A Multi-transformational Model for Background
Subtraction with Moving Cameras*

Daniya Zamalieva, Alper Yilmaz, and James W. Davis

The Ohio State University, Columbus OH, USA

Abstract. We introduce a new approach to perform background sub-
traction in moving camera scenarios. Unlike previous treatments of the
problem, we do not restrict the camera motion or the scene geometry.
The proposed approach relies on Bayesian selection of the transformation
that best describes the geometric relation between consecutive frames.
Based on the selected transformation, we propagate a set of learned
background and foreground appearance models using a single or a se-
ries of homography transforms. The propagated models are subjected
to MAP-MRF optimization framework that combines motion, appear-
ance, spatial, and temporal cues; the optimization process provides the
final background/foreground labels. Extensive experimental evaluation
with challenging videos shows that the proposed method outperforms
the baseline and state-of-the-art methods in most cases.

Keywords: Background subtraction, moving camera, moving object
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1 Introduction

Background subtraction is essential for many high level tasks in computer vision,
including but not limited to object detection, object recognition, tracking, 3D
scene recovery, and action recognition. Considering its precursory nature in the
computer vision pipeline, the performance of background subtraction directly
affects the quality of each task it precedes as well as the final results in the
pipeline. For over two decades, a significant number of background subtraction
methods have been published under the assumption that the camera capturing
the scene is stationary. Needless to say, none of these algorithms are applica-
ble in the case when the camera is moving. The ever increasing use of mobile
phones and handheld cameras introduces a need for new background subtraction
methods that alleviate a stationary camera requirement.

When the camera moves during acquisition, the pixels corresponding to back-
ground no longer maintain their positions in consecutive frames. This obser-
vation severely complicates the traditional background subtraction process and
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requires compensation of the camera motion. The printed literature contains
only a handful of studies on background subtraction for freely moving cam-
eras [15,10,7,22,8,9,4,5]. A typical first step in all these methods is background
motion estimation, which can be broadly classified into two categories: model-
based estimation [10,8,9,7] and trajectory-based estimation [15,4,5]. The model-
based methods assume that the majority of the visible scene is the background,
and they estimate either the homography transform [10,7] or fundamental ma-
trix [8,9] between frames. The homography transform, however, is valid only
when the scene is planar or when the camera does not translate. On the other
hand, the fundamental matrix is only valid for nonplanar scenes and can be com-
puted when the camera translates creating parallax. Consequently, homography
methods are prone to parallax, while fundamental matrix methods are suscep-
tible to small camera motion. Since homography and fundamental matrices are
complementary, neither can be used alone to model unknown camera motion.
Alternatively to model-based methods, trajectory-based methods rely on dense
long-term pixel trajectories to infer background motion [15,4,5]. These methods,
however, are sensitive to tracking errors and short or incomplete trajectories
especially when the camera motion is fast.

Methods in both categories remedy their drawbacks by employing appearance
modeling and spatial smoothing. The appearance modeling is achieved by gen-
erating and transforming the background and foreground models for spectrally
consistent results. Similarly, spatial smoothing ensures similar labeling results
for proximal pixels. Both of these constraints work reasonably well in the case
when the motion estimation prior to their application is acceptable; however,
they are ineffectual when the motion estimation is incorrect.

In order to overcome the aforementioned problems related to implicit back-
ground motion estimation, we propose to use both the homography transform
and the fundamental matrix (see Figure 1 for algorithmic flow). At each frame,
we first estimate a dense motion field, then use it to compute the geometric trans-
formations which are later used to propagate appearance models from the previ-
ous frame to the current frame. From among the two geometric transformations,
the appropriate one is selected by adopting the Geometric Robust Information
Criterion (GRIC) [18,6]. The application of the GRIC improves the motion esti-
mation by choosing the appropriate geometric model for the short baseline case
videos; hence, it makes the proposed background subtraction scheme immune to
geometric degeneracies. In the case when the GRIC score favors the homography
transform, the appearance propagation becomes a 1-1 mapping. On the other
hand, if the fundamental matrix is chosen, we propagate the appearance models
by estimating a series of homography transforms. The propagated appearance
models provide the likelihood of each pixel used for background/foreground la-
beling. The appearance models we implement are similar to most background
subtraction methods for stationary cameras, where the background appearances
are modeled using a mixture of Gaussians per pixel [17]. Finally, we combine
motion, appearance, spatial, and temporal cues in a MAP-MRF optimization
framework to obtain the final background/foreground labels.
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Fig. 1. Overview of the proposed method. First, the geometric transformation between
frames t — 1 and ¢ is selected using the GRIC score, and the motion scores for each
pixel are computed. Then, the appearance models from previous frame are propagated
and compared with the current frame to obtain background/foreground scores. The
motion and appearance scores are combined with the labeling of the previous frame to
obtain the labeling for the current frame. Finally, the appearance models are updated
accordingly.

The contributions of this paper can be summarized as follows. We provide
novel methods in context of background subtraction for: 1) determining the best
fitting geometric model that relates consecutive frames; 2) propagating learned
background/foreground appearance via a multi-transformational model; 3) la-
beling pixels that is robust to occlusions and optical flow errors; 4) incorporating
motion, appearance, spatial, and temporal cues for the final labeling.

2 Related Work

A common assumption for background subtraction methods is having a station-
ary camera for modeling the background appearance. The stationary camera
assumption can be formulated as an identity transformation between the in-
coming frame and the background model. There are many papers in the liter-
ature that assume a stationary camera setup, and they have been discussed in
comprehensive surveys [13,2]. There are also studies that perform background
subtraction for stationary cameras but with dynamic backgrounds that exhibit
non-stationary properties in time [12,16,11].

When the camera motion is not constrained, the background subtraction prob-
lem becomes complicated. Among the few papers published on this topic, a com-
mon treatment is to estimate the view geometric transformations such that the
regions that do not fit the estimated transformations are labeled as foreground.
Following this scheme, [9] uses the fundamental matrix for initial background/
foreground labeling, which is iteratively refined by imposing temporal and spatial
smoothness. In their method, the image is divided into blocks and the temporal
models of each block are propagated using optical flow. This method, however,
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is prone to small moving objects and degeneracies in estimating the fundamental
matrix. In [8], the authors improved their method by refining the initial labeling
using belief propagation. While providing a better postprocessing procedure, the
performance still suffers from view geometric degeneracies in the fundamental ma-
trix estimation, such as when the camera does not translate, frame-to-frame mo-
tion is very small, or the scene is planar. In contrast, [10] uses the homography
transform to model and transfer the background model. View geometric degen-
eracies of homography estimation, such as nonplanar scenes, however, degrade the
performance of their method. In order to avoid the problems caused by complex
background scenes, [7] estimates separate homography transforms for a number
of planes by applying a cascade of RANSAC steps. Since the points used for es-
timation include foreground objects, estimated homography transforms may be
for non-existing planes which cause incorrect transformations. In addition, their
method cannot tolerate when the first frame of the sequence contains moving ob-
jects or when the object enters the camera view together with a previously unseen
part of the background. Alternative to implicit view geometry based methods, [22]
performs full 3D recovery using a combination of structure from motion and bun-
dle adjustment. Their approach requires a set of computationally expensive steps
which is not suitable for background subtraction, which is usually considered an
initial step in high-level computer vision tasks.

In contrast to the use of geometric transformations, some researchers analyze
long-term trajectories to find moving objects in the sequence. In [15], the au-
thors assume that the trajectories of background features form a 3D subspace,
which can be estimated with factorization based shape-from-motion. In [4], a
similar method is introduced, where the factorization is guided by group spar-
sity constraints defined for foreground. Both methods, however, strongly rely on
long-term feature tracking which inhibits their real time application. A recent
method [5] represents trajectories in a low-dimensional space and groups them
by relearning the Gaussian Mixture Model at each frame. The decision of which
trajectory groups belong to background or foreground is given by a set of heuris-
tics such as compactness, surroundedness, and spatial closeness. These heuristics
may fail for complex background scenes and non-rigid foreground objects.

In this paper, we model background motion by choosing appropriate geometric
transformation for each frame instead of committing to a single model. Our method
accommodates multiple transformational models for appearance model propaga-
tion, which are applied according to the selected geometric transformation.

3 Choosing Frame-to-Frame Transformations

Assuming the camera reference frame coincides with the world reference frame,
the projection of a 3D point can be written as x = PX = K[I|0]X, where P
is a 3 x 4 projection matrix, K is the camera calibration matrix. When the
camera rotates and translates, point X projects to the new image by x' =
K'[R|t]X. In this case, there is no one-to-one mapping between the image points
x and x’. These points, however, satisfy the fundamental matrix F: x'TFx = 0.
The fundamental matrix is a geometrically valid transformation except for the



Background Subtraction with Moving Cameras 807

following degenerate cases: 1) the camera does not translate and only rotates,
2) all matching points are coplanar. In addition, for small camera baseline the
equation system for estimating fundamental matrix becomes ill-conditioned.

For the degenerate cases stated above the transformation becomes a 1-1 map-
ping. This can be shown by dropping the last column of the projection matrix
P, in the case when the camera does not translate: x = KX and x' = K'RX,
such that 1-1 mapping between points becomes x’ = (K'RK~!)x = Hpx, where
Hy is referred to as the rotational homography. For the second case in which all
points are coplanar, without loss of generality, we can assume that the points
lie on Z = 0 plane. In this case, the third column ps of P, which gets multi-
plied with the point’s Z coordinate, is not relevant in projection and can be
dropped. The resulting projections in case become x = [p1, p2, p4]X = HX, and

= [p}, ph, p)]X = H'X/, such that x’ = (HH"!)x = (H,)x, where H, is the
homography transform with respect to plane 7.

The homography transform and the fundamental matrix constitute all possi-
ble frame-to-frame geometric transformations for a static scene. In order words,
when they are used interchangeably, they can model all camera motions and
scene geometries. In order to realize this observation and allow a freely moving
camera in arbitrary background, we use both geometric transformations instead
of committing to only one of them (opposed to the published literature summa-
rized in Section 2).

A straightforward selection of the appropriate geometric transformation for
consecutive frames is to first estimate both transformations and compare the
sum of fitting errors for each one individually. This approach, however, is not
a well posed due to the fact that the homography transform is a bijective 2D
map and results in a two-dimensional error; while the fundamental matrix is a
many-to-one mapping and provides a one-dimensional error. In order to define
a 1D geometric distance, we follow the convention described in [20, 19} which
computes the approximation of the squared geometric distance e? 7y and eZ g from
the 4D joint-space point [x;;x}] to the homography H and fundamental matrix
F manifold, respectively.

Using these distance measures, [18] introduces the Geometric Robust Infor-
mation Criterion (GRIC), which is a Bayesian model selection scheme for the
two geometric transformations. In order to offset measurement errors in model
estimation, a search region S is defined in which the distances are assumed ac-
ceptable. This model is later modified by [6] for a 3D scene recovery problem,
where the authors suggest to add another search criteria R which defines the
range of disparity along which the feature match is expected to occur. Since
the original GRIC [18] is biased towards selection of homography transform as
addressed in [6], we adopt the modified GRIC score for m = {H,F} given as:

e2
GRIC,, = sz ( ;;n> +n ((D — dp)log2m0® + 2log C;”) + km logn, (1)
i

where D is the dimensionality of an observation (D = 4 for a pair of 2D points),
d, is the dimensionality of the underlying model manifold (dy = 2, dp = 3), 0 is
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Fig. 2. GRIC score based selection for the outdoor sequence. The bar below exemplar
frames indicates which geometric transformation is selected. Selection of H and F is
respectively denoted by black and white regions.

the standard deviation of the measurement error, -y is the prior expectation that
a correspondence is an inlier, k,, is the number of model parameters (kg = 8,
kp = T), n is the number of observations, and pz(z) = min{z, T}, } with

T = 2log ( 7 v ) — (D — dy)log 2n5°. (2)

1—7v . Cm
For an L x L image, while an arbitrary correspondence may occur in the volume
v=LxLxS xS, the GRIC score assumes an inlier correspondence is only
distributed in the volume ¢,,, where cg = L X L and cp = L x L x R. In this
framework, the lower GRIC score indicates the better geometric model.

In our implementation of the GRIC score, for each new frame I, we first
compute point correspondences between It and I'~! using optical flow. The
matching features are then used to estimate both the fundamental matrix F
and the homography transform H using RANSAC. Each geometric model is then
subjected to Eqn. (1). The best fitting geometric model is selected based on the
lowest GRIC score (see Figure 2). Once the model is chosen, the corresponding
measurement error e?, is used to assign each pixel x; a motion based score

m(x;) which indicates the likelihood of x; being a background pixel:

62
m(x;) = exp( Zm) , (3)

2
20,

where o, controls the normalization of the motion score m(x;).

4 Appearance Modeling

The motion score of a pixel m(x) which is computed from the estimated motion
model can be used to tentatively label a pixel as background or foreground.
The resulting labeling based purely on motion is often noisy and prone to errors
in optical flow; hence one can conjecture that the motion information alone is
insufficient for the labeling. Besides motion, the appearance provides a strong
clue indicating the presence or absence of a foreground object. To leverage the
information provided by appearance changes, we maintain a background model
B(x) and a foreground model F(x) for each pixel x.
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The challenge that makes background subtraction for a moving camera a hard
problem is the requirement of registering the current frame with the background
and foreground models. If such alignment is computed, any method proposed for
a stationary camera can be applied to perform the background subtraction. In
this paper, we adopt a commonly used Gaussian mixture model [17] to represent
the background and foreground models.

The proposed method accommodates both the homography and a fundamen-
tal matrix based transformations by employing different mapping strategies. In
the following text, we focus on how the selected geometric model can be used
to compute an appearance based background and foreground scores from the
generated appearance models.

4.1 Background Score for Homography Transform

When the GRIC metric results in selection of the homography transformation
from the current frame, I, and the background model, B, it can be directly used
to map point x in I to background model B:

x = Hox. (4)

The appearance based background score of x given the model B(x’) is then
computed from:

s(x|B(x Zw exp( <It<x>ug’-)T(E;?)—l(It(x)u§>)+wsc, (5)

where g is the number of mixture components at B(x’), w?, ug, Z;? are respec-
tively the weight, mean, and covariance of jth component, c is a constant, and
wp is the weight of a constant component which prevents from setting w; = 1
when the model is first initialized. Assuming independence of color channels, the
covariance matrix is set to a diagonal matrix of the form ¥ = ¢°I.

4.2 Background Score for Fundamental Matrix

In the case when the GRIC metric chooses the fundamental matrix as the geo-
metric transformation, the mapping between the image and the model becomes
one-to-many, such that a point x in I' maps to an epipolar line Fx in B. This
one-to-many mapping, however, does not register the image with the background
model, and inhibits proper updating of the model. Geometrically, the choice of
fundamental matrix suggests that the background scene contains more than a
single physical plane, each of which can be transformed by a different homogra-
phy transform that can be computed from a cascade of RANSAC steps.

In order to find such one-to-one mappings, correspondences with low motion
score m(x) given in Eqn. (3) are removed from the background pixel set due
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Fig. 3. The estimation of multiple homography transforms. First, the pixels with low
motion scores are excluded (shaded with black in the second image). At each step, a
homography transform H; is estimated, and the inliers (shaded with navy, red, green)
are excluded from subsequent homography estimations.

to the fact that they most likely correspond to foreground regions as discussed
earlier. The remaining points are used to estimate the homography H; using
RANSAC. The inlier point set satisfying H; are excluded from the set and the
procedure is repeated for the remaining points to estimate Hs, Hs, ... until the
number of correspondences left is small (see Figure 3). In this scheme, each
estimated homography transform H; corresponds to a different plane m; within
the background scene and can be used to perform one-to-one mapping of pixels
on respective planes to the background model by x = H;x for ¢ > 1. While the
inlier sets provide a list of pixels for each plane 7;, they by no means provide a
complete set of pixels due to observation noise; hence, we transform each pixel
in the image using all computed homography transforms and select the plane
that satisfies:

x' = argmin ||I*(x) — ' (<) (6)

X

This process provides the transformation that best satisfy appearance similarity
and the transformed pixel x’ is used to compute the background score in Eqn. (5).

While this approach works well for visible background pixels, occluded back-
ground pixels that become visible after the foreground object moves require
special treatment. This observations also holds for pixels with noisy optical flow.
This is due to the fact the appearance constraint in Eqn. (6) is not satisfied. For
such a pixel, we consider its k-nearest unoccluded pixels that are associated with
one of the planes m; and perform a majority voting to associate it to a plane.
The corresponding homography is then used to compute the background score
s(x|B(x')) using Eqn. (5).

Note that, if the homography transforms are estimated directly, one cannot
avoid the estimation of a homography that maps the foreground objects be-
tween consecutive frames. If such a transformation is included, the foreground
object will be incorporated into the background model after a number of frames.
Moreover, moving objects present in the first frame would be directly included
in the background model, and with the corresponding homography estimated,
they cannot be distinguished from the background as the object moves. We avoid
estimating the foreground homography by excluding the pixels with low scores
m(x) that indicate the presence of a moving object.
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4.3 Foreground Score

Considering that the foreground objects can be non-rigid and nonplanar, we
estimate the mapping of a pixel based on its optical flow:

x' = x+ u(x), (7)

where u(x) is optical flow of x, and x’ is the projected location we will use to
estimate the foreground score. We should note that, for foreground objects, aside
from having low background scores from Eqn. (5), the projections by optical flow
and the estimated background homography transforms are different, which is
encoded in the motion score m(x). The foreground score F after the projection
can be written similar to the background model of Eqn. (5):

g
1 _
(7)) = 3w exp (100 = k)TN ) ) + e 9
j=1
where the subscript f indicates foreground.

5 Background/Foreground Labeling

Given the projection model, and the background and foreground scores for each
pixel, our objective is to estimate a binary label £ at time ¢, which denotes
if the pixel belongs to background, £(x) = 0, or foreground, £f(x) = 1. The
cues introduced in the Section 3-4 provide necessary constraints for the labeling
problem. In particular, the motion of pixel x and how well it satisfies the back-
ground motion based on Eqn. (3) can be used to reflect the cost of a background
or foreground label:

1—m(x) if LY(x)=0
m(x) otherwise

M) = { ©
In similar fashion, how well the appearance of the pixel fits to the background
or the foreground model can be competed using Eqns. (5) and (8) by:

s(x|F(x+u)) if L'(x) =0
A(x) = {S(XB(HZ‘X)) otherwise ’ 10)

where ¢ > 0. Aside from the motion and appearance based terms, one can expect
that the label of a pixel should be both temporally and spatially consistent. These
constraints are typically introduced to the labeling cost function as smoothness
terms that penalize the assignment of different labels to pixel’s spatial or tempo-
ral neighborhood. Let a pixel x in frame ¢ corresponds to pixel x’ in the previous
frame ¢ — 1. The temporal smoothness T'(x) is defined based on the neighborhood
G(x) of x and can be computed as:

(11)

7o) = (1= 3(€' ()~ £ e esp (100075,

2
207
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where 6(-) is a Kronecker delta function.
The spatial smoothness V(x;,x;) enforces the adjacent pixels x; and x; in
frame I to have the same label and can be formulated as:

Vi) = (1= 62 x) ~ £ esp (1 OV TNy

where the constant S is defined [9] as:

Z STk — I(x))] (13)

=1 x;€G(x;)

and G(x;) is a set of neighboring pixels around x;. Given the motion, appear-
ance, and smoothness constraints, the pixels can be labeled as foreground or
background by minimizing the labeling cost function F is given by:

= Y M)+ AaD | A+ MY T(xi) +As D V(xi,%5), (14)

x; €It x; €It x; eIt xi,X;EN

where the appearance, temporal, and spatial terms are weighted by Aa, A7, Ag,
and N is the neighboring system on pixels. The solution of energy minimization
can be efficiently computed using the graph-cut algorithm [3].

6 Appearance Model Update

Once the labels for all the pixels are assigned, the new background and fore-
ground observations can be used to update the background and foreground mod-
els by mapping the pixels based on the associated transformations. Let x’ be the
model location of pixel x in frame I*. For a pixel with background label x’ = H;x
for 7 > 0, while for a pixel with foreground label x’ = x + u. In order to update
the appropriate component of the Gaussian mixture in B(x) or F(x), the color at
I(x) is checked against each component until a match is found. The parameters
of a distribution that matches the current pixel are updated as:

i (x) < (1= o) (x') + ol' (x), (15)
0" (x) = (1 = a)of"(x') + a(l'(x) — p"(x') " (I'(x) — u"(x), ~ (16)

where 4 indicates the selected component of the mixture model, m = {f,b},
and « is the learning rate. In this process, the mean and standard deviation of
the unmatched distributions remain unchanged. If the components are updated,
the weight of the matching component in the new mixture distributions are
computed as follows:

w; +— (1 —a)w; +a, (17)

while the weight of the remaining mixture components are updated by:

w; + (1 — a)w;. (18)
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which are renormalized to satisfy > 7_,w; = 1. If none of the g components of
the mixture model match I*(x), the component with lowest weight is replaced
by normal distribution N (I*(x), 0init), where o, is set to a high value.

For the foreground model, the above procedure is applied to F*~!(xf) to con-
struct F(x) if £'(x) = 1orm(x) < 0.5. Otherwise, we update only wy = wo + «,
while other parameters remain unchanged. This formulation prevents the fore-
ground model from learning the background.

7 Experiments

In contrast to the stationary camera case, there is no benchmark dataset for
evaluating performances of background subtraction methods for moving cam-
eras. Due to this unavailability, some studies do not provide quantitative com-
parisons [22,10]. In this paper, we use a set of sequences from the Hopkins
dataset [21] (cars1-8, peoplel-2) and from [14] (cars, person) which have been
used by recent quantitative papers on the topic [9,8,15,5]. The sequences in Hop-
kins dataset, however, typically contain 20 to 50 frames and does not contain
the challenges posed in realistic scenarios. Hence, we additionally include two
very challenging sequences (indoor, outdoor) that reflect a real-world setting ac-
quired with a smartphone camera. For quantitative evaluation, we generated the
ground truth by manually extracting all moving objects in all frames.

100

80 q

F-score

70+ -
60 -
50 -
401 =
N O e
a1 | 1R 11

ours ours H ours F H F

Fig. 4. The F-score computed from all sequences for our method and its variations.
The bars in a group correspond to the sequences in the following order: cars, person,
cars1-8, people1-2, outdoor, indoor. The red lines indicate the average F-score across
the sequences for each approach.

Given a video sequence, our implementation generates dense point correspon-
dences between consecutive frames from optical flow per pixel estimated using [1].
These correspondences are used to estimate both the fundamental matrix and
the homograhy transform, which is followed by computing the respective GRIC
score using Eqn. (1). The search region and the range of disparity in the GRIC
are respectively set to S = 30, R = 2, ¢ = 0.3, and v = 0.6. The geomet-
ric transformation providing the lowest GRIC score is selected to compute the
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Table 1. Average precision (P), recall (R), and F-score (F) values for our and state-
of-the-art methods. The best scores are denoted in bold.

ours Sheikh et al. [15]  Lim et al. [9] Kwak et al. [8]
P R F P R F P R F P R F
cars 83.9 85.6 84.6 65.1 84.6 727 794 644 71.0 59.5 62.6 60.7

person 82.3 93.6 87.3 69.6 95.1 80.0 83.5 83.1 82.7 53.9 62.8 56.8
carsl 72.9 94.5 82.2 685 743 679 63.0 872 726 84.3 73.8 785
cars2 69.8 90.8 789 54.7 81.7 63.6 95.2 772 85.0 67.9 T74.1 70.5
cars3 82.0 95.6 88.2 62.8 97.4 76.1 70.6 87.7 779 80.4 80.2 80.2
cars4 87.7 91.7 89.5 68.5 88.3 76.2 80.8 73.1 751 575 679 62.1
carsb 89.2 85.7 87.4 62.7 79.7 66.2 694 825 753 62.3 68.0 64.5
cars6 86.8 94.2 90.3 68.8 96.9 79.8 644 73.1 684 624 89.0 73.1
cars7 80.2 95.0 869 81.3 944 87.0 88.9 842 86.2 66.2 729 69.1
cars8 73.7 94.4 82.6 81.6 854 822 T73.7 762 749 775 76.6 76.7
peoplel 92.5 81.6 86.6 40.5 809 51.7 385 809 49.7 49.2 69.3 56.3
people2 93.9 89.5 91.6 726 88.0 782 716 93.8 80.5 85.0 774 80.8
outdoor 91.3 85.0 87.0 22.1 79.8 28.0 9.3 26.6 104 459 86.4 54.5
indoor 91.6 87.4 88.3 353 63.6 388 15.0 41.5 19.1 11.5 23.1 14.2

background model transformation (Section 4). The transformed model is used
in the MAP-MRF framework with the following parameters Ay = 2, Ay = 0.5,
As = 10, and op = 10. The final labels are then used to update the background
and foreground models. During this step, a 3 x 3 window around projected pixel
x’ is evaluated, and the pixel with the highest probability is updated to avoid
rounding and errors during the projection. In order to adapt to changes in ap-
pearance, we set the learning rate used for the model update to a = 0.05.

We provide extensive comparison of the proposed method with its variations
and the state-of-the-art. For different variations of our approach, we use 1) the
complete method (ours), 2) our method with H only (ours H), 3) our method
with F only (ours F), and two baseline methods that are obtained by theshold-
ing of the motion score m(x) computed with 4) homography only (H) and 5)
fundamental matrix only (F). The competitive approaches are four state-of-the-
art methods [15,9,8,7]. The implementation of [8] is provided by the authors!,
and we implemented the remaining methods. We selected the best parametric
settings for all comparison after numerous experimental trials for quantitative
evaluation. The overlap between the detected regions and the ground truth is
analyzed by precision, recall, and their harmonic mean F-score.

In Figure 4, we plot the F-scores for different variations of our approach and
two baseline methods. As expected, application of the appearance, spatial, and
temporal constraints significantly improves the labeling compared to using only
the motion scores (H and F). We observe that, for the Hopkins dataset and
cars/person sequences, mostly the homography transform is chosen by GRIC.
It can be attributed to the fact that the camera capturing these sequence moves
very slowly, resulting in a very small baseline. As a result, for the aforementioned

! http://cv.postech.ac.kr/research/gbs/
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Fig. 5. Qualitative results for (row 1) the proposed method, (row 2) Sheikh et al. |
(row 3) Lim et al. [9], and (row 4) Kwak et al. [8] for cars/, people2, mdoor and outdoor
sequences. Ten more sequences are included in supplemental material.

sequences, the performance of our method is comparable to the case where the
homography transform alone is used (ours H). Note that, however, in many
cases, our method results in a considerably higher performance compared to
always choosing the fundamental matrix (ours F). The strength of our method
can be realized in more complex sequences, that contain both camera rotation
only and camera translation with complex scenes, such as the indoor and outdoor
sequences. For these sequences, the alternated usage of H and F results in a higher
performance than that of using H or F alone. Detailed results for this figure are
tabulated in supplemental material.

In Table 1, we present quantitative comparisons of our method with the state-
of-the-art methods. Note that our approach mostly outperforms the competitive
methods, and it results in a significantly higher accuracy for long and realistic
sequences (indoor and outdoor). As presented in qualitative results in Figure 5
(more results are included in supplemental material), we observe that [15] is
susceptible to the noise in trajectories around the moving objects and image
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boundaries. This method also suffers from inconsistencies due to the lack of
appearance models and temporal constraints. The methods introduced in [9]
and [8] rely on the fundamental matrix for inferring camera and object motion
and the propagation of appearance models. As a result, their models become
corrupted when the fundamental matrix estimation is unsuccessful for a few
consecutive frames. We also observed that, both of these methods are highly
dependent on the correct background/foreground initialization in the first frame.
Due to this requirement, these methods are initialized with the homography
transform in the first frame in cases when the corresponding fundamental matrix
estimation is observed to be incorrect. The results across the sequences for [7]
are not provided since the algorithm is not appropriate when moving objects are
present in the first frame, which is the case for all sequences except the indoor.
For the indoor sequence, [7] results in 11.71 precision, 51.88 recall and 18.22
F-score values. The low performance can be attributed to the fact that [7] may
estimate homography transforms for foreground objects as if they are part of
the background.

While the proposed method outperforms the state-of-the-art, we observed the
following limitations during our experiments. When the moving object is present
in the scene in the first frame, the occluded parts that become visible as the
object moves may be initially misdetected as foreground, especially for cluttered
backgrounds. On the other hand, a moving object entering a previously unseen
part of the scene revealed as the camera moves may be introduced as part of
the background unless its motion is not significantly different from that of the
camera. However, once the object continues to move, our algorithm correctly
labels it as the foreground region.

8 Conclusions

We present a new method for background subtraction for moving cameras.
Instead of committing to a single geometric transformation, we employ the
Bayesian selection scheme to choose the model that best describes the trans-
formation between the frames. As a result, the proposed method can adapt
to various combinations of camera motions and scene structures. We main-
tain background and foreground models that are propagated using homography
transform(s). The background/foreground labeling is obtained by combining the
motion, appearance, spatial, and temporal cues in a MAP-MRF optimization
framework. Extensive experimental results with challenging videos show that
the proposed method outperforms the state-of-the-art in most cases.
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