach
can operate on videos of any length; some will contain many montage-
able moments, while others may have none. We demonstrate that a novel
“montageability” score can be used to retrieve results with relatively high
precision which allows us to present high quality montages to users.
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1 Introduction

Video is increasingly easy to capture and store. The advent of wearable devices
like GoPro cameras is accelerating this trend, allowing us to capture hours at a
time in a hands-free manner. While the vast majority of this footage is unlikely
to be interesting or useful, the hope is that if something interesting does happen,
we will have recorded it, and be able to generate an at-a-glance visualization.
Finding those interesting moments, however, is like looking for a needle in a
haystack, and motivates the need for video search and summarization research.

Finding semantically interesting moments via automated means is extremely
challenging. Instead, we seek to find moments that look interesting, and, in par-
ticular, produce high quality photo montages fully automatically (see Fig. 1).
Each montage captures a stroboscopic image of a person performing an action,
with the same person shown multiple times in the same image as if a strobe
light had flashed multiple times during the same exposure. Pioneered in the
19th century by Etienne-Jules Marey, stroboscopic images provide a fascinating
“time-lapse” view of an action in a single image. While Marey’s work required
a special chronophotographic gun, modern solutions [1,31,17,41] enable similar
results with regular photos via algorithmic means. These techniques require as
input several photos or a short video clip comprising the montageable event. The
camera must remain still or only pan slowly in order to create effective montages.

Nevertheless, most videos do not satisfy these constraints; Hence, automat-
ically producing montages from unconstrained videos is extremely challenging.
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Fig. 1. Given a video (click to watch on Youtube: link) captured by a head-mounted
camera (top row), we first automatically identify montageable moments (highlighted
by the color-coded bounding boxes) containing the salient person (the little girl in
pink) and ignore irrelevant frames. A set of salient montages ordered by our novel
montageability scores is generated automatically. Here we show four typical examples.

For example, such videos often contain crowded scenes with many people (see
Fig. 4(b)). Existing methods lack the information to select the salient person
to depict. Moreover, when the camera moves freely and/or the depth variation
of the scene is large (see the playground scene in Fig. 1), global registration
methods will fail; hence, low-level motion cues become unreliable.

In this work, we propose a novel, human-centric method to produce montages
from unconstrained videos, by finding “montageable moments” and identifying
salient people and actions to depict in each montage. Our contribution is not
the compositing algorithm itself, which builds upon [1], but (1) the process of
finding salient people and moments to form a montage, and (2) the application
of this method to videos “in the wild.” As such, we demonstrate results on
videos from head-mounted cameras, where the camera moves constantly, as well
as on videos downloaded from YouTube. The videos from head-mounted camers
are particularly challenging since they are unedited and include many irrelevant
moments due to motion blur from fast camera movement, self-occlusion from
the wearer, and a lot of moments when the wearer is simply navigating the
terrain (see Fig. 3). Our approach overcomes all these challenges and can operate
on videos many minutes or hours long; some will contain many montageable
moments, while others may have none. For this application, we specifically aim
to achieve high precision (i.e., a small number of “great” summaries rather than
summarizing every moment) from a large number of user videos. Note that high
precision is important in many problems such as recommender systems [7].

Our approach is based on (1) clustering people tracklets into “places” (see
color-coded boxes in Fig. 1-Top), (2) identifying the most salient people in each
place (the little girl in Fig. 1-A), and (3) evaluating the montageability of the
people tracklets in each place to select a few hypotheses (four selected person in-
stances in Fig. 1-A). Two key enablers are a new poselet-based human detection
and tracking method, and a novel tracklet-based saliency detector. The latter
is based on random forests trained on gaze tracking data collected from other
videos. We show that this tracklet saliency method outperforms prior saliency
techniques for this task. For the third step, we minimize a montageability func-
tion that considers the scene complexity and registration quality for all human
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hypotheses in the place. Finally, we use a novel “montageability” score to rank
the quality of the montages, which allows us to present high quality composites
to users (see montages in Fig. 1-Bottom).

2 Related Work

In this section, we review related work in video summarization, video saliency
detection, and person tracking.

Video Summarization: There is a large literature on video summariza-
tion (see review [4]), including techniques for sampling important frames
[28,22,25,15,33,21] or generating montages. In the following, we discuss the ones
most relevant to our method. Aner and Kender [2] automatically generate mon-
tages by taking a background reference frame and projecting foreground regions
into it. Liu et al. [26] automatically extract panoramas from Youtube videos.
However, they assume a panning camera and focus on short clips with few ob-
jects. [36,37] focus on extracting highlights from webcams or surveillance cam-
eras and generate synopses which show several spatially non-overlapping actions
from different times of the video. However, they assume the camera is stationary
so that low-level motion cues can be reliably used to search for salient regions
in time and space. Several methods [14,18] involving user interaction have also
been proposed in the graphics and HCI communities. All of these methods focus
on short clips and assume the camera is mostly stationary. To the best of our
knowledge, our method is the first to handle any video, even these captured by
a wearable camera.

Saliency Detection: Many methods have been proposed to detect salient re-
gions from video. However, most methods [8,16,30,39,38] rely on low-level ap-
pearance and motion cues as inputs. A few methods [19,13,38] include infor-
mation about face, people, or context. Among them, [38] is the state-of-the-art
video saliency detector, since it explicitly models the conditional saliency be-
tween consecutive frames. However, they have focused primarily on TV series
that typically do not contain many people. Unlike our method, they only keep a
few candidate regions per frame and do not explicitly solve the person association
problem (tracking).

Tracking Humans: Many tracking systems are based on linking candidate hu-
man hypotheses [35,43,32]. However, these systems obtain inferior performance
due to severe body part articulation and camera motion in unconstrained videos.
Other works address these issues [12,6] relying on supervoxel and/or long-term
point trajectories which are computational expensive to obtain. Our system
tracks pre-defined poselets to increase the accuracy without applying additional
process (e.g., supervoxel).

3 Owur Approach

Videos captured by casual users with smartphones or head mounted cameras are
challenging because they typically contain significant camera motion and shake,
inconsistent framing and composition, and a lot of redundant content. We posit
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Fig. 2. Detailed system overview ( click to watch raw video on Youtube: link). Top
panel shows the steps toward identifying salient tracklets (Sec. 3.1 and 3.2), where
each tracklet consists of color coded hypotheses. Bottom panel shows the steps toward
generating a salient montage (Sec. 4). The color in the pixel-level labeling L indicates
the source images indexed by color as well.

that the interesting moments in such videos typically involve people, and we
focus on extracting person-centric montages that capture their salient actions.
We address this goal by identifying salient people in an unconstrained video
(Fig. 2-Top) and then generating montages composed of their salient actions
(Fig. 2-Bottom). The overview of our approach is depicted in Fig. 2. We first
describe how to identify salient people in an unconstrained video.

Our selection process begins with detecting and tracking all the people in the
video, followed by choosing a few salient ones using motion, pose, composition
and other cues. Although human detection and tracking are well-studied, our
videos pose unique challenges to the state-of-the-art methods, which we address
below.

3.1 Detecting and Tracking Humans

Detecting and tracking humans is critical for our application, since low-level
motion cues are unreliable for segmenting out foreground objects due to severe
camera motions in unconstrained videos. One of the primary challenges for hu-
man detection is high variation in pose and occlusion patterns in unconstrained
videos. We found the poselet detector [5] to be robust and particularly useful for
our approach. The poselet detector provides human hypotheses (a bounding box
represents the extent of a whole human body) along with poselet activations (a
poselet is a group of body parts such as left-arm, lower body, etc.), which we use
to make tracking more precise. For simplicity, the human hypothesis and poselet
activation are referred to as hypothesis and activation, respectively.

Detection by Poselet Trajectories. For each frame, we begin by matching
poselet templates to HOG features [9] extracted at multiple scales and locations
to compute poselet activations. However, we do not directly convert these acti-
vations into human hypotheses. We track the activations across nearby frames
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to form poselet trajectories consisting of more reliable activations. Instead of
tracking poselet bounding-boxes, which include both background and foreground
regions, we track the foreground region of each poselet' using a median flow
tracker [20]. We start from the first frame by using a set of activations that are
sufficiently trackable in the next frame. We repeat the process and form poselet
trajectories as detailed in the technical report [40]. At the end of this stage we
have a set of activations (original 4 tracked) in our poselet trajectories, which we
spatially group into human hypotheses using a Hough voting scheme [3] similar
to [5]. We have shown in Table 1(a) that this process significantly increases the
detection accuracy.

Tracking by Poselet Association. Given hypotheses with their poselet acti-
vations at each frame, we form tracklets (i.e., a set of hypotheses of the same
individual in different frames) by associating hypotheses at consecutive frames.
Standard tracking by detection approaches associate hypotheses across neigh-
boring frames by using the location and appearance information in a coarse
bounding box representing the extent of a human. We, however, proceed to
associate hypotheses using their poselet activation as descriptors. Note that ro-
bust hypotheses association is crucial for avoiding identity switch in a tracklet
or tracklets drifting to background regions.

Poselet-Based Similarity. We divide each poselet into 4 by N square cells?,
where 8 X 3 L1 normalized color-histogram in Lab space are extracted from each
cell. For each hypothesis, we concatenate the poselet histogram following a pre-
defined order to generate hypothesis histogram a. The poselet-based similarity
of a pair of hypotheses i and j in two consecutive frames (¢,¢ + 1) is defined
using the cosine similarity sim;; = Haﬁlt\l;j\l
avoid associating hypotheses with dissimilar poselet activations, it is insufficient
to avoid associating false hypotheses fired at non-distinctive background regions.
We address this problem by defining a more robust “relative similarity”.

. Although the similarity helps us

Relative Similarity. We utilize the smoothness prior on hypotheses locations
within each tracklet (i.e., the locations of hypotheses at consecutive frames
should be close) to define relative similarity. For each hypothesis ¢ at frame
t, a subset of hypotheses C at t + 1 are selected as the candidate set satisfy-
ing the smoothness prior if every hypothesis in C' at least has p spatial overlap
with hypothesis i. We define the relative similarity 7;; of a pair of hypotheses
i and j as the ratio between sim;; and max; ec sim;j., where C’ is the com-
plement of C. Note that max; ccs sim;; will be high for a hypothesis ¢ fired
on a non-distinctive background region. As a result, false hypotheses fired at
non-distinctive background regions tend to have small relative similarity.

Given the relative similarity between candidate pairs of hypotheses, we for-
mulate the hypotheses association problem as a network flow problem and solve
it approximated using a dynamic programming algorithm [35]. For simplicity,

! Foreground mask of each poselet is included in the poselet detector.
2 N depends on the aspect ratio of the poselet.
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the costs of the links in the network are the same if the relative similarity ;; is
greater or equal to a threshold o; otherwise, the costs are infinite. Finally, the
network flow problem is efficiently solved to generate tracklets {7} }x indexed by
the tracklet index k. Each tracklet T, = {j} consists of a set of human hypothe-
ses, where j is the hypothesis index. In Table 1(a), we demonstrate that our
poselet-based method is much more reliable than the state-of-the-art method
[35]. An ablation analysis also reveals that all components in our human detec-
tion and tracking system jointly contribute to the superior performance.

3.2 Learning Saliency from Gaze

Recall that it is important for our application to infer the salient people that
the cameraman intends to capture, since there can be an unknown number of
people (see Fig. 2 and 4(b)) in an unconstrained video. Given the tracklets, we
aim to predict which one corresponds to a person performing salient actions. We
train a predictor to generate a tracklet-based saliency score using multiple cues.
To train our predictor, we asked the authors of the videos to watch them while
recording eye gaze using a commodity gaze sensor (http://www.mygaze.com).
We then used the gaze data as a measurement of ground truth saliency. We
identify the person being salient in each frame when the gaze falls on a ground
truth human annotation (see Fig. 3). We find that gaze tracks from the person
who captured the video are much more informative as compared to a viewer
who is unfamiliar with the event and people in it. Hence, we do not have such
training data for videos from Youtube.

Our tracklet-based saliency score is built on top of a hypothesis-based saliency
score. Here, we define a hypothesis-based saliency model which considers loca-
tion, motion, and pose information of the hypotheses. Our training data consists
of ground truth human annotations with binary “saliency” labels derived from
gaze (at test time, we only have predicted human detections, and no gaze infor-
mation). We train a random forest classifier to predict the saliency label and use
the response of the classifier as the saliency score s € [0, 1] for each hypothesis
using the following types of features.

Camera Centric Features. We define the camera centric features e as the
location and relative height of the hypothesis with respect to the frame height.
Hence, the model can learn the preferred location and scale of a salient person.
For example, a salient person shouldn’t be too small or too off-center. The feature
also includes the Euclidean distance of the person’s bounding box centroid to the
frame center, which is typically used to model gaze in ego-centric videos [10,23].

Person Motion Features. We define the height changes hr = h;/h; 41 and mo-
tion direction (du, dv) in pixels between a pair of hypotheses (indices omitted) in
two consecutive frames ¢ and ¢ 4+ 1 as the basic motion features b = [hr, du, dv].
This allows the classifiers to differentiate forward /backward and lateral motions,
respectively. Our full motion features include motion uniqueness u derived from
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b and e (camera centric features) as follows (similar to the visual uniqueness
measure in [34]),

i =30, [1bi = bjlI* - wlei ;) where wies, ej) = 7, exp(= g5 llei —€;]1%) 5 (1)

where i, j are indices for hypotheses in the same frame, and Z; is the normaliza-
tion term. Hypothesis ¢ has unique motion if its motion b; is very different from
the motion b; of hypotheses at nearby location and scale (i.e., e; ~ €;).

Pose Features. Pose provides a strong cue to determine an action. We use the
raw poselet activation scores for each hypothesis as a coarse surrogate for pose.

Tracklet-Level Aggregation. The hypothesis-based saliency prediction is com-
bined to produce the tracklet saliency score sy (s-score) by summing up con-
stituent scores {s;}ier,, where T}, is a tracklet consisting of a set of hypotheses
and k is the tracklet index. In Table 1(b), we show that our tracklet-based
saliency measure is more accurate in identifying salient people than a state-of-
the-art video saliency estimator [38].

4 Salient Montages

Given the human tracklets with their saliency scores {(sg,Tk)}x, we aim to
generate salient montages ranked by their quality. In order to handle videos
with various length, we first divide the tracklets into groups. There are multiple
ways to generate groups. We use SIFT [27] point matching to find a group that is
likely to contain tracklets appearing in physically nearby “places” (see technical
report [40] for details).

Next, we introduce a unified model to (1) find a montageable moment in each
group, (2) generate a montage for each group, and (3) rank the montages based
on tracklet saliency and how visually pleasing they are. The overview of steps
to generate salient montages is depicted in Fig. 2-Bottom.

4.1 Model

Our goal is to form a montage I,,, from source images {I; };c., where the labeling
space L is defined as the union set of hypotheses in all tracklets (i.e., Ux{i}ien, )-
Note that here we use the same index for both the source images and hypotheses
for simplicity. This means that our model uses all hypotheses as candidate source
images to generate a salient montage. More formally, we need to choose a source
image index ¢, and a correspondence location p in the source image I; for every
pixel location p in the montage. Given i and p, we assign the RGB value (I;(p))
of the source image to the RGB value (I,,,(p)) of the montage. We define a pixel-
level labeling variable L, where i = L(p) denotes the source image index chosen
at pixel location p in the montage. We also define a transformation M; aligning
the montage coordinate to the i source image coordinate such that p = M;(p).
The following montageability cost C'(L, M) (similar to [1]) is used to select the
optimal pixel-level labeling L and transformations M = {M; }ic,,
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ming, p C(L, M) = ming a3, Calp, L(p); M) + 32, , Cr(p, ¢, L(p), L(g); M) , (2)

where Cy is the data term which encourages salient actions in source images to
be selected, and C7 is the seam term considering color and gradient matching
for reducing visual artifacts.

Instead of requiring users’ annotations as in [1], we use the hypotheses loca-
tions and tracklet saliency to define the data term.

Saliency-Based Data Term. Intuitively, we should include a hypothesis de-
picting a salient action in the montage. The cost of “not” including a pixel
corresponding to hypothesis 7 in the montage depends on its saliency as follows,

Ca(p, £ # i; M) o< 83y - mi(Mi(p)) , (3)

where sy(;) is the s-score of tracklet k containing hypothesis i, and m;(M;(p))
is the estimated probability that pixel M;(p) corresponds to hypothesis i (see
technical report [40] for more details). The final cost of pixel p assigned to
hypothesis £ is defined as,

Ca(p, t; M) = g maxize Sg() - mi(Mi(p)) , (4)

where we take the maximum cost of ¢ # ¢, and A4 is used to balance the seam
term.

Seam Term. Our seam term in color and gradient domains is defined as,

Cr(p,q, L(p), L(q); M) = |1y (P) — L(q) DI + L) (@) — TL(q) (@) (5)
+ VI (®) = VIO + VI (@) — Vg (@]

where VI;(p) is a 6-component color gradient (in RGB) of the source image i
at pixel location p, both p = My (p) and ¢ = M4 (q) are the transformed
locations.

Before detailing how to solve Eq. 2 to obtain optimal labeling L* and transfor-
mation M*, we discuss a way to rank montages from different groups of tracklets
using a novel score derived from our model.

Montageability Score. The minimum cost C'(L*, M*) in Eq. 2 cannot be used
to compare montages from different groups since the values are not normalized.
To overcome this problem, we define a novel montageability score as,

min; C(L=i,M"
VE — eé’:((L*(f//\/l*) )) (6)

where L =i denotes L(p) = ¢ for all p which is a degenerate solution when only
the ¢ source image is used. The minimal degenerate solution is used to normalize
the minimum cost so that this score is always larger than one. The larger the
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score, the better the quality of the montage with respect to the best degenerate
solution. A very high score typically means many non-overlapping salient actions
can be selected to reach a relatively low cost (C'(L*, M*)) compared to the best
degenerate solution which only selects the most salient action.

Unique Properties. Our model differs from [1] in two more ways: (1) both our
data and seam terms depend on the transformation M, and (2) our labeling space
L = U{i; i € Ty} is very large (~ 1K) since it is the union of all hypotheses
within each group. Due to these properties, it is challenging to jointly optimize
transformations M and pixel-level labeling L. However, we observe that, when
M is given and L is small, we can solve Eq. 2 using graph-cut efficiently. To this
end, we first estimate M™ and obtain a small pruned set of hypotheses L as the
labeling space for computing the montage. A detailed overview of these steps is
depicted in Fig. 2-Bottom. We describe each step in detail next.

4.2 Estimating Transformations

We propose to search for transformations so that a maximum number of spa-
tially non-overlapping hypotheses exist (implicitly reducing the cost of the data
term). This is to ensure that many salient actions can be shown in the montage
without blocking each other. We start by matching pairs of source images in
F = Ui{f(i)}ieT,, where f(i) denotes the source image index that hypothesis
i appeared in. We introduce the f index here since many hypotheses appear in
the same source image in practice. To efficiently match relevant pairs of images,
we evenly divide all images into 1000 segments in time. All pairs within each
segment and pairs across a few pairs of segments are matched (see technical
report [40] for details). For each pair of images, we obtain sparse [27] and dense
SIFT correspondences [24]. Given the correspondences between f and f(i), we
can estimate an initial 2D affine transformation Ml j to warp hypothesis i to

frame f using correspondences surrounding the bounding box of the ¢ hypothe-
sis. The initial 2D affine transformation M, i is then refined using Lucas-Kanade

template matching [29]>. Given the set of valid transformations M = {M; s},
we calculate the binary connection matrix @@ = {g; s} such that ¢; y = 1 if

M; 5 is valid. Next, we select the central image f. = argmax;y Zile i, ¢, where
Jy is a set of mutually non-overlapping hypotheses at the f image coordinate
(see technical report [40] for details). Finally, we obtain the transformation as
M} = MZ .- Note that some of the hypotheses cannot be warped to the central
image f. due to limitations of existing registration methods. These hypotheses
are removed from consideration in the next step.

3 We remove pairs with transformations that have matrix condition larger than 1.25
to avoid bad registrations.
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1: Given: R = {ry;}, and K pairs of tracklet
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tually montageable hypotheses L such that
Tij = 1;Vi,j S ﬁ
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Fig.3. Our data and annota- 5. repeat
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lenging frames from ego-centric Ej¢ N Tig
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self-occlusion, and navigation mo-  g. Add i into £.

ment. The middle row shows the 9. Add J = {j; 75 = 0} into N.

ground truth person annotations 1(. Remove i and J from {T}}.

(bounding boxes with person iden- 11.  end if
tity indices) and ground truth 12: if T} is empty or r; = 0 then

gaze (green dots). The bottom row  13. repeat

shows ground truth salient people 14 k=k+1, which selects the next most
(red bounding boxes) and ground salient tracklet.

truth gaze (green dots). When 15 until 7}, is not empty or £ > K.

bounding boxes overlap (bottom 16. end if

row, middle frame) we resolve 17. until k > K.

ambiguity by minimizing identity

switches. Algorithm 1. Greedy Hypotheses Selection

4.3 Selecting Hypotheses

Recall that the number of hypotheses is typically too large for Eq. 2 to be solved
efficiently. Hence, we need to select a small set of hypotheses L. We use the
montageability score Vy; j; (defined in Eq. 6) of a pair of hypotheses (i, j) to
decide if the pair is preferred to be jointly selected. If the montageability score
Vii 4y is larger than 3, we set r;; = 1 which indicates that a pair of hypotheses
(¢,7) should be jointly selected. Given R = {r;;}, the goal is to select a set of
salient and mutually montageable hypotheses L (i.e., iy =1foralli,je [E) such
that ), s sk is maximized. In this way, we select as many salient hypotheses
as possible by maintaining montageability. We greedily select a set of mutually
montageable hypotheses L using Algorithm 1. The algorithm proceeds down the
list of tracklets sorted by s-score and adds those that are mutually montageable
with currently selected ones. Note that we are implicitly reducing the cost of
data term by maximizing the saliency of the selected hypotheses, and reducing
the cost of the seam term by selecting mutually montageable set of hypotheses.

Once there are at least two selected hypotheses in L, we solve Eq. 2 to obtain
L* and generate the salient montage. We apply the same process for all groups,
and use the montageability scores to retrieve salient montages with good quality.
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Table 1. (a) Tracking results: mean average precision (mAP) comparison of different
human detection and tracking system. ‘Our3” is our full poselet-based system. ‘Our2”
is our system without the poselet-based relative similarity. “Ourl” is our system also
without detection by poselet trajectories (i.e., linking person bounding boxes from
poselet detectors.). (b) Ranking results: Weighted Spearman’s footrule for rank error
comparison. Our method (Our) achieves the smallest error except in “B1”. On four
videos, our average errors are lower than five. On average, our error is almost half of
the [38]. C.C. denotes Camera Centric. B denotes beach. F denotes ferry. SS denotes
seaside. CS denotes campsite. LS denotes lakeside. PG denotes Playground.

(a) mAP (b) Bl B2 F SS CS LS1 LS2 LS3 PGl PG2 Avg.
[35] 5.09% Our 38.51 40.36 5.43 3.85 3.30 11.77 2.95 3.38 7.33 7.38 12.42
Ourl 9.28% C. C. Feat. 45.06 44.39 16.73 18.39 4.75 13.09 5.18 5.92 14.69 11.24 17.95

Our2 17.70% Raw Det. Score 139.27 195.77 22.57 13.75 7.53 37.21 13.78 10.45 16.03 11.19 46.75
Our3 18.80% Video Saliency [38] 33.93 55.13 15.06 5.17 13.29 38.80 18.98 4.34 27.43 21.81 23.39

5 Experiments

We evaluate our method on two types of videos. The first type includes unedited
videos captured by two people using a head mounted camera (www.looxcie.com),
where the camera center roughly follows the wearers’ visual attention. The sec-
ond type of videos are downloaded from Youtube. These are a mixture of edited
and unedited videos captured mostly from hand-held devices. Both datasets are
publicly available (see technical report [40] for details). We demonstrate that
our method can handle both types of videos using the same settings.

In detail, we demonstrate that (1) our poselet-based people detection and
tracking system outperforms the state-of-the-art method [35], (2) our saliency
prediction method outperforms the state-of-the-art saliency detector [38], and
(3) visually pleasing salient montages can be retrieved with high precision.

5.1 Family Outing Dataset

We collected a “family outing” dataset which contains 10 unedited videos with
a total length of 2.25 hours (243K frames). The videos include events in play-
grounds, parks, lakeside, seaside, etc. These ego-centric videos are challenging
for tracking and registration due to fast camera motion, self-occlusion from the
wearer, and moments when the wearer is navigating the terrain (see Fig. 3-Top).
We demonstrate that it is possible to generate impressive montages from these
challenging videos. For training and evaluation, we collect ground truth human
bounding boxes and gaze data from the camera wearers (see Fig. 3-Middle). We
ask users on Amazon Mechanical Turk to annotate at least the three most salient
people (if possible) for each frame using the video annotation system [42]. We
also ask the camera wearers to watch the videos and record their gaze using a
commodity gaze tracker. We use the gaze data from the camera wearer to assign
a ground truth binary “salient” label to each human annotation, assuming gaze
reveals the salient subjects in the videos (see Fig. 3-Bottom).
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Detecting and Tracking Humans. We optimize the parameters of our system
on one video (Playground 1) and evaluate the performance on the remaining 9
videos. In Table 1 (a), we compare the detection accuracy using hypotheses in
tracklets. Our full poselet-based method (“Our3”) achieves a significant 13.71%
improvement in mean average precision compared to [35] using the state-of-
the-art human detector [11]. We also conduct an ablation analysis by removing
components in our system one at a time (see Sec. 3.1 for the components). Our
system without the poselet-based relative similarity (“Our2”) becomes slightly
worse than the full system. By further removing the detection by poselet tra-
jectories, our system (“Ourl”) becomes much worse than the full system but is
still better than [35].

Salient People Prediction. It is critical for our method to discover the salient
people in order to generate montages relevant to the camera wearer. Therefore,
after we obtain tracklets, we need to rank the saliency of each tracklet. Given
the ground truth salient label for each human annotation, we can generate the
ground truth rank of the tracklets by counting the number of times the hypothe-
ses in each tracklet overlapped* with the salient human annotation. Similarly,
using the predicted s-scores s of each tracklet, we can also rank the tracklets.
We conduct a leave-one-out cross-validation experiment by training the random
forest classifier using nine videos and evaluating on the remaining one. Given the
predicted rank and the ground truth rank, we calculate the weighted Spearman’s
footrule on the top 10 predicted tracklets to measure rank error as follows:

LS i = p()|| - ws where wi =1, W =300 w; (7)

where i is the rank of the predicted tracklet, p(i) is the ground truth rank of
the i*" predicted tracklet, and w; is the weight of each rank, which emphasizes
the error of tracklets with higher predicted rank. We compare our prediction
using all the features with three baseline methods: (1) ranking using the raw
sum of detection scores for each tracklet, (2) our method using only the cam-
era centric features, and (3) ranking each tracklet using state-of-the-art video
saliency detector [38]. For each frame, the video saliency detector generates a
saliency probability map. We assign the median of the saliency probability within
a bounding box as the saliency score for each hypothesis. Then we rank each
tracklet using the sum of the saliency scores. A detailed rank error comparison
is shown in Table 1 (b). Our method using all features significantly outperforms
other baselines in 9 out of 10 videos, and our average rank error (12.42) is almost
half of the error of [38].

Given the s-score of each tracklet, we generate montages as described in Sec. 4.
We now discuss some interesting cases below.

Camera Motion and Scene Depth Variation. The montage A in Fig. 1
shows a little girl on a slide. Due to the lateral camera motion and the depth

4 If the intersection area over the union area is bigger than 0.25, we consider two
bounding boxes overlapping. If a salient human annotation is overlapping with more
than one hypotheses, we consider only the tightest hypothesis.
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(a) Playground2 (Youtube link) (b) Beach2 (Youtube link) (c) Lakesidel (Youtube link)

Fig. 4. Montages from the family outing dataset. In each example, we show the mon-
tage and the selected frames overlaid with the hypotheses indicated by red bounding
boxes.

variation in the scene, it is extremely challenging to register these four images
using a global transformation. Hence, typical methods [38,26] will fail. In con-
trast, our method can generate an impressive montage conveying the action. A
similar result is shown in Fig. 4(a).

Crowded Scenes. Videos often contain crowded scenes with multiple people.
Fig. 4(b) shows that our method can select the most salient person in a crowd.
A similar result is shown in Fig. 4(c).

Our method generates on average about 18.1 montages per video in this
dataset. Fig. 1 shows a set of montages our method retrieved to capture an af-
ternoon at the playground. A lot more impressive salient montages and a video
are included in the technical report [40].

5.2 Youtube Dataset

We downloaded videos from Youtube following two procedures. First, we searched
for less edited family outing videos using keywords such as “family outing”,
“playground” and “park”. Then, we manually selected the first 6 less edited
videos (an average of 10.4 minutes per video) and refer them as “Youtube out-
ing dataset”. Second, we searched for three queries: “obstacle course”, “parkour”,
and “skateboarding”, and downloaded the top three ranked creative commons
licensed videos for each query. These nine videos (an average of 4.8 minutes per
video) are referred to as “Youtube motion dataset”. Note that videos in the
motion data are typically edited.

Our method generalizes well to the Youtube outing dataset which is similar
to the family outing dataset. Examples are shown in Fig. 5. We also achieve
encouraging results on the Youtube motion dataset. Despite the fast motion and
frame cuts, our system works reasonably well and generates fairly impressive
results (Fig. 6). Please see technical report for more salient montages.

5.3 Retrieving Good Montages

In order to evaluate how well our method can automatically retrieve good mon-
tages, we ask human subjects to classify montages into good, reasonable, and


http://www.youtube.com/watch?v=cjURDsH84cs
http://www.youtube.com/watch?v=T_mWLWRXTlw
http://www.youtube.com/watch?v=sPP-hA9pvKc
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(a) Youtube link (b)Youtube link (¢) Youtube link

Fig. 5. Montages from the Youtube outing dataset. In panel (a), the most salient person
is successfully selected. In panel (b,c), little kids are reliably detected and tracked.

(a) Youtube link (b) Youtube link (c¢) Youtube link

Fig. 6. Montages from the Youtube motion dataset. Our system nicely handles the
fast motion in obstacle course, parkour, and skateboarding.

bad ones. Good results are the ones without clear artifacts on the foreground
objects and the actions are easy to understand, reasonable results are the ones
with small artifacts on the foreground objects but the actions are still easy to
understand, and bad results are the ones with either significant artifacts or the
actions are not easy to understand. The raw distribution of good, reasonable,
and bad montages are shown in Fig. 7. We evaluate how well our montageability
score retrieves good montages. We achieve mean average precisions of 55%, 62%,
and 78% compared to 44%, 58%, and 68% for a baseline method using only s-
scores® on the family outing®, Youtube outing, and Youtube motion” datasets.
We also evaluate our recall rate on the challenging ego-centric family outing
dataset. We ask a human subject to count the number of montageable moments
where there is a (not necessary salient) moving person not severely occluded
by other objects or scene structures. Our system achieves an average recall of
about 30%. Note that the low recall is fine for our application since, similar to a
recommender system [7], we aim at showing users a few salient montages rather
than all montageable moments which often might be boring.

5 For each montage, we sum the s-scores of the selected hypotheses for ranking.
5 One video generates less than 10 montages and it was not included.
" Four videos generate less than 10 montages and they were not included.


http://www.youtube.com/watch?v=5NOV_n7UPXg
http://www.youtube.com/watch?v=816bXVVIe7U
http://www.youtube.com/watch?v=ktW8_T9eoUk
http://www.youtube.com/watch?v=WXGtI3f0liU
http://www.youtube.com/watch?v=XkqCExn6_Us
http://www.youtube.com/watch?v=tV45y5ElF1I
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200 —— 135 minutes
mAP

150 —— Our:55%
BL:44% mAP

Our: 62%

100 BL: 58% 43 minutes

mAP

62 minutes

50

0

Family outing Youtube outing Youtube motion
mbad mreasonable mgood

Fig. 7. Distribution of good, reasonable, and bad mon- Fig. 8. Failure cases. We show
tages, where z axis is the number of montages. On top Poth the montage and the se-
of each bar, we show the total length of videos in each lected frames overlaid with the
dataset. The mean average precision (mAP) compari- hypotheses indicated by red
son between our method and the baseline (BL) method (correct ones) and blue (miss-

for retrieving good montages is overlaid on the bar plot. ng or incorrect ones) boxes.
See technical report [40] for

more analysis.
5.4 Analysis of Failure Cases

Our automatic system inevitably returns some failure cases. Fig. 8-Left shows a
typical failure case due to bad localization since the person appears in a rare pose.
Fig. 8-Right shows a typical failure case where unselected people (depicted by a
blue bounding box) in the scene are cut in half. A more robust tracking system
and a montageability function incorporates information of unselected hypotheses
can potentially resolve these cases. Finally, our system will not retrieve salient
moments which are not montageable ( e.g., severe camera translation).

Implementation Details. Finally, we describe how we set the parameters in
each component. We set all parameters for human detection and tracking on one
video (Playground 1): minimal spatial overlap is set to p = 0.25, and the thresh-
old for relative similarity is set to o = 1.5. The bandwidth of motion uniqueness
op, the weight A\g to balance the data and seam terms, and the threshold for
montageability score S are empricially set to 5, 0.2, and 1.7, respectively. Our
current Matlab implementation takes about 2 hours to process a 20 minutes
video in family outing dataset on a single 8 cores machine.

6 Conclusion

We believe our method is the first to demonstrate the ability to automatically
generate high quality montages from unconstrained videos. Our results on videos
captured by wearable cameras are especially impressive due to the challenging
conditions for tracking and registration methods to work reliably. In the future,
we aim at inferring high-level semantic information in order to enable better
prediction and understanding of “interesting moments”.
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