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Abstract. This paper describes a probabilistic generative model and
its associated algorithm to jointly register multiple point sets. The vast
majority of state-of-the-art registration techniques select one of the sets
as the “model” and perform pairwise alignments between the other sets
and this set. The main drawback of this mode of operation is that there
is no guarantee that the model-set is free of noise and outliers, which
contaminates the estimation of the registration parameters. Unlike pre-
vious work, the proposed method treats all the point sets on an equal
footing: they are realizations of a Gaussian mixture (GMM) and the reg-
istration is cast into a clustering problem. We formally derive an EM
algorithm that estimates both the GMM parameters and the rotations
and translations that map each individual set onto the “central” model.
The mixture means play the role of the registered set of points while the
variances provide rich information about the quality of the registration.
We thoroughly validate the proposed method with challenging datasets,
we compare it with several state-of-the-art methods, and we show its
potential for fusing real depth data.

Keywords: point set registration, joint registration, expectation maxi-
mization, Gaussian mixture model.

1 Introduction

Registration of point sets is an essential methodology in computer vision, com-
puter graphics, robotics, and medical image analysis. To date, while the vast
majority of techniques deal with two sets, e.g., [4,10,26,23,15,18], the multiple-
set registration problem has comparatively received less attention, e.g., [30,28].
There are many practical situations when multiple-set registration is needed,
nevertheless the problem is generally solved by applying pairwise registration
repeatedly, either sequentially [6,20,17], or via a one-versus-all strategy [3,7,16].

Regardless of the particular pairwise registration algorithm that is being used,
their use for multiple-set registration has limited performance. On the one hand,
sequential register-then-integrate strategies suffer from error propagation while
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Fig. 1. The proposed generative model for joint registration of multiple point clouds
(left) and the associated graphical model (right). Unlike pairwise registration strate-
gies, the proposed model simultaneously registers an arbitrary number of point clouds
with partial or total overlap and optimally estimates both the GMM and registration
parameters. Hence, the solution is not biased towards a particular cloud.

they are optimal only locally, i.e., between point-set pairs. On the other hand,
one-versus-all registration apparently leads to a biased estimator since one of the
sets governs the registration and the solution is optimal only for this reference
set. Therefore, an unbiased solution that evenly distributes the errors across all
point sets is particularly desirable.

In this paper we propose a generative approach to the problem of joint regis-
tration of multiple 3D point sets. An arbitrary number of point sets are assumed
to be generated from the same Gaussian mixture model (GMM). More pre-
cisely, an observed point i from set j, once rotated (Rj) and translated (tj),
is generated from the k-th component of a GMM, e.g., Fig. 1. Therefore, the
GMM parameters are conditioned by the registration parameters (rotations and
translations). This can be cast into a maximum likelihood formulation that is
efficiently solved via an expectation conditional maximization (ECM) algorithm
that jointly and optimally estimates all the GMM and registration parameters.

Unlike existing approaches to point registration that constrain the GMM
means to coincide with the points of one set, the parameters of the proposed
mixture model are not tight to a particular set. Existing approaches have the
danger that noise and outliers, inherently present in the point set chosen to be
the GMM means, contaminates the solution in an irrevocable way. It is well
known that noisy data and outliers can be very robustly handled with GMMs
by including a uniform component [1]. This has already been proposed in the
framework of pairwise registration [23,15], in which case one set is supposed to
be “bad” while the other one is supposed to be “perfect”. In the proposed model
all the sets are treated similarly and the GMM means are obtained by averag-
ing over several transformed points belonging to different sets. Therefore, the
proposed approach puts all the data on an equal footing and hence it is more
robust. This is particularly beneficial when the task is to align a large number
of point clouds, e.g., gathered with a depth camera.
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The remainder of this paper is organized as follows: Section 2 discusses the
related work. Section 3 formulates the problem in a generative probabilistic
framework while Section 4 presents the proposed formulation and the associated
algorithm. Experiments are presented in Section 5 and Section 6 concludes the
paper.

2 Related Work

Modern point registration methods adopt soft assignment strategies, thus gen-
eralizing ICP [4]. In all these methods one set is the “model” and the other set
is the “data” [29,11,9,23,15], to cite just a few. This non-symmetric treatment
leads to biased solutions. Alternatively, [18,14] consider two GMMs, one for each
point set and the rigid transformation is applied to one of these mixtures. This
leads to a non-linear optimization problem, hence requiring proper initialization.
Moreover, outliers are not explicitly taken into account by these methods.

Multiple point-set registration is often solved using a sequential pairwise regis-
tration strategy [6,20,17,24,8]. Whenever an additional set is available, the model
parameters are updated using either ICP or a probabilistic scheme. In addition
to the drawbacks associated with pairwise registration, this incremental mode of
operation is subject to error propagation. Another possible strategy is to register
pairs of views and subsequently to refine the registration parameters by solving
an optimization problem that updates the parameters with respect to a refer-
ence set [3]. [16] starts with pairwise registrations to build a connected graph
of overlapping sets, while a global optimization step over this graph represen-
tation eliminates matches that are not globally consistent. Similarly and more
efficiently, [7] and [25] globally refine the registration between overlapping sets
by working only in the transformation space. Despite the global refinement step,
these methods suffer from the same limitation, namely one of the point sets is
chosen as a reference set and hence the final parameters are biased.

Multiple point-set registration was also addressed in [30,28]. Both these meth-
ods estimate a transformation for each point set, such that the transformed sets
can be jointly registered. Starting from some known point correspondences be-
tween the sets, [30] estimates the transformation parameters through the min-
imization of a criterion that relates any two overlapping sets, and optionally
integrates confidence of points. Since point correspondences are provided by
pairwise ICP, this approach is referred to as multi-set ICP. As with pairwise
ICP, one-to-one correspondences lead to the aforementioned limitations. Notice
that the same formulation but with a different optimization method is proposed
in [19], and was recently extended in [21] to deal with unknown correspondences.
As in [30], [2] registers matched shapes by estimating transformations (one per
shape) of an unknown reference shape. [28] shares a lot of similarities with [18] in
the sense that it represents each point set as a GMM and the transformations are
applied to these mixtures rather than to individual points. The model parame-
ters are estimated by minimizing the Jensen-Shannon divergence. A by-product
of the algorithm is a probabilistic atlas defined by a convex combination of the
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mixtures. To the best of our knowledge, this is the only method that achieves
joint multiple-set registration without recourse to a pairwise strategy. However
the GMM representation of a point set inherently encapsulates the set’s noisy
and outlier observations, and hence the registration of point sets with different
amounts of noise and of outliers is problematic, as well as sets with large non
overlapping regions.

3 Problem Formulation

Let Vj = [vj1 . . .vji . . .vjNj ] be a R
3×Nj matrix of Nj points associated with

the j-th point set and letM be the number of sets. We denote withV = {Vj}Mj=1

the union of all the data points. It is assumed that there is a rigid transformation
φj : R

3 → R
3 that maps a point set j onto a scene-centered model. The objective

is to estimate the set-to-scene transformations under the constraint that the sets
are jointly registered. It is assumed that the point sets are rigidly-transformed
realizations of an unknown “central” GMM. Hence, one can write

P (vji) =

K∑

k=1

pkN
(
φj(vji)|xk,Σk

)
+ pK+1U(a− b), (1)

where φ(vji) = Rjvji + tj (a 3 × 3 rotation matrix Rj and a 3 × 1 translation

vector tj), pk are the mixing coefficients
∑K+1

k=1 pk = 1, xk and Σk are the
means and covariance matrices, and U is the uniform distribution parameterized
by a − b. Here we take a − b = h, where h is the volume of the 3D convex hull
encompassing the data [15]. We now define γ as the ratio between outliers and
inliers, that is,

pK+1 = γ

K∑

k=1

pk. (2)

This allows to balance the outlier/inlier proportion by choosing γ. To summarize,
the model parameters are

Θ =
({pk,xk,Σk}Kk=1, {Rj, tj}Mj=1

)
. (3)

We stress that the deterministic nature of φj does not affect the statistical prop-
erties of the mixture model. Fig. 1 shows a graphical representation of the pro-
posed model.

This problem can be solved in the framework of expectation-maximization. In
particular, we define hidden variables Z = {zji|j = 1 . . .M , i = 1 . . .Nj} such
that zji = k assigns observation φj(vji) to the k-th component of the mixture
model, and we aim to maximize the expected complete-data log-likelihood

E(Θ|V,Z) = EZ [logP(V,Z;Θ)|V] =
∑

Z
P (Z|V, Θ) log(P (V,Z;Θ)) (4)

in order to estimate the parameters Θ.
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4 Joint Multiple-Set Registration

Assuming that the observed data V are independent and identically distributed,
it is straightforward to write (4) as

E(Θ|V,Z) =
∑

j,i,k

αjik

(
log pk + logP (φj(vji)|zji = k;Θ)

)
(5)

where αjik = P (zji = k|vji;Θ) are the posteriors. By replacing the standard
expressions of the likelihoods [5] and by ignoring constant terms, (5) can be
written as an objective function of the form

f(Θ) =− 1

2

∑

j,i,k

αjik

(
‖φj(vji)− xk)‖2Σk

+ log |Σk| − 2 log pk

)

+ log pK+1

∑

j,i

αji(K+1) (6)

where | · | denotes the determinant and ‖y‖2A = y�A−1y. Therefore, one has to
solve the following constrained optimization problem:

{
maxΘ f(Θ)

s.t. R�
j Rj = I, |Rj | = 1, ∀j = 1 . . .M.

(7)

Direct optimization of f(Θ) via a closed-form solution is difficult owing to the
induced non-linearities. Therefore, we adopt an expectation conditional maxi-
mization (ECM) scheme to solve (7). ECM is more broadly applicable than EM,
while it is well suited for our problem owing to the extended parameter set.
Notice that ECM replaces the M-step of EM with a series of conditional maxi-
mization (CM) steps, that is, an M-substep for each parameter. We will refer to
this algorithm as joint registration of multiple point clouds (JR-MPC); its outline
is given in Algorithm 1. JR-MPCmaximizes f(Θ), and hence E(Θ|V,Z), sequen-
tially with respect to each parameter, by clamping the remaining ones to their
current values. Commonly, such an iterative process leads to a stepwise maxi-
mization of the observed-data likelihood as well [22]. At each iteration, we first
estimate the transformation parameters, given the current GMM parameters,
and then we estimate the new GMM parameters, given the new transformation
parameters. It is of course possible to adopt a reverse order, in particular when
a rough alignment of the point sets is provided. However, we consider no prior
information on the rigid transformations, so that the pre-estimation of the reg-
istration parameters favors the estimation of the GMM means, xk, that should
be well distributed in space.

Now that our objective function is specified, we are going to present in de-
tail each step of JR-MPC. We restrict the model to isotropic covariances, i.e.,
Σk = σ2

kI, since it leads to a more efficient algorithm, while experiments with
non-isotropic covariance [15] showed that there is no significant accuracy gain.
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Algorithm 1. Joint Registration of Multiple Point Clouds (JR-MPC)

Require: Initial parameter set Θ0

1: q ← 1
2: repeat
3: E-step: Use Θq−1 to estimate posterior probabilities αq

jik = P (zji = k|vji;Θ
q−1)

4: CM-step-A: Use αq
jik, x

q−1
k and Σq−1

k to estimate Rq
j and tqj .

5: CM-step-B : Use αq
jik, R

q
j and tqj to estimate the means xq

k.
6: CM-step-C : Use αq

jik, R
q
j , t

q
j and xq

k to estimate the covariances Σq
k.

7: CM-step-D : Use αq
jik to estimate the priors pqk.

8: q ← q + 1
9: until Convergence

10: return Θq

E-step: By using the definitions for the likelihood and prior terms, and the de-
composition of the marginal distribution, P (φj(vji)) =

∑K+1
s=1 psP (φj(vji)|zji =

s), the posterior probability αjik of vij to be an inlier can be computed by

αjik =
pkσ

−3
k exp

(− 1
2σ2

k

‖φj(vji)− xk‖2
)

K∑
s=1

[
psσ

−3
s exp

(− 1
2σ2

s
‖φj(vji)− xs‖2

)]
+ β

, k = 1, . . . ,K, (8)

where β = γ/h(γ +1) accounts for the outlier term,while the posterior to be an

outlier is simply given by αji(K+1) = 1 −∑K
k=1 αjik. As shown in Alg. 1, the

posterior probability at the q-th iteration, αq
jik, is computed from (8) using the

parameter set Θq−1.

CM-step-A: This step estimates the transformations φj that maximize f(Θ),
given current values for αjik, xk, Σk. Notice that this estimation can be carried
out independently for each set j, since φj associates each point set with the
common set of GMM means.

By setting the GMM parameters to their current values, we reformulate the
problem to estimate the roto-translations. It can be easily shown that the max-
imizers R∗

j , t
∗
j of f(Θ) coincide with the minimizers of the following constrained

optimization problems
⎧
⎨

⎩
min
Rj ,tj

‖(RjWj + tje
� −X)Λj‖2F

s.t. R�
j Rj = I, |Rj | = 1

(9)

where Λj is a K × K diagonal matrix with elements λjk = 1
σk

√∑Nj

i=1 αjik ,

X = [x1, . . . ,xK ], e is a vector of ones, ‖ · ‖F denotes the Frobenius norm, and
Wj = [wj1, . . . ,wjK ], with wjk, is a virtual 3D point given by

wjk =

∑Nj

i=1 αjikvji∑Nj

i=1 αjik

, (10)
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or the weighted average of points in point set j, being the weights proportional to
the posterior probabilities in terms of the k-th component. The above problem is
an extension of the problem solved in [27] as here we end up with a weighted case
due to Λj . The problem still has an analytic solution. In specific, the optimal
rotation is given by

R∗
j = UL

j SjU
R
j

�
, (11)

where UL
j and UR

j are the left and right matrices obtained from the singular

value decomposition of matrix XΛjPjΛjW
�
j , with Pj = I− Λje(Λje)

�

(Λje)�Λje
being a

projection matrix, and Sj = diag(1, 1, |UL
j ||UR

j |). Once the optimum rotation is
known, the optimum translation is computed by

t∗j =
−1

tr(Λ2
j )
(R∗

jWj −X)Λ2
je. (12)

Note that φj aligns the GMM means {xk}Kk=1 with the virtual points {wjk}Kk=1.
Hence, our method deals with point sets of different cardinalities and the number
of components K in the GMM can be chosen independently of the cardinality
of the point sets.

CM-step-B and CM-step-C: These steps estimate the GMM means and
variances given the current estimates of the rigid transformations and of the
posteriors. By setting ∂f/∂xk = 0, k = 1 . . . ,K, we easily obtain the optimal
means. Then, we replace these values and obtain optimal variances by setting
∂f/∂σk = 0. This leads to the following formulas for the means and the variances

x∗
k =

M∑
j=1

Nj∑
i=1

αjik(R
∗
jvji + t∗j )

M∑
j=1

Nj∑
i=1

αjik

, σ∗2
k =

M∑
j=1

Nj∑
i=1

αjik‖R∗
jvji + t∗j − x∗

k‖22

3
M∑
j=1

Nj∑
i=1

αjik

+ ε2,

(13)
with ε2 being a very low positive value to efficiently avoid singularities [15].

CM-step-D: This step estimates the priors pk. From (2) we obtain
K∑

k=1

pk =

1/(1 + γ). By neglecting the terms in (6) that do not depend on the priors and
by using a Lagrange multiplier, the dual objective function becomes

fL(p1, . . . , pK , μ) =

K∑

k=1

⎛

⎝log pk
∑

i,j

αjik

⎞

⎠+ μ

(
K∑

k=1

pk − 1

1 + γ

)
. (14)

Setting ∂fL/∂pk = 0 yields the following optimal priors

p∗k =

∑
j,i

αjik

μ
, k = 1 . . .K and p∗K+1 = 1−

K∑

k=1

p∗k, (15)
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with μ = (γ + 1)(N −∑
j,i

αji(K+1)) and N =
∑

j Nj being the cardinality of V.

Note that if γ → 0, which means that there is no uniform component in the
mixture, then μ → N , which is in agreement with [5]. Based on the pseudocode
of Alg. 1, the above steps are iterated until a convergence criterion is met, e.g.,
a sufficient number of iterations or a bound on the improvement of f(Θ).

5 Experiments with Synthetic and Real Data

For quantitative evaluation, we experiment with the 3Dmodels “Bunny”, “Lucy”
and “Armadillo” from the Stanford 3D scanning repository1. We use fully viewed
models in order to synthesize multiple point sets, as follows. The model point co-
ordinates are shifted at the origin, the points are downsampled and then rotated
in the xz-plane; points with negative z coordinates are rejected. This way, only
a part of the object is viewed in each set, the point sets do not fully overlap, and
the extent of the overlap depends on the rotation angle, as in real scenarios. It is
important to note that the downsampling is different for each set, such different
points are present in each set and the sets have different cardinalities (between
1000 and 2000 points). We add Gaussian noise to point coordinates based on a
predefined signal-to-noise ratio (SNR), and more importantly, we add outliers
to each set which are uniformly distributed around five randomly chosen points
of the set.

For comparison, we consider the 3D rigid registration algorithms ICP [4],
CPD [23], ECMPR [15], GMMReg [18] and the simultaneous registration algo-
rithm of [30] abbreviated here as SimReg. Note that CPD is exactly equivalent to
ECMPR when it comes to rigid registration and that SimReg internally uses an
ICP framework. Other than SimReg, the rest are pairwise registration schemes
that register the first point set with each of the rest. Sequential ICP (seqICP)
does the known register–then–integrate cycle. Although GMMReg is the version
of [28] for two point sets, the authors provide the code only for the pairwise
case. We choose GMMReg for comparison since, as showed in [18], Levenberg-
Marquardt ICP [10] performs similarly with GMMReg, while [28] shows that
GMMReg is superior to Kernel Correlation [26].

As far as the registration error is concerned, we use the root–mean–square er-
ror (RMSE) of rotation parameters since translation estimation is not challeng-
ing. For all algorithms, we implicitly initialise the translations by transferring
the centroids of the point clouds into the same point, while identity matrices
initialize the rotations. The only exception is the SimReg algorithm which fails
without a good starting point, thus the transformations are initialized by pair-
wise ICP. GMMReg is kind of favored in the comparison, since it uses a two-level
optimization process and the first level helps the algorithm to initialize itself.
Notice that both SimReg and the proposed method provide rigid transforma-
tions for every point set, while ground rotations are typically expressed in terms

1 https://graphics.stanford.edu/data/3Dscanrep/3Dscanrep.html

https://graphics.stanford.edu/data/3Dscanrep/3Dscanrep.html
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of the first set. Hence, the product of estimations R̂�
1 R̂j is compared with the

ground rotation Rj , and the error is ‖R̂�
1 R̂j −Rj‖F .

We consider a tractable case of jointly registering four point sets, the angle
between the first set and the other sets being 10o, 20o and 30o respectively.
Since JR-MPC starts from a completely unknown GMM, the initial means xk

are distributed on a sphere that spans the convex hull of the sets. The variances
σk are initialized with the median distance between xk and all the points in V.
For our experiments, we found that updating priors do not drastically improve
the registration, thus we fix the priors equal to 1/(K + 1) and γ = 1/K, while
h is chosen to be the volume of a sphere whose radius is 0.5; the latter is not
an arbitrary choice since the point coordinates are normalized by the maximum
distance between points of the convex hull of V. CPD and ECMPR deal with
the outliers in the same way. The number of the components, K, is here equal to
60% of the mean cardinality. We use 100 iterations for all algorithms excepting
GMMReg, whose implementation performs 10 and 100 function evaluations for
the first and second optimization levels respectively.

Fig. 2 shows the final log-RMSE averaged over 100 realisations and all views
as a function of outlier percentage for each 3D model. Apparently, ICP and
SimReg are more affected by the presence of outliers owing to one-to-one corre-
spondences. CPD and GMMReg are affected in the sense that the former assigns
outliers to any of the GMM components, while the latter clusters together out-
liers. The proposed method is more robust to outliers and the registration is
successful even with densely present outliers. The behavior of the proposed al-
gorithm in terms of the outliers is discussed in detail below and showed on Fig. 4.
To visualize the convergence rate of the algorithms, we show curves for a typical
setting (SNR = 10dB and 20% outliers). Regarding GMMReg, we just plot a
line that shows the error in steady state. There is a performance variation as
the model changes. “Lucy” is more asymmetric than “Bunny” and “Armadillo”,
thus a lower floor is achieved. Unlike the competitors, JR-MPC may show a
minor perturbation in the first iterations owing to the joint solution and the
random initialization of the means xk. However, the estimation of each transfor-
mation benefits from the proposed joint solution, in particular when the point
sets contain outliers, and JR-MPC attains the lowest floor.

It is also important to show the estimation error between non overlapping sets.
This also shows how biased each algorithm is. Based on the above experiment
(SNR=10db, 20% outliers), Table 1 reports the average rotation error for the
pairs (V2, V3) and (V3, V4), as well as the standard deviation of these two errors
as a measure of bias. All but seqICP do not estimate these direct mappings. The
proposed scheme, not only provides the lowest error, but it also offers the most
symmetric solution.

A second experiment evaluates the robustness of the algorithms in terms of
rotation angle between two point sets, hence the degree of overlap. This also
allows us to show how the proposed algorithm deals with the simple case of two
point sets. Recall that JR-MPC does not reduce to CPD/ECMPR in the two-
set case, but rather it computes the poses of the two sets with respect to the
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(a) (b) (c)

Fig. 2. Top: log-RMSE as a function of outlier percentage when SNR=10dB. Bottom:
The learning curve of algorithms for a range of 100 iterations when the models are
disturbed by SNR=10dB and 20% outliers. (a) “Lucy”, (b) “Bunny” (c) “Armadillo”.

Table 1. Registration error of indirect mappings. For each model, the two first columns
show the rotation error of V2 → V3 and V3 → V4 respectively, while the third column
shows the standard deviation of these two errors (SNR = 10db, 30% outliers).

Bunny Lucy Armadillo

ICP [4] 0.329 0.423 0.047 0.315 0.297 0.009 0.263 0.373 0.055
GMMReg [18] 0.364 0.303 0.030 0.129 0.110 0.009 0.228 0.167 0.031
CPD [23], ECMPR [15] 0.214 0.242 0.014 0.144 0.109 0.017 0.222 0.204 0.009
SimReg [30] 0.333 0.415 0.041 0.354 0.245 0.055 0.269 0.301 0.016
JR-MPC 0.181 0.165 0.008 0.068 0.060 0.004 0.147 0.147 0.000

“central” GMM. Fig. 3 plots the average RMSE over 50 realizations of ”Lucy“
and “Armadillo”, when the relative rotation angle varies from −90o to 90o. As
for an acceptable registration error, the proposed scheme achieves the widest
and shallowest basin for “Lucy”, and competes with GMMReg for “Armadillo”.
Since “Armadillo” consists of smooth and concave surface parts, the performance
of the proposed scheme is better with multiple point sets than the two-set case,
hence the difference with GMMReg. The wide basin of GMMReg is also due to
its initialization.

As mentioned, a by-product of the proposed method is the reconstruction
of an outlier-free model. In addition, we are able to detect the majority of the
outlying points based on the variance of the component they most likely belong
to. To show this effect, we use the results of one realization of the first experiment
with 30% outliers. Fig 4 shows in (a) and (b) two out of four point sets, thereby
one verifies the distortion of the point sets, as well as how different the sets may
be, e.g., the right hand is missing in the first set. The progress of xk estimation
is shown in (d-f). Apparently, the algorithm starts by reconstructing the scene
model (observe the presence of the right hand). Notice the size increment of
the hull of the points xk, during the progress. This is because the posteriors in
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(a) noise (b) noise+outliers (c) noise (d) noise+outliers

Fig. 3. RMSE as a function of the overlap (rotation angle) when two point sets are
registered (SNR=20dB, 30% outliers) (a),(b) “Lucy” (c), (d) “Armadillo”

the first iteration are very low and make the means xk shrink into a very small
cell. While the two point sets are around the points (0, 0, 0) and (40, 40, 40), we
build the scene model around the point (5, 5, 5). The distribution of the final
deviations σk is shown in (c). We get the same distribution with any model and
any outlier percentage, as well as when registering real data. Although one can fit
a pdf here, e.g., Rayleigh, it is convenient enough to split the components using
the threshold Tσ = 2 ×median(S), where S = {σk|k = 1, . . .K}. Accordingly,
we build the scene model and we visualize the binary classification of points
xk. Apparently, whenever components attract outliers, even not far from the
object surface, they tend to spread their hull by increasing their scale. Based
on the above thresholding, we can detect such components and reject points
that are assigned with high probability to them, as shown in (g). Despite the
introduction of the uniform component that prevents the algorithm from building
clusters away from the object surface, locally dense outliers are likely to create
components outside the surface. In this example, most of the point sets contain
outliers above the shoulders, and the algorithm builds components with outliers
only, that are post-detected by their variance. The integrated surface is shown in
(h) and (i) when “bad” points were automatically removed. Of course, the surface
can be post-processed, e.g., smoothing, for a more accurate representation, but
this is beyond of our goal.

We report here CPU times obtained with unoptimized Matlab implementa-
tions of the algorithms. ICP, CPD (ECMPR), SimReg, and JR-MPC require
14.7s, 40.6s, 24.6s, and 20.9s respectively to register four point sets of 1200
points, on an average. The C++ implementation of GMMReg requires 6.7s. JR-
MPC runs faster than repeating CPD(ECMPR) since only one GMM is needed
and the number of components is less than the number of points. Of course, ICP
is the most efficient solution. However, SimReg needs more time as it enables
every pair of overlapping point sets.

We also tested our method with real depth data captured from a time-of-flight
(TOF) camera that is rigidly attached to two color cameras. Once calibrated
[13,12], this sensor provides 3D point clouds with associated color information.
We gathered ten point clouds by manually moving the sensor in front of a scene,
e.g., Fig. 5. Multiple-set registration was performed with all the above methods.
While only depth information is used for the registration, the use of color infor-
mation helps the final assessment and also shows the potential for fusing RGB-D
data.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. (a),(b) Two point sets (out of four) with outliers; (c) distribution of estimated
variances; instances of GMM means after (d) 5, (e) 15, and (f) 30 iterations; (g) the
splitting of model points into inliers and outliers; joint-registration of four point sets
(h) before and (i) after removing “bad” points (best viewed on-screen)

(a) (b) (c) (d)

Fig. 5. The integrated point clouds from the joint registration of 10 TOF images that
record a static scene. Top: color images that roughly show the scene content of each
range image (occlusions due to cameras baseline cause some texture artefacts). Bot-
tom: top-view of joint registration obtained from (a) JR-MPC, (b) JR-MPC+outlier
rejection, (c) sequential ICP and (d) SimReg.

Fig. 5 shows the results obtained with JR-MPC before (a) and after (b) re-
jecting outliers, seqICP (c) and SimReg (d). The proposed method successfully
register the point clouds, while it automatically removes most of the jump-edge
errors contained in range images. SimReg registers the majority of point sets,
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but it fails to register a few sets that appear flipped in the integrated view.
Using the 5-th set as a reference for symmetry reasons, CDP/ECMPR and ICP
also fail to register all the clouds while GMMReg yields low performance with
too many misalignments. SeqICP causes weak misalignments, since it estimates
weak geometric deformations between successive captures. However, the regis-
tration is not very accurate and further processing may be necessary, e.g., [17].
We refer the reader to the supplementary material for the integrated set of all
the algorithms, viewed by several viewpoitns.

6 Conclusions

We presented a probabilistic generative model and its associated algorithm to
jointly register multiple point sets. The vast majority of state-of-the-art tech-
niques select one of the sets as the model and attempt to align the other sets
onto this model. However, there is no guarantee that the model set is free of noise
and outliers and this contaminates the estimation of the registration parameters.
Unlike previous work, the proposed method treats all the point sets on an equal
footing: they are realizations of a GMM and the registration is cast into a clus-
tering problem. We formally derive an expectation-maximization algorithm that
estimates the GMM parameters as well as the rotations and translations between
each individual set and a “central” model. In this model the GMM means play
the role of the registered points and the variances provide rich information about
the quality of the registration. We thoroughly validated the proposed method
with challenging datasets, we compared it with several state-of-the-art methods,
and we showed its potential for fusing real depth data.

Supplementary Material. Datasets, code and videos are publicly available at
https://team.inria.fr/perception/research/jrmpc/
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