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Abstract. In order to avoid an expensive manual labelling process or
to learn object classes autonomously without human intervention, object
discovery techniques have been proposed that extract visually similar ob-
jects from weakly labelled videos. However, the problem of discovering
small or medium sized objects is largely unexplored. We observe that
videos with activities involving human-object interactions can serve as
weakly labelled data for such cases. Since neither object appearance nor
motion is distinct enough to discover objects in such videos, we propose a
framework that samples from a space of algorithms and their parameters
to extract sequences of object proposals. Furthermore, we model simi-
larity of objects based on appearance and functionality, which is derived
from human and object motion. We show that functionality is an im-
portant cue for discovering objects from activities and demonstrate the
generality of the model on three challenging RGB-D and RGB datasets.

Keywords: Object Discovery, Human-Object Interaction, RGBD
Videos.

1 Introduction

Approaches for object detection require a fair amount of annotated images in
order to perform well [10]. Contemporary solutions such as crowdsourcing will
be suboptimal in the long run due to high costs involved. As a result, there has
been a recent shift of focus towards utilizing readily available weakly labelled
data [2,6,26,36,40], particularly videos [27,33,34]. The fundamental assumption
in all these approaches is that the object of interest is dominant and can be easily
segmented. In other words, motion or appearance of the object are assumed to be
distinct from the background. This is a valid constraint for large active objects
such as moving vehicles or animals and is further aided by object- or action-
centric nature of labelled videos on the Internet.

Moving away from commonly used categories such as airplanes, boats, cars,
cats, horses etc., we propose to work on small and medium sized object categories
such as pens and mugs that are used in daily routine. Weakly supervised learning
in such areas is largely unexplored inspite of their obvious impact on applica-
tions in robotics, assisted living etc. One reason is the scarcity of data because
such objects do not form popular subjects for generating and sharing videoclips.
However, videos labelled with the context of human activity, like drinking or
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writing, are available in plenty. These videos, however, violate the fundamen-
tal assumption since the dominant subjects here are humans, their body parts
and their immediate environment; thus forcing present day methods to failure
as verified in our experiments. Another problem of existing methods for such
videos is the assumption that similarity of objects is completely defined by their
appearance features inspite of their frequent occlusion and low resolutions. Also,
appearance and pose of objects change within a single video due to the human-
object interaction involved. For these reasons, appearance-only approaches are
limited for mining such objects as verified in our experiments.

We therefore propose an approach that addresses the problem of weakly su-
pervised learning for medium or small sized objects from action videos where
humans interact with them. Since existing methods fail for this task, we intro-
duce a novel method consisting of two parts as illustrated in Figure 1. The first
part addresses the problem that objects cannot be segmented by searching for
dominant motion segments. Instead, we track randomly selected superpixels to
generate many tubes per video as object candidates as illustrated in Figure 2.
To this end, we do not rely on a single algorithm with a single parameter setting
due to the variety in objects but sample from a space of algorithms and their
parameters. We condition the sampling on human pose in order to make it more
efficient. The second part addresses the problem that similarity of generated
tubes is not well described by appearance features alone. We therefore propose a
similarity measure that not only includes appearance and size but also encodes
functionality of the object derived from relative human-object motion during
the activity.

To demonstrate the generalization capabilities of our approach, we evaluate
on three challenging datasets, namely two RGB-D datasets [16, 25] and one
RGB dataset [35]. The datasets have been recorded with three different types of
sensors: a time-of-flight camera [16], a structured light camera [25], and a color
camera [35]. The quality of 3d or 2d pose information also differs greatly since
it is automatically extracted with different methods. On all three datasets, we
show that our approach is suitable to discover objects from videos of activities
and investigate the importance of functionality in the current setup.

2 Related Work

Unsupervised object discovery in images [26,39] or videos [37] aims at finding
similar objects in a set of unlabelled visual data. In many cases, weak label
information is available and can be used. For instance, images with an object
class label can be collected thereby reducing the problem to identifying instances
that co-occur in images and localizing them either through bounding boxes or
segmentation masks [2, 6,36, 40].

There are a few works that exploit weakly labelled videos for learning [27,30,
33,34]. The element these approaches have in common is that they strongly rely
on motion in videos and often assume that deformation in objects is either rigid
or articulated i.e. can be approximated by rigid parts. For instance, part-based
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models of animals are learned from videos and applied for detection in [34]. [30]
uses a structure-from-motion approach to discover objects that share similar
trajectories. Videos that are not necessarily related to an object class are used
to learn features for object detection that are robust to temporal deformations
in [27]. In [33] videos with object labels are utilized to generate training data for
object detection. While the approach focuses on objects that can be relatively
easily discovered and segmented in videos, our approach deals with medium and
small sized objects that do not move at all or move only when they are used
by a human. This makes it very difficult for them to be discovered in videos via
conventional motion or appearance based methods. One can, however, exploit
human motion as additional cue.

The idea of using human motion for scene understanding has recently gained
attention [8, 15,16, 18,20, 21, 23, 25, 31, 32, 38] due to progress in human pose
estimation and availability of commercial SDKs for depth data. In [31,38], hu-
man trajectories in office environments or street scenes are extracted to segment
image regions based on observed human behaviors. While the benefit of com-
bining object detection and action recognition have been investigated in several
works e.g. [13,19,29], the works [16,23,25,32] focus on affordance cues that can
be used for higher level video understanding e.g. action recognition. [23] learns
relations between objects and their functionality to improve object detection or
activity recognition. In [16], human motion is used to cluster objects of similar
functionality in an unsupervised fashion. Further, descriptors learned for object
functionality from hand-object interactions are applied to human activity recog-
nition in [32]. The joint learning of activities and object affordances is addressed
in [25]. Extracting object instances in egocentric videos using appearance-only
cues and weak action-object labels using a framework that is made robust by
incorporating motion information is dealt in [11].

Human models have also been used to hallucinate their interactions with given
scenes. A detector for surfaces where humans can sit on is proposed in [18].
In this work, the sitting action is represented by a single human pose and its
geometric relation to objects like chairs is learned. The approach is generalized
in [21] where more relations between human poses and objects are used to label
3D scenes. In [20], a similar idea has been employed for static 2D images where
the geometry of the scene is extracted. An exactly opposite approach is followed
by [15] where human motion in a video is observed to extract scene geometry.
Human motion has also been used for scene segmentation in [8].

3 Learning Object Models from Activities

An overview of the pipeline for discovering instances of a class in a set of RGB-
D or RGB videos is illustrated in Figure 1. The input is a set of videos that
is labelled with activities involving human-object interactions e.g. label eating
cereal indicates the presence of a bowl.

To begin the pipeline, we assume that human pose either in 2d or 3d has
already been extracted. This can easily be obtained from RGB-D videos using
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Input Videos

Fig. 1. Processing pipeline: Input is a set of action videos with human pose. Multiple
sequences of object proposals (tubes) are generated from each video. By defining a
model that encodes the similarity between tubes in terms of appearance and object
functionality, instances of the common object class are discovered.

freely available SDKs, but is also straightforward for RGB videos due to the
enormous progress in 2d pose estimation over the past years [35]. There are
no other additional restrictions on the nature of input videos. In other words,
videos may contain multiple activities, multiple persons and/or multiple objects
e.g. microwaving food, cleaning microwave are different activities involving var-
ious objects, but they commonly feature a microwave.

In the next step, several object proposals are generated by selecting spatio-
temporal regions called tubes from each video. This is modelled as a sampling
process and is explained in Section 3.1. While most of these tubes will not contain
the object of interest, the aim is to extract at least one tube that sufficiently
overlaps with the object.

After having selected a set of tubes, we jointly select one tube per video that
best describes the object. This is achieved by minimizing an energy functional
built upon potentials that describe either the presence of an object in a tube or
the similarity between tubes as explained in Section 3.2. As for these potentials,
we employ similarity in appearance and functionality.

3.1 Generating Tubes

A straightforward way to generate tubes is to extract motion segments from
videos as in [4, 33]. However, such methods do not generate meaningful tubes
in the current scenario because motion is predominantly caused by entities like
body parts. Instead, we extract frame based superixels in these videos and track
them over time. We observed that the quality of tubes is sensitive to the method
chosen and its parameters and that there is no single universal setting. We
therefore consider a pool of trackers and randomly sample from it to extract
tubes T, from a video v. The probability that any tube of the video is selected
therefore depends on the tracking algorithm 7 and a superpixel S:



Discovering Object Classes from Activities 419

p(Tv) = ZZP(TU‘Ta S)p(T)p(S) (1)
S T

In our experiments, we use two trackers with uniform probability i.e. p(7) =
0.5. The first method uses the median optical flow [5] within the region of the
superpixel to propagate it to the next or previous frame. The second method
uses mean shift [7] where the RGB(D) histogram of the superpixel is used as
template. While the method using dense optical flow works well for medium
sized rigid objects, it easily gets distracted by fast or background motion for
small objects.

Since long-term tracking is unreliable in either case, we limit the length of
each tube to 300 frames or the shortest length of a video.

The superpixels S are generated using [12] which is modified to incorporate
depth as feature. Similar to tracking, there is no single configuration optimal
for all objects. While depth is helpful for many objects, it becomes unreliable
for very small objects or reflective surfaces. We therefore compute superpixels in
three different settings o € {RGB, D, RGBD}. The sampling of the superpixel
also depends on the frame f in the video and a spatial prior p(I|f) which depends
on the frame:

p(S) =YD " p(SIf. 1, 0)p(ll f)p(f)p(o). (2)
o f l

For RGB videos, p(0 = RGB) = 1; otherwise p(o) is uniform. p(f) is a prior
on frames where the interaction is happening in the video. In our experiments,
we use a uniform distribution i.e. we assume that the activity occurs anywhere
in the video. For the spatial prior p(l|f), we make use of the pose information
since we are considering activities with human-object interactions. To this end,
we compute the location variance of all joints within a temporal neighborhood
of 15 frames and select the joint with highest variance. For RGB-D videos, we
model p(l|f) as a uniform distribution within the sphere centered at the joint
location j at frame f and radius 400mm. Since RGB videos do not provide 3d
information, we use the location of the parent joint j, to compute the radius of
the circle ||v(j — jp)|| and its center j + v(j — jp). In our experiments, we use
v=0.2.

Sampling from (1) is straightforward and the tube generation process is il-
lustrated in Figure 2. In our experiments, we sample 30 tubes T, per video. It
is important to note that we are only generating candidates at this point, the
evaluation of the tubes is performed in the next step.

3.2 Joint Object Hypothesis Generation

Given a set of candidate tubes T, in each video v, the goal is to select the tubes
that contain the object class and are tight around the object. Similar to [9,33],
this can be formulated as an energy minimization problem defined jointly over
all videos N. Let I, € {1,...,|Ty|} be a label that selects one tube out of a video,
then the energy of all selected tubes L = (Iy,...,1y) is defined as
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Fig. 2. llustrating the tube generation process. The top row from left to right: The
first image shows joint trajectories. The most active joint is used to compute the
spatial prior for selecting superpixels. The three images next to it show three superpixel
representations computed using depth (D), color (RGB) and both (RGBD). Colored
superpixels are within the specified distance of the most active joint. Second and third
rows visualize tubes T, sampled from the blue and green superpixel S respectively.

L)y=>Y &)+ Y (k). (3)

The unary potentials ¢ measure the likelihood of a single tube being a tight fit
around an object. The binary potentials ¥ measure the homogeneity in object
appearance and functionality of a pair of tubes. The energy is minimized by
Tree-Reweighted Message Passing [24]. While the method does not find always
the global optimum, it produces satisfying results as we show in our experiments.
We now describe the various potentials involved.

3.3 Unary Potentials @

Unary terms measure the quality of tube [, in video v. We identify four aspects
that distinguish tubes tightly bound to objects that are manipulated from the
rest.

Appearance Saliency has routinely been used for object discovery since the
appearance of objects is often distinct from the background. We define saliency of
the k" frame of a tube by the average x? distance between the RGB-D or RGB
distributions of the region inside each frame of the tube, Ij, and its surrounding
region, Sy, which is of the same size.

K
1 Ik i Sk 1)
PPP(] 1-— 4
K Z ( 2 P Ik,z +Sk,7, ( )
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The unary penalizes tubes that contain the object but are not tight, or tubes
that cover only a part of the object. In both cases, the appearance inside and
outside the tube is more similar than for a tight tube.

Pose-object Relation is useful to identify the object that is being manipulated.
To this end, we measure the distance between the locally active end effector ji,
and the center of the tube ¢ for each frame of the tube. Depending on the
data i.e. RGB or RGB-D videos, the distance is measured in 2d or 3d. Since the
body does not need to be very close to the object over the entire length of the
video e.g. for a microwave the contact might be very short, we perform a = 0.3
trimmed mean filtering

(1—a)-K

Z lepay — dpmw |l (5)

k=a-K

1
@POSE (lv) —

where D is the sorted list of distances. The parameter o also makes the potential
more robust to pose estimation errors.

Body part avoidance is necessary since they are dominant parts of input
videos and satisfy the previous terms perfectly, hands in particular. To discourage
trivial solutions such as these, we define a potential that penalizes the selection
of body parts

@body (lv) = max {ﬁskzn (I) 5 ﬁupper (I) 5 ﬁlowe'r (I)} 5

with po(l)= > pe(li) (©)
k

where [ is the color histogram of the tube at frame k. The probabilities for
upper and lower body are modelled by 5-component Gaussian Mixture Models,
which are learned from the video directly using the estimated pose. For skin, we
use a generic model [22].

Size prior of an object is a cue that can be computed relative to human size
independently of the dataset. Such priors are useful in scenarios where tubes
are very small such that the other potentials become unreliable. To this end, we
impose a Gaussian prior on the size of an object

(wy, — 2wy)? + (hy, — 2hp)?
202

5% (1,) = exp ( (7)

where (wp, hy) and (wy,, hy,) are average width and height of the hand and tube
respectively and oy, is 0.75 X (wp, + hp).
Unary potential is formed by linearly combining the four terms as
D (1) = M PP (1) + Ao ®PP°¢ (1)
+ Ag@bOdy (lv) + )\4¢size (lv) (8)

where the weighting parameters \; are learned from a held out validation set as
explained in Section 4.
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3.4 Binary Potentials ¥

The binary term measures similarity between two tubes [, and [,,. We use two
terms in this regard. While the first term measures similarity in appearance, the
second measures similarity in human motion involved during the interaction.

Shape. As in [33], we use PHoG [3] to measure the similarity between two tubes.
We describe the appearance of a tube by uniformly sampling 50 frames along
its temporal extent and spatially binning each frame’s gradients at different
resolutions. Since objects can be transformed during object manipulation, we
additionally align the sequences using dynamic time warping, where we use joint
locations of the head, shoulders and hands as features. Since the alignment of
two very different action sequences is meaningless, we apply the warping only
if the average alignment error is below a certain threshold. The wshare ([, 1,,)
is then defined as the median y? distance between PHoG features from the
corresponding frames k of [, and [,, given as

(Poy )i — wa(k),i)z } )

1
gshape ly,lw) = median
( ) k { 2 EZ: Pw,u(k:),i + wa(k)’i

where w, is the dynamic time warping function for tube I, and P, ), is ith

bin of the PHoG feature extracted from k** frame of tube I,, after warping.

Functionality. Assuming that functionality the of an object correlates with
its trajectory with respect to human motion, we measure the relative distance
between the center of the tube and the human. After having tubes aligned as
for the shape term, we sample 50 uniformly distributed corresponding frames of
both tubes. To this end, we compute the distance between the center c, ) of the
tube [, at frame k and the head position h, ) and normalize it by the distance
between the head and the locally active end effector ji):

My = cum |l

d = . 10
v 1 Paiey = Fuge) |l (10)

The normalization is important for 2d poses, but it also compensates in 3d for
different body sizes. The potential ¥f*"¢(l,,1,,) is then the median of these
differences after applying the dynamic time warping functions w,:

wlune(, 1,) = me(’}ian {ldw, ) = duww )|} (11)
Binary potential is formed by linearly combining the two terms as
U (L, L) = AT (1, 1) + N6 (L, L) (12)

where the weighting parameters )\; are learned together with the weights of the
unary potential (8) from a validation set.
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4 Experiments

To evaluate the proposed approach and demonstrate its generalization capabil-
ities for different types of input data, we perform experiments on two RGB-D
and one RGB-dataset. We show that motion segmentation, e.g. as used in [33],
fails drastically for discovering objects from videos with activities and evaluate
the impact of various potentials in detail. We further compare our approach
to an unsupervised approach [14] and a weakly supervised approach [33] that
formulates an energy functional similar to (3). For any given tube, the unary po-
tential is composed of the objectness measure [1], shape similarity calculated as
PHoG consistency and appearance similarity calculated via SIFT Bag-of-Words.
The binary potential quantifies similarity between a pair of tubes by evaluating
PHoG based shape and SIFT-BoW based appearance congruity.

4.1 Datasets

We use three action datasets of varying modalities: ETHZ-activity [14], CAD-
120 [25] and MPII-Cooking [35]. The ETHZ-activity is an RGB-D dataset cap-
tured by a color and a ToF camera with a resolution of 640 x 480 and 170 x 144,
respectively. It contains 143 sequences of 12 high level activities performed by
6 different actors. Human pose extracted via a model based method consists of
13 3d joint locations from the upper body. Interactions are mostly restricted to
a single object but with varying appearances. The 12 object classes vary from
medium-size e.g. teapot and mug to small-size e.g. marker and phone. A typical
frame illustrating the relative size of the objects is shown in Figure 3.

The CAD-120 is an RGB-D dataset recorded with a color camera and struc-
tured light for depth having VG A-resolutions for both modalities. It contains 120
sequences of 10 different high level activities performed by 4 different actors. Hu-
man pose consisting of 15 3d joint locations from the whole body is extracted
using OpenNI SDK. The pose is noisy which is more pronounced for hands and
legs. The activities involve interactions with various objects e.g. making cereal
indicates the presence of instances of the object classes box, milk and bowl.

The MPII-Cooking is a high resolution (1624 x 1224) RGB dataset. It contains
65 sequences of 2 high-level activities performed by 12 different actors. The

Fig. 3. Sample images of human-object interaction from ETHZ-activity dataset, CAD-
120 dataset and MPII cooking dataset in that order. Object of interest is bounded in
red and pose overlayed in orange.
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human pose is extracted by a part-based detection approach and consists of 8
2d joint locations for the upper body without head. For the binary potential
wlune(], 1) (11), we take therefore the mean of both shoulders instead of the
head as reference joint. Apart from involving multiple objects, the objects are
often occluded or covered by food during the activity e.g. plate during the process
of preparing a salad.

For evaluation, we labelled the objects in the three datasets by drawing tight
bounding boxes around the objects for every 10t" frame and interpolating inter-
mediate bounding boxes. The annotations and evaluation scripts will be made
publicly available.

4.2 Inference

The output of the system is a collection of tubes that best describe an object
class common in all input videos. Discovered instances of object classes are shown
in Figure 5. In order to evaluate the quality of these tubes, we study frame- and
class-wise PASCAL IoU measures. A frame-IoU measure is defined as a ratio of
areas of intersection over union of the ground truth and inferred bounding boxes.
A tube-IoU is defined as the average of all frame-IoUs. Similarly, a class-IoU is
defined as the average of all inferred tube-IoUs.

To learn the scalar weights A of the energy model (3), (8), (12) and [33],
we use ground-truth object annotations of one randomly chosen object class
as validation in each dataset: puncher (ETHZ), milkbox (CAD) and whisker
(MPII). In order to set these parameters, we perform a grid-search in
{0.05,0.25,0.50,0.75,1.00} and take the configuration that maximizes class-IoU
for the validation class. We therefore exclude validation classes from all perfor-
mance evaluations that follow.

4.3 Comparison

Firstly, we compare the proposed tube generation process with the object pro-
posal technique [28] considering every 10t" frame in the ETHZ-action dataset.
While the recall of the proposal technique was (0.19, 0.58, 0.67) for (102, 103,
10%) proposals per frame respectively, our approach as described in Section 3.1

Table 1. Average class-IoU of the proposed model (APP+SIZ+FUN) for the three
datasets. All three types of potentials that model object appearance (APP), size prior
(SIZ) and object functionality (FUN) are important for the final performance. Our
proposed approach outperforms the method [33], which relies on motion segments and
object appearance.

prest-exact [33] prest-modif proposed APP APP+SIZ FUN APP+FUN FUN+SIZ
ETHZ-Action 0.063 0.249 0.447 0.192 0.305 0.292 0.312 0.390
CAD-120 0.039 0.246 0.410 0.168 0.191 0.147 0.202 0.350
MPII-Cooking 0.023 0.221 0.342 0.079 0.149 0.229 0.235 0.288
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Fig. 4. Accuracy measured as fraction of bounding boxes with an IoU ratio greater
equal than a given threshold. The x-axis plots 1-IoU i.e. the higher the value on the
x-axis the more tolerant is the success threshold and the higher the accuracy. The
accuracy is averaged over all classes.

achieves a recall of 0.65 for only 30 tubes per video. This verifies that the pro-
posed tube generation module is well suited to the current scenario.

Further, we compare the proposed approach with a method for learning from
weakly labelled videos [33] on all three datasets. The average class-IoU is pre-
sented in Table 1. The performance of the proposed approach supercedes that
of [33] significantly. The reason for such poor performance of [33] is that the
extracted motion segments do not correspond to objects in most cases and are
therefore not suitable for the task at hand. We therefore modify the method
by using the tube sampling approach introduced in Section 3.1 and the energy
functional proposed in [33] to select tubes that most likely contain instances of
the object class. We denote the modified approach as prest-modif in Table 1. In
contrast to [33], prest-modif achieves improved results but is still inferior when
compared to the energy functional used in the proposed approach.

To evaluate the quality of inferred tubes, we define class-accuracy as the frac-
tion of bounding boxes with an IoU ratio greater equal than a given threshold.
Figure 4 shows class-accuracy averaged over all classes for decreasing IoU ratios.
For [33], the IoU ratio for nearly all bounding boxes is close to zero. We therefore
plot the accuracy only for prest-modif. As can be seen, the average class-accuracy
of the proposed method for different thresholds consistently outperforms that of
prest-modif in all three datasets. The biggest difference in performance is for the
ETHZ dataset at 1-IoU=0.8 where the performance of the proposed approach
and prest-modif are 0.86 and 0.36 respectively. At IToU=0.5, the accuracies of
the methods are (0.48, 0.16) for ETHZ, (0.56, 0.42) for CAD and (0.53, 0.29)
for the MPII dataset respectively.

4.4 Impact of Potentials

In order to characterize the contribution of designed potentials, we group them
into three categories: APP consisting of potentials that are intrinsic to object
appearance {®PP wshape} ST7 denotes the size prior {#%%*¢} and FUN consist-
ing of potentials derived from human-object interaction {@rose gbody g funcy
Performances of different group combinations are presented in Table 1.
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Table 2. Percentage change in average class-IoU performance when any given potential
is discarded from the model

PP prose phody pize gshape g fune
ETHZ-Action 0.35 1.88 -25.49 -13.50 -4.62 -8.86
CAD-120 -48.66 -15.73 -18.89 -20.80 -40.15 -9.19
MPII-Cooking -15.85 0.06 -31.09 -10.70 0.058 -60.95

The first observation is that the group APP performs worse when compared
to prest-modif for all datasets. This fall in performance is expected because APP
uses only 2 potentials while the energy functional of prest-modif uses 6 terms
to model the appearance of an object. The performance improves when the size
prior is added (APP+SIZ). The functionality terms (FUN) outperform prest-
modif and APP on the ETHZ and MPII datasets emphasizing the fact that
human interaction is a valuable cue to discover objects, but not sufficient. Using
the functionality and the appearance terms (FUN+APP), the performance is
higher than using only one of them. Finally, the pair of (FUN+SIZ) performs
best amongst all subset combinations, but only attains 80% of the accuracy
attained by the full model. This indicates that object appearance, functionality
and size prior are all important for maximal performance.

In addition, we present percentage change in class-IoU performance when each
potential is discarded from the model in Table 2. It can be seen that performance
drops upon eliminating any potential almost in all cases. For the CAD dataset,
removing any potential has a negative effect. Appearance based features have
minimal impact on the ETHZ dataset as they are not reliable for small objects
and ¥*hP¢ has negligible impact on the MPII dataset owing to drastic variations
in object appearances during interaction. The terms 0% @siz¢ and wfune
are required by all datasets as indicated by loss in performance when they are
discarded.

Further, we study the robustness of pose-related potentials with respect to
strong pose estimation noise on the CAD dataset. To this end, we add normally
distributed noise with variance 100cm?, 200cm? and 400cm? to each 3d joint
position. The average class-IoU then drops to 0.365, 0.342 and 0.323 respectively
from the baseline of 0.410 (see Table 1). The performance, however, is still higher
than without using these potentials (see APP+SIZ in Table 1).

4.5 Evaluating Object Models

As a final comparison, we study the quality of the inferred tubes for object
detection. We split each dataset such that no actor occurs in both training and
testing data. For training, we considered data from 5 out of 6 actors in ETHZ-
action, 3 out of 4 actors in CAD-120 and 9 out of 12 actors in MPII-cooking
datasets. The rest of the data was used for testing.

For object detection, we use a Hough forest [17] with 5 trees each trained
with 50,000 positive and 50,000 negative patches (drawn uniformly from the
background) and a maximal depth of 25. We do not make use of depth for
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Table 3. Average precision (%) for different datasets comparing object models built
from ground truth data (GTr.) and data inferred by the proposed method (Infer).

Class GTr. Infer Class GTr. Infer Class GTr. Infer Class GTr. Infer
ETHZ-Action

brush 45.1 33.6 calcul. 100.0 100.0 camera 83.5 73.0 remote 49.4 34.4
mug 38.0 39.5 headph. 69.8 69.8 marker 39.7 33.3 teapot 63.2 50.9
videog. 78.3 82.0 roller 99.6 69.0 phone 0.05 0.06 Avg. 60.6 53.2

CAD-120

book 11.2 08.0 medbox. 58.3 40.4 bowl 24.5 25.0 mwave. 71.4 T71.0
box 24.4 19.1 plate 16.2 14.1 cup 14.8 09.4 remote 14.1 17.6
cloth 20.1 15.1 Avg. 294 244

MPII-Cooking

bowl 69.2 11.1 spiceh. 100.0 100.0 bread 25.5 06.2 squeez. 61.5 61.5
plate 43.4 43.4 tin 33.0 23.9 grater 02.2 01.2 Avg. 47.8 35.3

this experiment. For comparison, we use manually annotated bounding boxes
of training images, i.e. every 10*" frame of training sequences. This is denoted
as ‘GTr.” in Table 3. The ‘Infer’ training data is based on an equal number of
frames from the automatically extracted tubes inferred by the proposed model.

The results show that optimal performance is achieved for categories like cal-
culator, mug in ETHZ, bowl, microwave in CAD-120 and spiceholder, squeezer
in MPII. A loss in performance is observed for many categories due to weaker
supervision which is explained by the fact that the bounding boxes of extracted
tubes are noisier than manually annotated training data. Nevertheless, perfor-
mances of the object detectors trained on weakly supervised videos achieve 87.7%
(ETHZ), 83.0% (CAD) and 74.4% (MPII) of that from full supervision.

We also compare with [14] which is an unsupervised approach that segments
and clusters videos based on pose features. [14] generates 20 clusters for the
ETHZ-action dataset without labels and only 3-21 object samples per cluster
while our approach generates more than 300 samples per class. Although the
resulting clusters cannot be directly compared with our approach, we manually
labelled the clusters and trained object detectors for all 12 classes. The resulting
average precision on ETHZ is 24.85% in comparison to 53.23% of our approach.

5 Conclusion

We have addressed the problem of discovering medium and small sized objects
from videos with activities. Our experiments have shown that current approaches
for learning from weakly labelled videos that rely on motion segmentation fail for
this task. We have also shown that using object appearance alone is insufficient
in such scenarios and that encoding functionality greatly improves performance.
Interestingly, the results also revealed the complementary nature of appearance
and functionality related potentials for object discovery. The generalization capa-
bilities of our approach were demonstrated on three datasets that span a variety
of different activities, modalities (RGB vs. RGB-D), and pose representations
(2d vs. 3d). Finally, our weakly supervised approach outperformed an unsuper-
vised approach and achieves between 74% and 88% of the performance of a fully
supervised approach for object detection.
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Fig. 5. Discovered instances of the object classes: Marker, Mug, Camera, Roller, Milk-
boz, Bowl, Cloth, Microwave, Plate, Tin, Bread, Squeezer and failure cases Teapot,
Brush. The first image in each row shows relative object size by illustrating a typical
action scene with overlayed pose and a bounding box around the object of interest.
Since the objects are relatively small, images are best viewed by zooming in.
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