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Abstract. We present a discriminative graphical model which integrates
geometrical information from RGBD images in its unary, pairwise and
higher order components. We propose an improved geometry estimation
scheme which is robust to erroneous sensor inputs. At the unary level, we
combine appearance based beliefs defined on pixels and planes using a
hybrid decision fusion scheme. Our proposed location potential gives an
improved representation of the planar classes. At the pairwise level, we
learn a balanced combination of various boundaries to consider the spa-
tial discontinuity. Finally, we treat planar regions as higher order cliques
and use graphcuts to make efficient inference. In our model based formu-
lation, we use structured learning to fine tune the model parameters. We
test our approach on two RGBD datasets and demonstrate significant
improvements over the state-of-the-art scene labeling techniques.

1 Introduction

The task of indoor scene labeling is a relatively difficult problem compared to its
outdoor counterpart. Indoor scenes have a large number of categories that are
significantly different from each other (e.g., corridors, bookstores and kitchens).
They also contain illumination variations, clutter, significant appearance vari-
ations and imbalanced representation of object categories [27]. Recently, inex-
pensive structured light sensors (e.g., Microsoft Kinect) are proving to be a rich
source of information for indoor scenes. They provide co-registered color (RGB)
and depth (D) images in real-time. Efficient use of this information for indoor
scene labeling problems is a critical opportunity.

Several recent works focus on the use of RGBD images for scene labeling of
indoor scenes. Koppula et al. [20] used Kinect fusion to create a 3D point cloud
and then densely labeled it using a Markov Random Field (MRF) model. Silber-
man and Fergus [34] achieved a reasonable semantic labeling performance using
a Conditional Random Field (CRF) with SIFT features and 3D location priors.
Couprie et al. [3] used ConvNets to learn feature representations from RGBD
data to label the images while Ren et.al [31] employed kernel descriptors to
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capture the distinctive features. These works are focused on extracting discrim-
inative features from RGBD data and have shown that the depth information
can certainly improve the scene labeling performance. However, the question of
how to adequately incorporate depth information to model local, pairwise and
higher order interactions has not been fully addressed.

In this work, we propose a novel depth-based geometrical CRF model to
more efficiently utilize the depth information along side the RGB data. First,
we incorporate the geometrical information in the most important potential of
our CRF model, namely the appearance potential. At the appearance level,
we encode both the intensity and depth based characteristics in the feature
space. These features are used to predict the unary potentials in a discriminative
fashion. Likewise, planes, which are the fundamental geometric units of indoor
scenes, are extracted using a new smoothness constraint based region growing
algorithm (see Sec. 5). Compared to other plane detection methods (e.g.,[29,
35]), our method is robust to outer-boundary holes present in Kinect’s depth
maps. The geometric as well as the appearance based characteristics of these
planar patches are learned and used to provide unary estimates. We propose a
novel hierarchical fusion scheme to combine the pixel and planar based unary
potentials. This hierarchical scheme first uses a number of contrasting opinion
pools and finally combines them using a Bayesian framework (see Sec. 3.1).

Next, we turn our attention towards the location potential, which encodes the
possible spatial locations of all classes. In contrast to the conventional 2D lo-
cation prior (e.g., in [33, 34]), we propose to integrate the rough geometry of
planar regions along with their location in each scene (see Sec. 3.1, 4.1). We also
propose a novel spatial discontinuity potential (SDP) in the pairwise smooth-
ness model. It combines a number of different boundaries (such as depth edges,
contrast based edges and super-pixel edges) and learns a balanced combination
of these using a quadratic cost function minimization procedure based on the
manually segmented images of the training set (see Sec. 4.2). Finally, we add a
higher order potential (HOP) in our CRF model which is defined on cliques that
encompass planar patches. The proposed HOP increases the expressivity of the
random field model by assimilating the geometric context. This encourages all
pixels inside a planar patch to take the same class label (see Sec. 3.3).

In short, we have proposed a new random field formulation which elegantly
combines the geometric information with the appearance information at various
levels of the model hierarchy (Fig. 1).

2 Related Work

The use of depth sensors for scene analysis and understanding is increasing. Re-
cent works employ depth information for various purposes e.g., object detection
[8], semantic segmentation [11, 20], object grasping [30], door-opening [28] and
object placement [14] tasks. For the case of semantic labeling, works such as
[3, 31, 34, 35] demonstrate that depth information reasonably helps in achieving
better performance. They however do not explore possible ways, other than the
depth based features, to incorporate depth information. In this paper, we define



Geometry Driven Semantic Labeling of Indoor Scenes 681

Fig. 1. Our approach combines geometrical information with low-level cues with in a
CRF model. Only limited graph nodes are shown for the purpose of clear illustration.

various levels where depth information can be incorporated in a random field
model and then explore how each level contributes to enhance the performance
of semantic labeling. Our framework is particularly inspired by the works on se-
mantic labeling of RGBD data [34, 35], considering long range interactions [19],
parametric learning [36, 37] and geometric reconstruction [29].

The scene parsing problem has been studied extensively in recent years.
Graphical models e.g., MRF and CRF have found success in modeling context
and providing a consistent labeling [9, 12, 13, 23, 26]. Hierarchical MRFs are
employed in [21] to make inference jointly on pixels and super-pixels. Huang et
al. [13] trained the CRF on separate clusters of similar scenes and used them
with standard CRF to label street images. Several research works (such as [3,
34, 41]) have shown that the depth based information enhances segmentation
performance. They however remain limited to the use of depth based features
and do not exploit the geometry of the regions and high level interactions.

An important challenge in scene labeling is to incorporate long-range in-
teractions between graph nodes while making local decisions. Farabet et al.
extracted dense features at a number of scales at each pixel location [5]. Other
works incorporate wide context by generating a number of varying scale seg-
mentations (often arranged as trees) to propose many possible labelings (e.g.,
[2, 21]). HOPs have been employed to model long range smoothness [19], shape
based information [24], cardinality based potential [39] and label co-occurrences
[22]. In contrast to previously proposed HOPs [18, 19], we propose to consider
the geometrical structure of the scenes to model high level interactions.

Currently popular parameter estimation methods include partition func-
tion approximations [33], cross validation [33] or simply hand picked parameters
[34]. We used a one-slack formulation [15] of the parameter learning technique of
[36], which gives a more efficient optimization compared to [36, 37]. Further, we
extend the parameter estimation problem to consider various different boundary
potentials in the SDP and learn them using a tractable quadratic program.

Our geometric reconstruction scheme is close to those proposed in [29, 41].
Both these schemes use data from accurate laser scanners and can not handle the
less accurate depth data acquired by a real time operating Kinect sensor. Our
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proposed algorithm relaxes the smoothness constraint in the erroneous depth
map regions and considers more reliable cues to segment the planar patches.

3 Proposed Conditional Random Field Model

The CRF model considers the appearance, location, boundaries and layout of
pixels to reason about a set of semantically meaningful classes. We want the
model to capture not only the neighboring interactions in a standard grid graph
structure, but to also consider the long range interactions defined on planar
regions (Fig. 1). The CRF model is defined on a graph G(I) = 〈V , E , C〉 composed
of a set of vertices V , edges E and cliques C. The goal of multi-class image labeling
is to segment an image I by labeling each pixel pi with its correct class label
�i ∈ L = {1..L}. The conditional distribution of output classes (y) given an
input image (x) and parameters (w) can be defined as a function of Gibbs
energy: P(y|x;w) = 1

Z(w) exp(−E(y,x;w)). This energy is defined in terms of

negative log-likelihoods as:

E(y,x;w) =
∑

i∈V
ψi(yi,x;wu) +

∑

(i,j)∈E
ψij(yij ,x;wp) +

∑

c∈C
ψc(yc,x;wc). (1)

The three terms in Eq. 1 are the unary, pairwise and higher order energies
respectively. The parameters introduced in Eq. 1 are learnt using a max-margin
criterion, details of which are given in Sec. 4.2. At the inference stage, the most
likely labeling is found by making a MAP estimate y∗ upon a set of random
variables y ∈ LN : y∗ = argmax

y∈LN

P(y|x;w).

3.1 Unary Potentials

The unary potential in Eq. 1 is further divided into two components, appearance
potential and location potential (Fig. 1):

∑

i∈V
ψi(yi,x;wu) =

∑

i∈V

appearance
︷ ︸︸ ︷
φi(yi,x;w

app
u )+

∑

i∈V

location
︷ ︸︸ ︷
φi(yi, i;w

loc
u ) (2)

We treat both terms separately in the following sections.

Appearance Potential: The proposed appearance potential in Eq. 2 is defined
over both pixels and planar regions (Fig. 1).We used a hierarchical ensemble learn-
ing method to combine local appearance and geometric information (Fig. 2). We
use the class predictions defined over planar regions to help in improving the poste-
rior defined over pixels. In other words, planar features are used to aid in reinforc-
ing beliefs on some dominant planar classes (e.g., walls, blinds, floor and ceiling).
At the first level, m contrasting opinions (κj : j ∈ [1,m]) are used to combine
the classifier outputs using linear opinion pooling (LOP) [4], P(yi|x1, . . . ,xm) =
∑m

j=1 κjPj(yi|xj), where xj ’s denote the representation of an image in different
feature spaces. Since we want to combine two classifiers: the pixel based classifier
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Fig. 2. Effect of Ensemble Learning Scheme: At the pixel location shown in left most
image, the pixel based appearance model favors class Sink. On the other hand, planar
regions based appearance model takes care of geometrical properties of region and
favors class Floor. The right most bar plot shows how our proposed ensemble learning
scheme picks the correct class decision.

and the planar region based classifier, we therefore set m = 2. After unifying be-
liefs based on contrasting opinions, the Bayesian rule is used to combine them at
the second stage. To try a number of weighting options (r configurations of weights
κ) to generate contrasting opinions o, we can represent our ensemble of proba-

bilities as1, P(yi|o1, . . . ,or) =
P(o1,...,or|yi)P(yi)

P(o1,...,or)
. Since o1, . . . ,or are independent

measurements, we have, P(yi|o1, . . . ,or) =
P(o1|yi)...P(or|yi)P(yi)

P(o1,...,or)
. Again applying

the Bayes rule and after simplification we get,P(yi|o1, . . . ,or) = ρP(yi|o1)...P(yi|or)
P(yi)r−1 .

Here,
P(yi) is the prior and ρ is a constant which depends on the data and is given by

ρ = P(o1)...P(or)
P(o1,...,or)

[4]. The appearance potential is therefore defined by:

φi(yi,x;w
app
u ) = wapp

u logP(yi|o1, . . . ,or). (3)

The posterior probabilities P(yi|xi) are estimated using the random forest (RF)
classifier. It captures the discriminative features of an image which encode in-
formation about shape, texture, context and geometry. We trained the RF with
100 trees and 500 randomly sampled variables as candidates at each split.

Location Potential: The proposed location prior in Eq. 2 models the class
distribution based on the orientation and spatial location:

φ(yi, i;w
loc
u ) = wloc

u logFloc(yi, i), (4)

where, Floc(yi, i) is defined in Sec. 4.1 and wloc
u is the parameter. The function

Floc(yi, i) is dependent on both the location and the orientation of a pixel (Fig.
1, see Sec. 4.1).

1 In this work we set r = 3 and κ is set to [0.25, 0.75], [0.5, 0.5] and [0.75, 0.25] respec-
tively in each case. This choice is based on the validation set (see Sec. 6.2).
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3.2 Pairwise Potentials

The pairwise potential in Eq. 1 is defined on the edges E and takes the form of
a boundary aware Potts model:

ψij(yij ,x;wp) = wT
p φp1(yi, yj)φp2 (x). (5)

The sub-potentials in Eq. 5 are defined as follows.

Class Transition Potential: The CTP in Eq. 5 is a simple zero-one indica-
tor function which enforces a consistent labeling. It is defined as: φp1(yi, yj) =
a1yi �=yj . For this work we used a = 10 based on the validation set (Sec. 6.2).

Spatial Discontinuity Potential: The SDP in Eq. 5 encourages the label
transition at the boundaries [32, 33]. It is defined as a combination of edges
from the intensity image, depth image and the super-pixel edges extracted us-
ing Mean-shift [7] and Felzenswalb [6] segmentation: φp2(x) = wT

p2φedges(x).
Weights assigned to each edge potential are learned using a quadratic program
(see Sec. 4.2). In simple terms, edges which match with the manual annotations
to a large extent contribute more in the SDP. The edge potential is given by:

φedges(x) = [βx exp(− σij

〈σij〉 ), βd exp(− σd
ij

〈σd
ij〉

), βsp-fwFsp-fw(x), βsp-msFsp-ms(x), α]
T (6)

where, σij = ‖xi−xj‖2, σd
ij = ‖xdi −xdj‖2 and 〈.〉 denotes the average contrast in

an image. xi and x
d
i shows the color and depth image pixels respectively. Fsp-ms

and Fsp-fw are indicator functions which give all zeros except at the boundaries
of the Mean-shift [7] or Felzenswalb [6] super-pixels respectively. For our case,
we set α = 1, βx = βd = 150 and βsp-ms = βsp-fw = 5 based on the validation set
(see Sec. 6.2).

3.3 Higher Order Potentials

HOPs incorporate long range interactions and enhance the representational
power of the CRF model (Eq. 1). We treat planar patches as n-order cliques
and define HOPs on them to eliminate inconsistent variables by encouraging
all variables in a clique to take the dominant label. The robust Pn model [19]
poses this encouragement in a soft manner and some pixels in a clique may re-
tain different labelings. Hence, it is a linear truncated function of the number
of inconsistent variables in a clique. Our proposed HOP enforces consistency by
applying a logarithmic penalty:

ψc(yc,x;wc) = wc min
�∈L

Fc(τc), (7)

where, Fc(.) is a function which takes the number of inconsistent pixels τc =
#c−n�(yc) as its argument. Fc is a non-decreasing concave function of the form
Fc(τc) = λmax − (λmax − λ�)exp(−ητc), where η = η0/Q� and η0 = 5. Here η0
is the slope parameter which decides the rate of increase of the penalty, with
the increase in the number of pixels disagreeing with the dominant label. The
parameters λmax and λ� define the penalty range which is typically set to 1.5
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and 0.15 respectively. Q� is the truncation parameter which provides the bound
for the maximum number of disagreements in a clique. To apply the graph cuts
algorithm, details regarding the disintegration of the HOP (Eq. 7) are given in
the supplementary material.

4 Learning CRF Model

4.1 Learning Potentials

For a robust semantic labeling, all the characteristics of a class (including its
texture, shape, context, geometry and spatial location) need to be taken into
account. The procedure of learning this information is outlined as follows.

Features for Local Appearance Potential: The local appearance potential
is modeled in a discriminative fashion using a trained classifier (RF in our case).
We extract features densely at each point and then aggregate them at the super-
pixel2 level to reduce the computational load and to ensure that similar pixels
get a unified representation in the feature space. A rich feature set is extracted
which includes local binary patterns (LBP), texton features, SPIN images, scale
invariant feature transform (SIFT), color SIFT, depth SIFT and histogram of
gradients (HOG). Overall, these features form a high dimensional space (~640
dimensions) and it becomes computationally intensive to train the classifier with
all these features. Moreover, some of these features are redundant while some
others have a lower accuracy. We therefore employ a genetic search algorithm3

to find the most useful set of features on the validation dataset (Sec. 6.2).

Features for Appearance Model on Planes: One of the most important
features is the plane orientation which is characterized by the direction of its
normal. We include the area and height (maximum z-axis value) of the planar
region in the feature set to consider its extent and position. Since these measures
may vary significantly and a relative measure is needed, we normalize each value
with the largest instance in the scene. Moreover, color histograms in the HSV
and CIE LAB color spaces are also included. The responses to various filters (in
the same manner as textons) are calculated and aggregated at the planar level.

Learning Location Potential: Our formulation is based on the idea that the
location of a class which has a characteristic geometric orientation can further
be made specific, if any geometric information about the scene is available. For
example, it is very unlikely to have a bed or floor at some location in an im-
age, where we know a vertical plane exists. Therefore, we seek to minimize the
location prior on the regions where the geometric properties of an object class
do not match with the observation made from a scene. First, we average class
occurrences over the ground truth for each class (yi) at each i

th location [33, 34]:

Floc(yi, i) =
N{yi,i}

Ni
. Next, we incorporate geometric information into the loca-

tion prior. For this, we extract the planar patches (see Sec. 5) and divide them

2 The super-pixels are obtained using a graph based segmentation method [6].
3 We use the standard implementation of genetic search algorithm in Weka attribute
selector tool [10] to choose the 256 best features.

~
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into three distinct geometrical classes: below-horizon horizontal regions, above-
horizon horizontal regions and vertical regions. Since the Kinect sensor gives the
pitch and roll for each image, the RGBD images are rotated appropriately to
remove any affine transformations. This makes the horizon (estimated using the
accelerometer) to lie horizontally at the center of each image. We use this horizon
to split the horizontal regions into above-horizon and below-horizon subclasses.
For each planar object class, we retain the 2D location prior in the regions where
the geometric properties of the class match with those of the planar region and
reduce its value in regions where that class cannot be located. For example, the
roof cannot lie on a horizontal plane in the below-horizon region or a vertical re-
gion. This effectively reduces the class location prior to only those regions which
are consistent with the geometric context. It must be noted that this elimination
procedure is only carried out for planar classes e,g., roof, floor, bed and blinds.
Finally, the location prior is smoothed and the prior distribution is normalized
to give

∑
iFloc(yi, i) = 1/L [34].

4.2 Learning Parameters

We used a structured large-margin learning method (S-SVM [36]) to efficiently
adjust the probabilistic model parameters. Whilst Szummer et al. [36] used the
n-slack formulation of cost function, we use a single slack formulation which
results in a more efficient learning without any performance degradation4 [15].
Algorithm 1 shows the learning procedure where the training set T consists of
N training images, ξ ∈ R+ is a single slack variable, C is the regularization
constant and Δ(y,yn) is the hamming loss function [36]. It can be proved
that the algorithm converges after O(1/ε) steps [15, 37]. The two major steps
in this algorithm are the quadratic optimization step (line 8), which is solvable
by off-the-shelf convex optimization problem solvers and the loss augmented
prediction step (line 4), which can be solved by graph cuts. Although graph
cuts move making algorithm gives an approximate solution, but it is efficient and
well suited for the task [16, 36]. To further minimize any chance of getting sub-
optimal solution, we initialize the parameters using validation set. With these
good initial estimates, S-SVM training converged mostly with in 40 iterations.

We also learn the parameters of the boundary potentials to get a balanced
representation of each edge in the SDP potential. In our approach, we define a
weighted combination of various possible edge potentials (such as depth edges,
contrast based edges, Felzenswalb and mean-shift super-pixels edges) to accom-
modate information from all these sources (see Sec. 3.2 and Eq. 6). We start
with a heuristic based initialization (given by parameters such as βx and α in
Eq. 6) and iterate over the training samples to learn a more balanced represen-
tation. Note that here we use double parameterization to minimize the chances
of getting into a local minimum. The weights for edges are restrained to be non-
negative (wp2 > 0) so that the energy remains sub-modular and the graph cuts

4 Interested readers are referred to [15] for more details and efficiency comparisons
between n-slack and 1-slack formulations.
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Algorithm 1. S-SVM Training with Rescaled Margin Cutting Plane Algorithm

Input: Training set (T ), ε tolerance (or convergence threshold), initial parameters w0

Output: Learned parameters w∗

1: S← ∅ (working set of low energy labelings that are used as active constraints)
2: while U(yn, xn;w) ≥ ε− ξ do
3: for n = 1 . . . N do
4: y∗ = argminy∈YE(y, xn;w)−Δ(y, yn)
5: S = S ∪ {y∗}
6: end for
7: (w, ξ)← argmin

w,ξ

1
2
‖w‖2 + Cξ

8: s.t. 1
N

N∑

n=1

[E(y,xn;w)−E(yn,xn;w)] ≥ 1
N

N∑

n=1

Δ(y,yn)− ξ ; C > 0, wi ≥ 0.

9: end while

10: where, U(yn, xn;w) = 1
N

N∑

n=1

[E(y,xn;w)− E(yn,xn;w)]− 1
N

N∑

n=1

Δ(y,yn)

inference can be applied. We use structured learning to learn SDP weights (Sec.
3.2) and the resulting quadratic program is given as follows:

argmax
‖wp2‖=1

γ s.t. {Econ, Edep, Efel-sp, Ems-sp} − Egrd ≥ γ, {wp2} ≥ 0, (8)

where, Egrd is the energy when the SDP is based on the manually identified edges
from the training images. Energies for the case when the SDP is based on image
contrast, image depth, Felzenswalb or mean-shift super-pixels are represented
as Econ, Edep, Efel-sp or Ems-sp respectively. The cost function given in Eq. 8 is
optimized in a similar fashion as in Algorithm 1.

5 Plane Detection and Geometric Modeling Scheme

Indoor environments are predominantly composed of structures which can be
decomposed into planar regions such as walls, ceilings, cupboards and blinds.
We extract the dominant planes which best fit the sparse point clouds of indoor
images (obtained from RGBD data) and use them in our model based represen-
tation (Fig. 1). It must be noted that depth map from Kinect contains many
missing values e.g., along the outer boundaries of an image or when the scene
contains a black or a specular surface. Traditional plane detection algorithms
(e.g. [29, 35]) either make use of dense 3D point clouds or simply ignore the
missing depth regions. In contrast, we propose an efficient plane detection al-
gorithm which is robust to missing depth vlaues (often termed as holes) in the
Kinect depth map. We expect that the inference made on the improved planar
regions will help us achieve a better semantic labeling performance.

Our method5 first aligns the 3D points with the principal directions of the
room. Next, surface normals are computed at each point. Contiguous points in

5 More details can be found in the supplementary material. Plane detection code is
available at http://www.csse.uwa.edu.au/~salman

http://www.csse.uwa.edu.au/~salman
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Fig. 3. Comparison of our algorithm (last
row) with [35] (middle row) is shown. Note
that the white color in middle row shows
non-planar regions. The last row shows de-
tected planes averaged over super-pixels.

Table 1. Comparison of plane de-
tection results on the NYU-Depth v2
dataset. We report detection accura-
cies for ‘exactly planar classes’ (EPC)
and ‘exact and nearly planar classes’
(E+NPC).

Performance Evaluation

Method EPC Acc. E+NPC Acc.
Silberman et al. [35] 0.69 ± 0.09 0.67 ± 0.10
Rabbani et al. [29] 0.60 ± 0.12 0.57 ± 0.14

This paper 0.76± 0.09 0.81± 0.07

Timing Comparison (averaged for NYU v2)
(for Matlab prog. running on single core, thread)

Silberman [35] Rabbani [29] This paper

41 sec 73 sec 3.1 sec

space are then clustered by a region growing algorithm which groups the 3D
points in a way to maintain their continuity and smoothness. It is robust to
erroneous normal orientations caused due to big holes mostly present along the
borders of the depth image acquired via Kinect sensor (Fig. 3). The basic idea
is to take help from appearance based cues when the depth information is not
reliable. The algorithm begins with a seed point and at each step, a region is
grown by including the points in the current region with normals pointing in
the same direction. Iteratively, the region is extended and the newly included
points are treated as seeds in the subsequent iteration. To deal with erroneous
sensor measurements along the border and any other regions with missing depth
measurements, we relax the smoothness constraint and use major line segments
present in the image to decide about the region continuity.

The line segment detector (LSD) [38] is used to extract the major line seg-
ments. These line segments are grouped according to the vanishing points. Line
segments in the direction of the major vanishing points contribute more in sep-
arating regions during the smoothness constraint based plane detection process.
We, however, empirically found that the use of any simple edge detection method
(e.g., canny edge detector) in our algorithm gives nearly similar performance
with much better efficiency. We further increased the efficiency by replacing it-
erative region growing with k-means clustering for regions having valid depth
values. The planar patches are grown from regions with valid depth values to-
wards regions having missing depths. In this process, segmentation boundaries
are predominantly defined by the appearance based edges in an image. Since
the majority of the pixels have correct orientation, fitting a plane decreases the
orientation errors and the approximate orientation of major surfaces is retained.
An added benefit of our algorithm is that curved surfaces are not missed out
during the region growing process, rather they are approximated by planes.

Once the regions are grown to the full extent, the small regions are dropped
and only the regions with a significant number of pixels are retained. After that,
planes are fitted onto the set of points belonging to each region using TLS (Total
Least Square) fitting. The least square plane fitting is a non-linear problem, it



Geometry Driven Semantic Labeling of Indoor Scenes 689

however reduces to an eigenvalue problem in the case of planar patches. This
makes the plane fitting process highly efficient. It is important to note that
although the indoor surfaces are not strictly limited to planes, we assume that
we are dealing with planar regions during the plane fitting process. It turns out
that this assumption is not a hard constraint since the majority of the surfaces in
an indoor environment are either strictly planar (e.g., walls, ceilings) or nearly
planar (e.g., beds, doors). Finally, our algorithm is superior to other region
growing algorithms (e.g., [29]) which are suitable for the segmentation of dense
point clouds and fail to deal with the erroneous depth measurements from the
Kinect sensor (Fig. 3 and Table 1).

6 Experiments and Analysis

6.1 Datasets

We evaluated our framework on the New York University (NYU) Depth dataset
(v2) and a recent SUN3D dataset. The NYU dataset [34] consists of 1449 labeled
images. SUN3D is a large scale indoor RGBD dataset [40], however it’s still under
development and only a small portion has been labeled. We extracted keyframes
from SUN3D which amounted to 83 labeled images.

6.2 Results

In the NYU-Depth v2, around 900 different object classes are present in all indoor
scenes. Since not all object classes have a sufficient representation, we follow the
procedure in [34] to cluster the existing annotations into the 22 most frequently
occurring classes. This clustering is performed using the Wordnet Natural Lan-
guage Toolkit (NLTK). For the case of SUN3D dataset, 32 classes are present in
the labeled images we acquired. We clustered them into 13 major classes using
Wordnet. In both the datasets, a supplementary class labeled ‘other ’ is also
included to model rarely occurring objects. In our evaluations, we exclude all
unlabeled regions. For both the datasets, 60%/40% train/test split was used. A
relatively small validation set consisting of 50 random images was extracted from
NYU-Depth v2. This validation set was used with the genetic search algorithm
for the selection of useful features and for the choice of the initial estimates of
the parameters which gave the best performance (for SUN3D we used the same
parameters). Afterwards, these parameters were optimized during the learning
process as described in Sec. 4.2.

We used two popular evaluation metrics to assess our results, ‘pixel accuracy’
and ‘class accuracy’ (see Table 2). Pixel accuracy accounts for the average num-
ber of pixels which are correctly classified in the test set. Class accuracy measures
the average of the correct class predictions which is essentially equal to the mean
of the values occurring at the diagonal of the confusion matrix. We extensively
evaluated our approach on both the NYU-Depth and SUN3D datasets. Our ex-
perimental results are shown in Table 2. The comparisons with state-of-the-art
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Table 2. Semantic Labeling Performance: We report the results of our proposed frame-
work when only variants of unary potentials were used (top 3 rows), a CRF with regular
Potts model was used (second last row) and the improvements observed when more
sophisticated priors and HOPs (last row) were added. Accuracies are reported for 22
and 13 class semantic labeling for NYU v2 and SUN3D datasets respectively.

Variants of Our Method
NYU-Depth v2 SUN3D

Pixel Accuracy Class Acc. Pixel Accuracy Class Acc.

Feature Ensemble (FE) 44.4± 15.8% 39.2% 41.9± 11.1% 40.0%

FE + Planar Appearance Model (PAM) 52.5± 15.5% 42.4% 48.3± 11.5% 42.6%

FE + PAM + Planar Location Prior (PLP) 55.3± 15.8% 43.1% 51.5± 11.9% 43.3%

FE + PAM + PLP + CRF (Regular Potts Model) 55.5± 15.8% 43.2% 51.8± 12.0% 43.5%

FE + PAM + PLP + CRF (SDP + HOP) 58.3± 15.9% 45.1% 54.2± 12.2% 44.7%

Table 3. Comparison of results
on the NYU-Depth v2 (4-class
labeling task): Our method
achieved best performance in
terms of average pixel and class
accuracies

Method
Semantic Classes Pixel Class

Floor Structure Furniture Props Accuracy Accuracy
Supp. Inf. [35] 68 59 70 42 58.6 59.6
ConvNet [5] 68.1 87.8 51.1 29.9 63 59.2

ConvNet + D [3] 87.3 86.1 45.3 35.5 64.5 63.5
Im ∪ 3D [1] 87.9 79.7 63.8 27.1 67.0 64.3
This paper 87.1 88.2 54.7 32.6 69.2 65.6

techniques are shown in Tables 3, 4. Sample labelings for NYU-Depth v2 are
presented in Fig. 4. Although the unlabeled portions in the annotated images
are not considered during our evaluations, we observed that the labeling scheme
mostly predicts accurate class labels (see Fig. 4).

We report our results in terms of average pixel and class accuracies in Table
2. Starting from a simple unary potential defined on pixels using an ensemble of
features, we achieve pixel and class accuracies of 44.4% and 39.2% respectively
on NYU-Depth v2. The corresponding accuracies for SUN3D are 41.9% and
40.0% respectively. Starting from these moderate accuracies we build up and
get significant improvements. Upon the introduction of the planar appearance
model, the pixel and class accuracies increased by 8.1% and 3.2% from their
previous values for NYU-Depth v2. For the SUN3D database, we get an increase
of 6.4% and 2.6% in pixel and class accuracies respectively. The addition of
CRF and modified location potential along with the HOP enforced a better
label consistency and the results were consequently improved by 5.8% and 2.7%
for NYU-Depth v2, 5.9% and 2.4% for SUN3D datasets. By comparing last two
rows in Table 2, it can be seen that the proposed SDP performs better much
than the regular Potts model.

For the case of NYU-Depth v2, we compare our framework with a recent
multi-scale ConvNet based technique [3, 5]. Whereas in [3, 5] evaluations were
performed on just 13 classes, we use a broader range of 22 classes to report
our results (see Table 4). To compare with the class sofa, we report the mean
accuracies of the sofa and chair classes for a fair comparison6. We compare the
furniture class in [3] with our cabinet class based on the details given in [3].

6 If we sum up the class occurrences of the chair and sofa which are reported in [3],
it supports such comparison.
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Table 4. Class wise Accuracies on NYU-Depth v2: Our proposed framework achieves
the highest accuracy on 19/22 classes. With nearly double number of classes used in
[3, 5], we get ∼ 6% and ∼ 9% improvement in class and pixel accuracies respectively.
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ConvNet [5] 30.3 - 31.7 28.5 33.2 68.0 - 35.1 18.0 18.8 89.4 37.8 - - - - - - - - - - - 35.8 51.0 13

CNN+D [3] 38.1 - 13.7 42.4 62.6 87.3 - 29.8 10.2 6.0 86.1 15.9 - - - - - - - - - - - 36.2 52.4 13

This paper 32.3 56.9 38.3 45.6 64.7 75.8 43.6 58.6 47.9 45.7 77.5 54.0 43.8 38.8 34.0 58.3 37.2 23.1 28.4 35.7 22.6 29.9 - 45.1 58.3 22

Fig. 4. Examples of semantic labeling results on the NYU-Depth v2 dataset. Figure
shows intensity images (top row), ground truths (bottom row) and our results (middle
row). Our framework performs well in many cases including some unlabeled regions.

Overall, we get superior performance compared to [3, 5] and also achieve best
class accuracies in 19/22 classes.

On NYU-Depth v2, Silberman et al. defined just four semantic classes: furni-
ture, ground, structure and props [35]. The main goal of [35] was to infer support
relationships between objects, for which such a class selection was justified. For
our application, such a small number of classes will be meaningless. However,
for the sake of comparison we evaluated our method on the 4-class segmentation
task as well. As shown in Table 3, we achieved the best performance over all.
Particularly we performed well on planar classes such as floor and structures.
In terms of pixel and class accuracies, we noted an improvement of 2.2% and
1.3% respectively. Very recently, Muller and Behnke [25] have reported state-of-
the-art labeling performance on NYU-Depth v2. In comparison to [25], which
reported results on just 4 classes, our method performs also well on a larger set
of 22 classes which demonstrates its scalability.

One may wonder why the incorporation of geometrical context in the CRF
model works and gives such high accuracies? In v2 of the NYU-Depth dataset,
there are nearly ten out of 22 classes (bed, blind, cabinet, ceiling, floor, picture,
table, wall, counter, door) which are planar and out of the remaining classes, 6
are loosely planar (tv, sofa, bookshelf, window, box, sink). The planar classes
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Fig. 5. Confusion Matrices for NYU-
Depth v2 (left) and SUN3D right
Databases. All the class accuracies shown
on the diagonal are rounded to the clos-
est integer for clarity.

correspond to 62.2% while the loosely planar classes correspond to 14.3% of the
total labeled data. There is a similar trend on the SUN3D database. Note that
classes such as floor or wall may have varying textures across different images.
However, with depth information in place, we can determine the correct class
of the object. Our approach is efficient at test time, since the proposed graph
energies are sub-modular and approximate inference can be made using graph-
cuts. Empirically, we found average testing time per image to be ∼ 1.7 sec for
NYU-Depth and ∼ 1.4 sec for SUN3D database. For parameter learning on the
training set, it took ∼ 12 hrs for NYU-Depth and ∼ 45 min for SUN3D database.

From the achieved performances (Table 2), it can be seen that indoor scene
labeling is a challenging problem due to the diverse nature of the scenes and
the presence of a large number of objects. Many times, class errors occurred
due to the confusion between two similar classes e.g., door is usually confused
with wall and blind with window (see Fig. 5). Some misclassifications occurred
due to illumination variations, specular surfaces and shadows. In future work,
we will explore the use of shadow removal methods like [17] to enhance the
labeling accuracy. Lastly, the datasets are somewhat unbalanced and a sufficient
representation of all classes is not present in the training set. The labeled portion
of SUN3D database is really small (because the database has been released
recently) and this is why the achieved accuarcies are on the lower side (see Table
2). The availability of more and higher quality training data for each class will
certainly improve the quality of scene labelings.

7 Conclusion

With the availability of depth data for indoor scenes, a pressing issue is to lever-
age this information in a better way. We extract geometric information from
indoor scenes using a novel region growing algorithm which uses dominant lines
and surface normals to group the pixels. We use this information at a number of
levels in the proposed CRF model. First, we accommodate a posterior defined
on planar regions in the appearance based potential to reinforce our beliefs on
the dominant planar classes. We also include geometry aware location priors
and HOPs defined over n-order cliques to encourage the pixels lying on a planar
region to adopt the same labeling. The pairwise potential in our model is de-
fined as a combination of various edges learned using a quadratic program. We
extensively evaluated our scheme on the NYU-Depth and the SUN3D databases
and report comparisons and improvements over existing works.
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