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Abstract. Illumination defocus and global illumination effects are ma-
jor challenges for active illumination scene recovery algorithms. Illumi-
nation defocus limits the working volume of projector-camera systems
and global illumination can induce large errors in shape estimates. In
this paper, we develop an algorithm for scene recovery in the presence
of both defocus and global light transport effects such as interreflections
and sub-surface scattering. Our method extends the working volume by
using structured light patterns at multiple projector focus settings. A
careful characterization of projector blur allows us to decode even par-
tially out-of-focus patterns. This enables our algorithm to recover scene
shape and the direct and global illumination components over a large
depth of field while still using a relatively small number of images (typ-
ically 25-30). We demonstrate the effectiveness of our approach by re-
covering high quality depth maps of scenes containing objects made of
optically challenging materials such as wax, marble, soap, colored glass
and translucent plastic.

Keywords: Structured Light, Depth from Focus/Defocus, Global Light
Transport.

1 Introduction

Active illumination techniques that use projectors as programmable light sources
have been applied to many problems in computer vision including depth recov-
ery [15], surface normal estimation [9], BRDF estimation [4], separating direct
and global components of illumination [12] and probing light transport [14,13].
Because projectors have large apertures, most active illumination algorithms
are limited to a shallow working volume in which the projector is in focus. This
limits their applicability to scenarios where the scene relief is small and labora-
tory or industrial settings where the relative geometry between the scene and
the projector-camera system can be carefully controlled. Additionally, global
light transport effects like inter-reflections and sub-surface scattering are often
ignored, but they can induce large, systematic errors in active shape recovery
techniques like structured light and photometric stereo. Since global illumination
effects are present in virtually all scenes to some extent, it is important to be
able to account for their effects during shape recovery.

Pattern coding strategies like gray codes [10] degrade gracefully when illumi-
nation is defocused. In [6] patterns are designed such that they are all attenuated
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to roughly the same extent by projector blur and [8] uses a sliding projector as
the light source. These methods have some robustness to illumination blur but
they do not explicitly model illumination blur and use a single projector focus
setting. When depth variation in a scene is very large, the structured light pat-
terns in some areas will be blurred too severely for shape recovery to be possible.

Global illumination can be handled in structured light depth recovery by us-
ing suitably designed illumination patterns. When the spatial frequency of the
pattern is high compared to the frequency of the scene’s global illumination,
the contribution of the global illumination to the observed radiance at each
scene point becomes almost independent of the pattern [12]. Thus, using high
frequency patterns can ameliorate problems caused by global light transport
during shape recovery but it makes designing and decoding patterns more dif-
ficult as projector-pixel correspondences become ambiguous. Previous solutions
to this ambiguity include using a very large number of patterns like in [3] or
using techniques like phase unwrapping as was done in [6].

In this paper, we present a structured light algorithm that extends the work-
ing volume of the projector-camera system and is capable of producing high
resolution depth maps over large working volumes. Our algorithm models both
illumination defocus and global illumination effects like scattering and inter-
reflection. In addition to a depth map of the scene, our algorithm recovers the
direct and global components of illumination. It can be used to scan optically
challenging materials like wax, marble and translucent plastic.

A näıve approach to expanding the depth of field would be to project a com-
plete set of structured light patterns at each focus setting and then combine
the resulting depth maps, but such an approach would require an inordinately
large number of images. Our algorithm uses multiple focus settings but projects
only a small number of patterns at each setting, keeping the overall number of
images required small. The key insight of our method is that even an illumina-
tion pattern that is not in focus at a scene point can aid in pattern decoding,
provided the projector blur kernel has been carefully characterized. We do this
characterization by calibrating the projector to find the blur kernel as a function
of scene point depth for each focus setting.

Previous work in structured light associates a fixed, depth independent code
word with each projector pixel. In contrast, in our approach a projector pixel’s
code has a defocus induced dependency on the depth of the point it is illuminat-
ing. To test a candidate projector-camera pixel correspondence hypothesis, we
first compute the scene point depth implied by the hypothesis. This depth value
can be used to predict the defocused illumination received by the scene point
from the projector. If the candidate correspondence is correct, this projector
output prediction should match well with the intensity values observed at the
camera pixel. By using a range of focus settings, we ensure that at least some
segment of a projector code is always in sharp focus at a point in the scene. Our
algorithm seamlessly combines two complementary depth cues - triangulation
based cues which provide high depth resolution but require sharp illumination
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focus (and thus suffer from narrow working ranges) and defocus based cues which
work over a large range of depths but provide coarse depth estimates. Our shape
recovery algorithm is purely temporal and does not use spatial windows for
decoding projector patterns which allows it to recover high quality depth maps
with few artefacts at scene discontinuities. Once the shape has been predicted,
we automatically have an estimate of the illumination received by each point of
the scene in each image. We use this information to recover the direct and global
components of illumination.

1.1 Related Work

The idea of exploiting projector defocus as a cue to recover shape was proposed
in [19]. The approach involved estimating a measure of the projector pattern blur
occurring at each illuminated scene point and mapping this measure to a depth
value using a calibration function. They could recover accurate depth maps, but
the fixed blur-to-depth mapping could not handle global light transport effects
like sub-surface scattering. Gupta et al. [7] proposed a method to simultaneously
model both projector defocus and global illumination. Their technique allows
for depth recovery in the presence of global illumination and is based on the
observation that unlike defocus blur, the blur induced by global light transport
effects is almost independent of projector focus. Both [19] and [7] use colocated
projector-camera systems and recover depth solely from focus/defocus cues.

In contrast, our approach does not use a colocated configuration but performs
stereo triangulation between the camera and projector to measure depth. It has
been shown that in principle, depth from defocus is similar to stereo triangula-
tion [16] but focus/defocus cues have a baseline equal to the size of the aperture.
Since triangulation cues are computed over the wider projector-camera baseline,
our method is capable of producing more fine grained depth estimates. Although
we do not use defocus cues explicitly (by using an illumination sharpness mea-
sure for instance), they are used implicitly as our projector codes are modeled
as being depth dependent due to defocus. Previous work that combines camera
defocus and stereo cues includes [18] and [17].

In structured light literature, some methods have been proposed to prevent
errors due to global light transport. In [3] a large number of high frequency
random bandpass illumination patterns were used to mitigate pattern decoding
errors caused by inter reflections. In [5], global illumination effects are handled
by designing a set of light pattern codes that work well with long range effects
like inter reflections and a second set of patterns that work well with short range
effects like sub-surface scattering. For scenes with both types of effects, ensembles
of codes are generated and a voting scheme is used to estimate depth. Unlike [5],
we do not seek to assign a binary code to each pixel and instead attempt to fit
a model to the observed projector and camera values at a pixel, so we can use a
single set of patterns to handle both types of global illumination effects.
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Modulated phase shifting [2] modulates the sinusoids used in phase shifting
by high frequency signals so both shape and global illumination of a scene can
be recovered, but it does not consider the effects of illumination defocus.

Micro phase shifting [6] is a phase shifting variant that uses a narrow band set
of high frequency sinusoids as the projected patterns. All the patterns are high
frequency so the effects of global illumination are avoided. Because the patterns
all have similar frequency they are attenuated similarly by projector defocus
which lends some robustness to projector blurring. However, it should be noted
that while this has some robustness to blur, it does not model defocus or use
multiple focus settings so it can not handle large variations in scene depth.

In [11] illumination defocus is exploited towards a different end. Sinusoidal
patterns are generated by projecting binary patterns with a defocused projector.
DLP projectors can project binary patterns at very high frame rates which allows
the phase shift algorithm to run in real time and recover dynamic scenes.

2 Modeling Image Formation and Illumination

Let St(x) be the value of the projected structured light pattern at time t at
a scene point imaged by camera pixel x. The brightness It(x) observed by a
camera pixel is a weighted sum of the direct illumination Id(x) and the global
illumination Ig(x) of the scene point. When the pattern St(x) has a high spatial
frequency and a 50% duty cycle, it can be shown that the contribution of the
global illumination to the observed brightness is approximately pattern indepen-
dent and equal to 1

2Ig(x) [12]. The pattern modulates the direct component so
its contribution to the observed brightness is St(x)Id(x). Thus we have

It(x) = 1
2Ig(x) + St(x)Id(x) (1)

We use π to denote the correspondence between projector pixels and camera
pixels that illuminate/image the same scene point, p = π(x). The projector value
seen at time t at a scene point at depth z illuminated by projector pixel p, is a
defocused version of the projector pattern value at that pixel Lt(p). It has been
shown that unlike camera defocus blur, the defocus blur kernel for a projector
is scene independent in the sense that the kernel at a scene point depends only
on the depth of the point, not on the geometry of the neighborhood surrounding
the point [19]. Thus, without resorting to assumptions like local fronto-planarity,
the effects of projector defocus blur can be modeled by convolving the projector
pattern Lt(p) with a spatially varying blur kernel G(p, z, f).

St(x) = L̃t (π (x)) =
(
Lt ∗G (π (x) , z, f)

)
(π (x)) (2)

The blur kernel G depends on the scene point depth z and the projector focus
setting f . Additionally, we allow the function G to vary spatially with projector
pixel coordinate as this helps better model the projector’s optical aberrations.

Although the original high frequency illumination pattern Lt(p) is blurred
due to defocus, Equation 1 still holds. The defocus blur reduces the amplitude
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(c)focus setting #2
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Fig. 1. Characterizing Projector Defocus: (a) - image of one of the square wave patterns
for estimating projector blur. (b) is the temporal intensity profile at point B and the
Gaussian smoothed square wave fit. (c) and (d) - the blur kernel scale σ for the projector
pixels A,B and C for two different focus settings as the scene depth is varied. (e) to (h)
- maps of blur scale σ across the projector image for different combinations of focus
setting and scene point depth. The value of σ clearly varies across the image, especially
when the projector is out of focus.

of the high frequency components of the pattern but does introduce any low
frequency content into the signal. We use a small aperture on the camera (f/10
in our experiments) and model it as a pinhole camera that does not introduce
any additional blurring due to camera defocus.

Characterizing Projector Defocus. We model the projector blur using a
spatially varying, isotropic Gaussian kernel. The scale of the blur kernel σ(p, z, f)
is a function of projector pixel location p, the depth z of the scene point being
illuminated and the current focus setting of the projector f . A more general class
of kernels may allow for a more accurate characterization and allow more complex
types of aberrations to be modeled, but we found that isotropic Gaussians were
sufficient for our purpose.

For a given focus setting f and target depth z we estimate the defocus blur by
projecting a sequence of patterns onto a planar target at depth z. The patterns
are horizontal square waves with a period of 24 pixels (fig. 1a). We capture 24
images as the pattern translates one pixel at a time. The temporal profile of
intensity values observed at a pixel is modeled as a square wave convolved by
the blur kernel (fig. 1b). A similar scheme was used in [19] to estimate a mapping
between illumination defocus and scene point depth. We find the blur kernel scale
σ(p, z, f) that best fits the observed temporal profile for each projector pixel.
This characterizes the defocus blur at one depth and focus setting (example σ
maps are figs. 1e-1h). We repeat the process at a set of depths for each focus
setting (f = 1, 2, ...|F |). We sample G(p, z, f) at every projector pixel p and focus
setting f , but only sparsely in depth z. When queried for the blur kernel at a
given focus setting and depth, we return the kernel at that focus for the nearest
calibrated depth. Projector characterization is a one time, off line process.
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3 Illumination Control and Image Acquisition

We recover shape and perform direct-global separation with a set of structured
light patterns captured at different projector focus settings. The focus settings
are chosen so that the projector’s plane of focus spans the entire working volume
of the scene and that every part of the scene has at least one setting where the
illumination is in reasonably good focus. For each of the F focus settings we
capture a small number (N) of structured light patterns. Although we have
chosen to capture an equal number of patterns at each setting, this is not a
requirement for the algorithm, the number of patterns used could be varied
adaptively depending on the scene.

Focus Setting 1 Focus Setting 2 Focus Setting F 

… 

Fig. 2. Input to our Algorithm: We use binary stripe patterns of varying width. Unlike
most other structured light algorithms that use a fixed focus setting on the projector,
we change the focus setting to move the plane of focus backwards during the image
capture process (the camera focus however remains fixed). We capture a total of T =
F × N images. In our experiments, T typically ranged between 20 and 30. As the
figure illustrates, near by objects receive focused illumination in the earlier parts of the
sequence and distant objects come into focus later on.

The structured light patterns we use are vertical binary stripes with randomly
varying widths. Higher frequencies are less susceptible to global illumination
errors, but very high frequency patterns are not displayed well by projectors.
We let the period of the stripes in a pattern fluctuate between 10 and 14 pixels.
This frequency range is high enough to prevent global illumination errors in
most situations while still being in the band where contemporary projectors
works effectively. We select patterns that do not correlate with each other to
ensure that there is little redundancy between patterns.

4 Recovering Shape with Defocused Light Patterns

Temporal structured light algorithms project a series of patterns onto the scene,
the time sequence of values emitted by a projector pixel form a code for that
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pixel. Camera-projector correspondence is established by finding the projector
code that best matches the time sequence of intensity values observed at each
camera pixel. The code can be binary (eg. gray codes) or continuous (eg. phase
shifting), but it assumed that the code for each projector pixel is independent
of the scene geometry.
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(c) Our Multi Focus Code (d) Comparison of Codes

Fig. 3. Effect of Defocus on Codes: When illumination defocus is not modeled, the
temporal code associated with a projector pixel (a horizontal cross section of (a)) is
independent of depth. However, as (b) shows, outside a narrow working range, the
actual appearance of the code is depth dependent. In (c), we use 6 focus settings and
3 patterns per focus. Using multiple focus settings allows us to expand the systems
working volume. Also, we model illumination defocus so blurred codes do not cause
errors. When regular codes are in focus, they work well (upper blue graph in (d) ),
however for scene points that are out of focus, contrast is very poor (lower blue graph
in (d) ). On the other hand, our multiple focus codes always have parts that are well
focused and thus have high contrast (red graphs in (d)).

In contrast, our multi-focal structured light algorithm explicitly models illu-
mination defocus effects, so a projector pixel’s code becomes a function of the
depth of the scene point it is illuminating. This idea is illustrated in figure 3. It
is clear, that when the depth variation in a scene is large, defocus can strongly
affect how a projector code manifests in a scene. As seen in figure 3b, when a
pattern is out of focus, different values become difficult to distinguish. Decoding
such a blurred pattern reliably with a defocus-blind algorithm would necessitate
very high illumination power and high dynamic range on the imaging sensor. As
figure 3c shows, even in large working volumes, some part of our code is always in
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sharp focus. This allows our method to work at lower illumination power levels
over extended depths.

If we hypothesize that projector pixel p corresponds to camera pixel x, we
can perform triangulation to find the scene point depth τz(x, p) implied by the
hypothesis. Using our defocus model (equation 2), we can then simulate the

projector value S̃t(x, p) that would be observed at this scene point by convolving
the projector illumination pattern Lt with the defocus kernel,

S̃t(x, p) =
(
Lt ∗G (p, τz (x, p) , f)

)
(p) (3)

Stacking together these values for all the patterns t = 1, ..., T gives us the
projector code for the pixel.

S̃(x, p) = [S̃1(x, p), S̃2(x, p), ..., S̃T (x, p)] (4)

This projector code needs to be matched against the sequence of observed
intensity at camera pixel I(x)

I(x) = [I1(x), I2(x), ..., IT (x)] (5)

If the hypothesis that pixel x and pixel p correspond to each other is correct,
then by our illumination model (equation 1), there should be a linear relationship
between the observed intensity values at the camera and the simulated projector
values. We quantify the quality of a camera-projector correspondence hypothesis
by computing the correlation coefficient between I(x) and S̃(x, p). We can then
find the projector pixel p = π(x) corresponding to camera pixel x by maximizing
this correlation.

π(x) = argmax
p

ρ
(
I (x) , S̃ (x, p)

)
(6)

We use a calibrated projector-camera system so with the epipolar constraint
we limit the search in equation 6 to a 1D search along the epipolar line. We
compute ρ(I(x), S̃(x, p)) for every p along the epipolar line corresponding to
a positive depth (Figure 4). To compute disparity to sub-pixel accuracy, we
interpolate ρ scores between projector pixels when searching for maximae.

5 Recovering Direct and Global Illumination Components

Once the camera-projector correspondence map π has been estimated, we can
compute St(x), the projector pattern value at each camera pixel taking defocus
blur into account using equation 2. Under the image formation model (equa-
tion 1), there is a linear relationship between the projected pattern value at a
point St(x) and the brightness observed by the camera It(x). Fitting a line to
this model at each pixel yields estimates of the global and direct illumination.
However, it is possible that even over the entire sequence of projected light pat-
terns, some camera pixels would have seen seen only a small range of projector
intensity values. There will be significant ambiguity while fitting a line to data at



Multi Focus Structured Light 213

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Disparity (pixels)

C
o

rr
el

at
io

n
 S

co
re

 ρ
(x

1,p
)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

Estimated Projector Value L(x
1
,p)

C
am

er
a 

In
te

n
si

ty
 I(

x 1)

(a) (c)

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Disparity (pixels)

C
o

rr
el

at
io

n
 S

co
re

 ρ
(x

2,p
)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

Estimated Projector Value L(x
2
,p)

C
am

er
a 

In
te

n
si

ty
 I(

x 2)

(b) (d)

Fig. 4. Part of a scene (left) and the computed disparity map (right). Graph (a) shows
the correlation score for point x1 as a function of disparity to the projector. The
disparity that leads to the best match is 115. There are many peaks in the correlation
score graph, but modeling of illumination blur causes the peaks to decay as we move
away from the correct disparity value. Graph (c) shows the intensity observed by the
camera against the simulated projector illumination value for the best disparity. Graph
(b) and (d) are the same trends for point x2. Because of strong sub-surface scattering
at x2, the global illumination component is large and the direct component is relatively
small. This can be seen in (d).

these pixels and hence there will be numerous plausible solutions to the direct-
global separation. We resolve these ambiguities using a smoothness prior as was
done in [1] by finding the direct image Id and global image Ig that solve

argmin
Id,Ig

∑

t∈T

‖It − 1
2Ig − S ◦t Id‖22 + λdTV (Id) + λgTV (Ig) (7)

λd and λg are scalar parameters that weight the smoothness terms for the
direct and global components respectively. A ◦ B is the Hadamard (element-
wise) product between A and B. TV (F ) is the isotropic total variation of the
function F (x, y)

TV (F ) =
∑

Domain(F )

√(
∂F

∂x

)2

+

(
∂F

∂y

)2

(8)

Parts of the scene far away from the projector receive less light that regions
close to the projector. As a result, there is a pronounced falloff in the recovered
direct and global illumination images. Because we have recovered scene geometry,
we can roughly correct for this falloff by assuming it follows an inverse square
relationship with depth. We can compute depth dependent correction factor
K(x) at each pixel

K(x) =
α

τ2z (x, π(x))
(9)
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(a) Id (b) Īd (c) Ig (d) Īg

Fig. 5. The direct (a) and global (c) components of illumination estimated by our
algorithm. Since we have recovered a depth map of the scene, we can also correct for
projector fall off. This is particularly useful in scenes with large depth variations where
objects in the background appear much darker than those in the foreground because
they are further away from the light source. After accounting for the fall off, we get
corrected estimates for the direct and global component illumination ( images (b) and
(d) respectively).

where α is an (arbitrary) positive scale factor. We can then solve for the
corrected direct and global illumination components (Īd and Īg) by modifying
equation 7:

argmin
Īd,Īg

∑

t∈T

‖It − 1
2K ◦ Īg −K ◦ S ◦t Īd‖22 + λdTV (Īd) + λgTV (Īg) (10)

6 Results

Experimental Setup. Our experimental setup consists of a projector and a
camera mounted in a stereo configuration. We use a 500 lumen DLP projector
with a resolution of 1280× 800 (InFocus IN1144). The camera is a 2448× 2048
color CCD (Point Gray Research GRAS-50S5-C). The camera is calibrated geo-
metrically and radiometrically. The projector is calibrated geometrically at each
focus setting and its blur kernel has been characterized (as described in Sec-
tion 2). Our method uses only binary stripe patterns but we calibrated the
projector radiometrically so that we could compare our method to micro phase
shifting [6]. The projector-camera baseline is fixed and known. Since the projec-
tor intrinsics change with focus setting, we correct for this by warping images
before projecting them so that geometrically they all appear to be projected by
a projector with fixed intrinsic parameters.

In our experiments the focus ring position was changed by hand and we used 4
positions (F = 4). Between the shortest and longest focus settings, the working
range of the system covers depths from 350mm to 1600mm. For all experiments
the camera lens aperture was set to f/10, the exposure time was 133ms and the
camera was configured to capture 8 bit images.
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Fig. 6. Experimental Setup: With a small, 500 lumen DLP projector and a small
number of images, we are able to scan scenes over a large working volume to recover
accurate depth maps and perform illumination separation.

6.1 Depth Recovery

We present results from our depth map recovery algorithm on two challenging
scenes (top row in fig 7). Depth maps from our algorithm (second row in fig 7)
were generated using 7 structured light patterns at each of 4 focal lengths, a total
of 28 images. Our algorithm is able to recover accurate depth maps of both scenes
with very few errors. We compare against a simple depth from illumination focus
algorithm (bottom row) and micro phase shifting (third row).

The illumination defocus algorithm we compared against projects a shifted se-
quence of square waves (14 images) at each of 8 projector focus settings and then
finds the focus setting at which each camera pixel’s illumination contrast was
maximized. Each focus setting can be mapped to the depth of its corresponding
plane of focus to find the depth map. Since the baseline for this method is limited
to the aperture of the projector, the resulting depth estimates are coarse along
z and tend to be inaccurate at large distances.

For the micro phase shifting experiments, we chose the high frequency (16
pixels per cycle) pattern set with 15 frequencies [6]. Micro phase shifting uses
a fixed projector focus so we set the projector to be in focus in the middle of
the scenes. The total number of patterns used is 17. Using more patterns at this
frequency is difficult because micro phase shifting requires all projected pattern
frequencies to be in a narrow band.

Micro phase shift has some robustness to illumination blur but since it does
not actually model defocus, it breaks down when the depth variation in a scene is
too large. This is evident in scene 1 where the shape of green plastic robot in the
foreground is not recovered by micro phase shifting. In comparison, our method
is able to recover the robot. Our algorithm also works better on low albedo or
poorly lit regions like the red funnel in scene 2. Since we change focus settings,
there are always some images where the contrast of our projected illumination
is high, so low signal to noise ratios are less of a problem for our algorithm.
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Fig. 7. Recovering Depth: Our structured light algorithm is able to recover depth maps
for scenes containing challenging objects over an extended working volume with rela-
tively few images. The insets for our method and micro phase shifting show (rescaled)
depth maps for small parts of the scene. Many fine details on objects like the scales on
the soap fish are successfully resolved.



Multi Focus Structured Light 217

Scene 1
Direct Component Global Component

G
ro
u
n
d
tr
u
th

O
u
r
M
et
h
o
d

Scene 2

G
ro
u
n
d
tr
u
th

O
u
r
M
et
h
o
d

F
a
ll
o
ff
C
o
rr
ec
te
d

Fig. 8. Direct-Global Separation. Groundtruth was computed using 112 images and
our method used 28. In scene 1, the white hands on the robot toy appear much brighter
in the global image computed by our method than the ground truth. This is because
our algorithm tried to fit a linear trend to saturated (completely white) camera pixels.
In scene 2, the shading on the soap fish and the white statue becomes is very clear in
the direct illumination image.
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The candle in scene 1 is very difficult to reconstruct as from some directions,
it reflects almost no light directly back to the camera, almost all the observed
radiance is due to sub-surface scattering. As a result, all the methods are unable
to recover depth at some points on the candle surface.

6.2 Recovering Direct and Global Illumination

To obtain ground truth direct and global illumination images for our scenes, we
projected 14 shifted stripe patterns at 8 projector focus settings and used the
multiple focus separation technique proposed in [7]. The results presented for our
method are computed using the same 28 images that were used to estimate the
depth maps. Although our technique uses fewer images and involves a smoothing
term, it generates output that is similar to the ground truth. Additionally, we
can correct for the effects of projector fall off as demonstrated in Figure 8.

7 Discussion

We presented an algorithm that can reconstruct shape and recover direct and
global illumination in a large working volume with a small number of images.

Our algorithm’s robustness to global illumination effects relies on the as-
sumption used in [12]- the global illumination must vary slowly compared to the
spatial frequency of the projected patterns. If this assumption does not hold, for
example when specular interreflections occur, our method fails.

We currently use randomly chosen stripe patterns. Optimal pattern sets for
structured light are usually derived by trying to maximize the distance between
codes to minimize the chance of a decoding error. In our setting, we would have
to consider the fact that defocus causes our codes to vary with depth. Also, for
the direct-global component separation to work well, each pixel’s code word must
contain a large range of projector intensity values. Carefully designed patterns
may allow our algorithm to work well with fewer images.
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