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Abstract. In this paper we make the first effort, to the best of our
knowledge, to combine multiple face landmark datasets with different
landmark definitions into a super dataset, with a union of all landmark
types computed in each image as output. Our approach is flexible, and
our system can optionally use known landmarks in the target dataset
to constrain the localization. Our novel pipeline is built upon variants
of state-of-the-art facial landmark localization methods. Specifically, we
propose to label images in the target dataset jointly rather than inde-
pendently and exploit exemplars from both the source datasets and the
target dataset. This approach integrates nonparametric appearance and
shape modeling and graph matching together to achieve our goal.

1 Introduction

Facial landmark localization is a popular and extensively studied area in
computer vision. Many approaches have been proposed over the years, from
classic methods like Active Shape Models (ASMs) [4], Active Appearance
Models (AAMs) [3], and Constrained Local Models (CLMs) [6] to more re-
cent exemplar-based [2], voting-based [26], and supervised descend-based meth-
ods [25]. Many datasets have also been proposed to evaluate these methods, from
early datasets collected in the lab like CMU PIE [21], Multi-PIE [7], AR [14], and
XM2VTSDB [15], to more recent in-the-wild datasets like LFPW [2], AFLW [10],
AFW [30], Helen [11], and IBUG [17].

On one hand, new datasets pose new challenges to the research community
and foster new ideas. On the other hand, as researchers, we must choose spe-
cific datasets for evaluation to publish our work, which becomes increasingly
difficult because different datasets have different landmark definitions (for ex-
ample, AFLW uses a 21-landmark markup, while Helen uses 194 contour points).
As a result, models trained on one dataset often cannot be evaluated on other
datasets. Furthermore, inconsistencies between datasets make it difficult to train
robust landmark localization models that combine many different datasets.

Ideally, it would be desirable to have a common and unified definition of
landmarks and collect datasets following the same definition. However, this goal
is challenging in practice because the speed of collecting labels will always lag
the speed of collecting face data. Furthermore, it is difficult to predict which
landmark definitions (e.g., ears) new applications will find useful.
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In this paper we make the first effort, to the best of our knowledge, to com-
bine multiple face landmark datasets with different landmark definitions into
a super dataset, with a union of all landmark types computed in each image
as output. Specifically, we present a novel pipeline built upon variants of state-
of-the-art facial landmark localization methods that transfers landmarks from
multiple datasets to a target dataset. Our system labels images in the target
dataset jointly rather than independently and exploits exemplars from both the
source datasets and the target dataset. This approach allows us to integrate
nonparametric appearance and shape modeling and graph matching together
to transfer annotations across datasets. Toward this goal, our paper makes the
following contributions:

1. A pipeline that transfers landmark annotations from multiple source datasets
to never-before-labeled datasets.

2. An algorithm that takes multiple source datasets as input and labels a par-
tially labeled target dataset using a union of landmarks defined in the source
datasets. Our system can optionally use known landmarks in the target
dataset as constraints.

3. 64 supplementary landmarks for faces in the AFLW database [10], for a total
of 85 landmarks. AFLW is significant in that, to the best of our knowledge,
it is currently the largest publicly available in-the-wild face dataset with
25,000 annotated faces.

2 Related Work

We are aware of no other works that explicitly address the problem of automat-
ically combining multiple datasets that have different landmark annotations.
However, components of our system are inspired by and/or are built upon ex-
isting methods in the literature, which we summarize below.

Like Smith et al . [22] and Shen et al . [20], we use a Hough voting approach to
generate landmark response maps in Stage 2 of our system. Yang and Patras [26]
also rely on a Hough voting scheme for facial feature detection; they use several
‘sieves’ to filter out votes that are not relevant. In our approach, we adjust the
weight of each vote by considering how well it agrees with other votes from
matched features in other images.

Our landmark detection algorithm optionally uses known landmarks in the
target image as constraints. Cootes and Taylor [5] proposed a constrained AAM
that utilizes some known landmarks in the target image; AAMs are parametric
models, while our approach is nonparametric and exemplar-based. Sagonas et
al . [18] proposed a semi-automatic method for creating facial landmark annota-
tions using person-specific models. Their process is iterative: users label results
as ‘good’ or ‘bad’, and good results are used in later iterations as training data.
Sagonas et al . used this approach to re-annotate several facial landmark datasets
according to a consistent set of landmark definitions for the 300 Faces in-the-Wild
Challenge (300-W) [17]. However, because their procedure is semi-automatic, it
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does not scale well to very large datasets like AFLW [10]. Further, their pro-
cedure requires a consistent training dataset and ignores existing landmarks in
the target datasets, i.e., it completely overwrites them. In contrast, our method
is fully automatic (our system has the ability to take user input, but we do not
consider it in our experiments) and our pipeline transfers all existing landmarks
across different datasets so that previous annotation efforts are utilized rather
than wasted.

Exemplar-based approaches have been popular since Belhumeur et al .’s pio-
neering work [2]. Zhao et al . [28] use grayscale pixel values and HOG features
to select k-nearest neighbor training faces, from which they construct a target-
specific AAM at runtime. Smith et al . [22] and Shen et al . [20] perform Hough
voting using k-NN exemplar faces; we use the same basic approach in our system.
Finally, Zhou et al . [29] combine an exemplar-based approach with graph match-
ing for robust facial landmark localization. We extend Zhou et al .’s approach to
integrate different landmarks from multiple source datasets.

3 Our Approach

In this section we first give a brief overview of our system followed by a more
detailed explanation of each stage in subsequent sections.

3.1 Overview

The input to our system is one or more source face datasets, and one target face
dataset. We assume that each source dataset consists of a set of face images,
in which each image is labeled with a set of facial landmarks, e.g., eye centers,
mouth corners, nose tip. Importantly, we do not require the landmark definitions
to be consistent between source datasets. Optionally, each target image can have
known landmarks, which our system uses as additional constraints. The output
of our system is a combined set of landmark estimates (i.e., the union set of
landmark types from all source datasets) for each target face.

Stage 0: Preprocessing. We first rotate and scale all faces such that the
eyes are level and the size is approximately the same across all face instances.1

We then extract dense SIFT [13] features across each face at multiple scales.
Following the approach in [20], we quantize each SIFT descriptor using fast
approximate k-means [16], which efficiently maps each descriptor to a visual
word.

Stage 1: Selection of Top Source Faces. For each target face, retrieve a
separate subset of top k similar faces from each source dataset. The goal is to
retrieve source faces that are similar to the target face in appearance, shape,
expression, and pose so that features in the source images will produce accurate
landmark votes in the target image.

1 Eyes are easier to locate than other parts of the face, and so we assume they can
be located accurately beforehand to rectify the face, i.e., using an eye detector as
in [28]. However, our method is not that sensitive to eye localization accuracy.
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Stage 2: Weighted Landmark Voting. For each target face, independently
compute a separate voting map for each landmark type from each source dataset
using a generalized Hough transform [12]. Each feature from the top k source
faces casts a vote for a possible landmark locations in the target image.

Stage 3: Shape Regularization. For each target face, compute a separate
set of landmark estimates from each source dataset. Due to local ambiguities,
occlusions, etc. each voting map may contain multiple peaks. We employ a robust
nonparametric shape regularization technique [2] that avoids false peaks and
estimates a globally optimized set of landmarks from each source dataset.

Stage 4: Final Landmark Estimation and Integration. For each target
face, retrieve the top m most similar faces from the target dataset. The goal is to
exploit the correlation between landmark estimates from Stage 3 among similar
target faces to consistently label all target images. We combine estimates for
landmarks common to multiple source datasets, and we optionally use known
landmarks in each target image to constrain the optimization. We extend the
graph matching technique in [29] for landmark integration from multiple source
datasets. The final output for each target face is a full set of landmark estimates;
by ‘full’ we mean the union of landmark types from all source datasets.

Input: One or more source face datasets, and one target dataset

Output: A combined set of landmark estimates for each target face

Stage 0: Preprocessing
for all target faces do

Stage 1: Selection of Top Source Faces
Stage 2: Weighted Landmark Voting
Stage 3: Shape Regularization

end
for all target faces do

Stage 4: Final Landmark Estimation and Integration

end

Fig. 1. Overview of our pipeline. Stage 4 is in a separate loop because it uses all the
target face results from Stage 3 to help constrain and consistently estimate the final
landmark results.

3.2 Stage 1: Selection of Top Source Faces

To transfer landmarks from each source dataset to the target image, the shape
and appearance of the source faces and the target face should be similar. For
example, a frontal face has much different appearance and shape than a profile
face; there are few geometric feature-landmark correlations between the two. We
therefore select a top subset of source faces for further processing.
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Many strategies exist for retrieving similar face images from a database. In our
system, we use a generalized Hough transform framework to score each source
face. Specifically, we use the features on the target face to vote for the center of
the face in each source image. The final score for each source face is the height
of the maximum peak in the voting map associated with each source image. The
intuition is that source faces with many shared features in similar geometric
layouts with the target image will produce many consistent votes for the center
of the face. We sort the scores and select the top k = 200. Shen et al . [20] adopt
a similar strategy for retrieving exemplar faces in the validation step of their
face detection algorithm.

3.3 Stage 2: Weighted Landmark Voting

For efficiency, rather than exhaustively sliding each source landmark region over
the target image, we use quantized features and employ an inverted index file to
efficiently retrieve matched features (i.e., features in the same quantization bin)
from the top k source images. When a feature in the target image is matched to
a feature in a source image, the feature-to-landmark offset in the source image
is transferred to the target image. The offset vector extends from the feature
in the target image toward a potential landmark location and produces a vote.
After many such votes, a voting map is formed, where the votes tend to cluster
at landmark locations.

In practice, due to errors in the feature quantization step, image noise, oc-
clusions, locally ambiguous image regions, etc., many of the votes are incorrect,
which can significantly impact overall voting accuracy. Yang and Patras [26]
eliminate bad votes via a cascade of ‘sieves.’ Shen et al . [20] attempt to down-

weight potentially bad votes using a heuristic from object retrieval: idf2(k)
tfQ(k)tfD(k) ,

where idf2(k) is the squared inverse document frequency of visual word k, and
tfQ(k) and tfD(k) are the term frequencies of k in the query image and the
database image, respectively.

We instead compute a weight for each vote online as follows. For a given fea-
ture in the target image, retrieve all features in the top k source images that
share the same quantization bin. For each of these features, compute their offset
from landmark l. After rejecting outlier votes (i.e., by measuring the distribu-
tion and rejecting vote offsets outside the inter-quartile range), we compute the
variance σ2

v of the remaining offsets. We then cast a “fuzzy” vote from each
offset using a 2D Gaussian N (v;σ2) centered on the vote location v. Intuitively,
this rewards matched features that produce consistent voting offsets and sup-
presses features that disagree. Our weighting scheme is similar to [22] and is less
heuristic than [20]. Because our weights are computed online, we can easily add
additional faces to the source dataset. In contrast, [22] and [26] require retraining
when the training dataset changes.

We note that the Hough voting strategy is sensitive to scale and rotation
differences between source and target faces. Shen et al . [20] address this problem
by performing Hough voting over multiple scales. We instead normalize the scale
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and orientation of each face in Stage 0, which eliminates the need to search for
scale and rotation parameters.

3.4 Stage 3: Shape Regularization

There are many strategies for enforcing shape constraints, e.g., [2,19,25,29,30].
However, in our case, we use an exemplar-based approach to shape regulariza-
tion [2], which fits nicely with our exemplar-based Hough voting strategy for
generating landmark response maps.

Belhumeur et al . [2] use SVM-based landmark detectors to establish an initial
set of landmark location hypotheses, which forms the input to their final shape
optimization algorithm. Each SVM attempts to capture all the local appear-
ance variation around each landmark within a single model. This works well on
faces with limited head pose variation. In contrast, our Hough voting strategy
creates a nonparametric appearance model for each landmark, specific to each
target face, which works well on faces with extreme head pose variation. Also, by
aggregating the votes from many features, our method takes advantage of the
larger appearance context around each landmark, which provides much more
robustness to local noise, occlusions, etc. We therefore use our landmark voting
maps in place of the local detector response maps used in [2].

Additionally, rather than using the entire set of exemplar face shapes as input,
which is the approach taken in [2], we use only the top k source faces retrieved
in Stage 1 of our pipeline. The top k source faces tend to be better tailored to
the target face than the general set of faces, which further aids the optimization.

3.5 Stage 4: Final Landmark Estimation and Integration

The goal of this stage is to combine the individual landmark estimates from each
source dataset into a single result for each target image. We incorporate several
constraints into the optimization:

1. We model each landmark location as a linear combination of the other land-
marks, which provides an affine-invariant shape constraint [29].

2. If available, known landmarks in the target image are fixed and help steer
nearby landmark estimates to their correct locations.

3. Only one estimate is allowed for each landmark type irrespective of the
number of source datasets contributing estimates for each type.

We address the shape constraint first. Let P = [p1, . . . ,pNP ] be a face shape
composed of NP landmarks. Following [29], we assume that the c-th landmark
location pc can be reconstructed by a linear combination of neighboring land-
marks: pc = Pwc, where wc ∈ R

NP is a vector of weights for the other NP − 1
landmarks (the c-th entry of wc is fixed to zero).

Suppose we have NS source datasets and therefore NS {target image t, source
dataset s} pairs. Each pair has a union set of landmark types, Lts = {Lt ∪Ls},
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composed of landmark types Lt defined in the target image2 or landmark types
Ls defined in the source dataset. Each Lts contains all landmark types either
known a priori in target image t, or estimated from source s or both. We aim
to compute an optimal wtsc for c ∈ Lts for each {target image t, source dataset
s} pair (we subsequently omit t and s subscripts in wtsc for simplicity).

To accomplish this task we need a set of example shapes that include all
landmark types in Lts. Given a target image t, we retrieve the m most similar
face shapes among the target face images; the face shapes for the target images
come from the regularized landmark localization results from Stage 3. As a
distance metric, we simply use the mean Euclidean error between shapes after
similarity transformation alignment. Using [29], we compute the wc for image t
that minimizes the sum of reconstruction errors among the top m most similar
shape results from Stage 3:

min
wc

=

m∑

j

||Pjwc − pj
c||22 + η||wc||22 (1)

s.t. wc
T1NP = 1, wcc = 0, wcr = 0 ∀r /∈ Lts,

where Pj is the j-th most similar face shape relative to t among other results
from Stage 3; the constraint wcr = 0 ∀r /∈ Lts means that we force weights to
zero if the r-th landmark is undefined in Lts; and η||wc||22 is a regularization
term that penalizes the sparsity of the weight vector, i.e., it promotes more
uniformity in the weights, which means that non-local landmarks can also carry
importance in determining the c-th landmark location. Eq. (1) is a small convex
quadratic problem, which we solve independently for each wc. The formulation
of Eq. (1) is the same as [29] except for our added third constraint.

We compose the joint weight matrix as Ws = [w1, . . . ,wNP ], and we repeat
the process for each source dataset s to create a set of NS joint weight matrices
W1, . . . ,WNS specific to target image t. Note that undefined columns in each
Ws (corresponding to landmarks not defined in Lts) are set to zero.

Following [29], let us now define a global coordinate matrix Q =
[Q1, . . . ,QNP ] ∈ R

2×N , where Qc ∈ R
2×Nc denotes candidate locations for

the c-th landmark and N =
∑

c Nc. Let G ∈ {0, 1}NP×N be a binary associa-
tion matrix, where gci = 1 if the i-th point belongs to the c-th landmark. Note
that the candidate locations are the locations of the local peaks in the land-
mark response maps in Stage 3. When a landmark is common in multiple source
datasets, we average the response maps from different source datasets before
finding the local peaks. Let A ∈ R

NP×N denote the assignment cost matrix,
i.e., aci = − log(Rc(qi)), where Rc(qi) is the height value in the c-th voting
map at qi after the voting map is normalized to sum to 1.

Given the candidates Q, G, A and the shape constraints W1, . . . ,WNS , the
problem consists of finding the optimal correspondence X that minimized the
following error:

2 Lt can be empty, in which case the target dataset has no known landmarks.
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min
X

λtr(AXT) +

NS∑

s

‖QXT(Is −Ws)‖1 (2)

s.t. X1N = 1NP , X ∈ [0, 1]NP×N , xci = 0, [c, i] ∈ {[c, i]|gci = 0},
where Is is an NP ×NP identity matrix except that we set Is(r, r) = 0 ∀r /∈ Lts

(i.e., the r-th diagonal element is set to zero if landmark r is not defined in
the target image or in dataset s). Eq. (2) is inspired from [29] except here we
sum over multiple shape constraint terms instead of just one. Due to the integer
constraint on X, optimizing Eq. (2) is NP-hard. Like [29], we solve Eq. (2) by
relaxing the integer constraint with a continuous one, and by reformulating the
problem to incorporate two auxiliary variables that replace the non-smooth �1
norm with a smooth term and a linear constraint. Please see [29] for more details.

Incorporating known landmarks in the target image as constraints in Eq. (2)
is straightforward. We simply provide a single candidate location for each of the
known landmarks via the matrices Q and G.

Because we use the same correspondence matrix X for all terms in Eq. (2),
we obtain only one estimate for each landmark type, regardless of how many
source datasets contribute to the estimate.

3.6 Implementation Details and Runtime

For quantizing SIFT features we use fast approximate k-means [16] with k = 105

clusters. For efficiency, we quantize the spatial variance σ2
v measurement of each

vote cluster in Section 3.3 and convolve each voting map after all voting is
complete using a set of precomputed Gaussian kernels. We also threshold σv to
prevent erroneous spikes in the voting maps: we do not allow σv to fall below 3
pixels. In Stage 4, we set η = 1000, λ = 100, and we use about 200 candidates
for each landmark.

Because our system operates on face datasets, we consider our pipeline to
be entirely ‘offline.’ However, it is not prohibitively slow despite the number of
steps involved. All tests were conducted on an Intel Xeon E5-2670 workstation.
For each 480 × 480 image in our evaluation set, feature extraction and quanti-
zation takes less than a second. For each {target image, source dataset} pair,
top exemplar selection (Stage 1) takes approximately 2.5 seconds, landmark vot-
ing (Stage 2) across 84 landmarks takes approximately 15 seconds, and shape
regularization (Stage 3) takes approximately 10 seconds using our MATLAB im-
plementation. The final stage is the most expensive (approximately 30 seconds
per image) in part because MATLAB’s linear program solver is relatively slow
with many landmarks and candidate locations. We remark that most parts of
our pipeline can be easily parallelized.

4 Results and Discussion

In this section we present two groups of experiments to evaluate the accuracy
of our approach. First, we compare our accuracy with recent facial landmark
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(a) Helen (b) Multi-PIE (c) LFPW (d) IBUG, AFW

Fig. 2. Experimental datasets. When each dataset is acting as source, we use the
landmark annotations shown above. There are 85 landmark types across all datasets.

localization methods [1, 2, 23, 25, 27–30]. For fair comparison, we assume that
no landmarks are known in the target images, and we measure accuracy over a
common subset of landmarks computed across all methods. We show that our
algorithm generally outperforms recent methods on especially challenging in-
the-wild faces. Second, we measure the accuracy of our algorithm using different
numbers of known landmarks in the target dataset to show that our method
exploits additional known landmarks as constraints to further significantly im-
prove accuracy. For all experiments we use multiple source datasets, each with
a different set of landmark definitions.

4.1 Experimental Datasets

We used five face datasets for our quantitative evaluation: Multi-PIE [7], He-
len [11], LFPW [2], AFW [30], and IBUG [17]. In the literature, there are two
versions of landmark annotations for Helen, LFPW, and AFW: (1) the annota-
tions provided when the datasets were originally released, which we refer to as
‘original’ hereafter; and (2) the recent annotations provided as part of the 300
Faces in-the-wild Challenge (300-W) [17], which we refer to as ‘300-W’ hereafter.
We use both versions of the landmarks; details are described in the context of
individual experiments.

As in [23, 27, 30], we measure the size of the face as the average of the height
and width of the rectangular hull around the ground truth landmarks. We favor
this size measurement over inter-ocular distance (IOD) because it is more robust
to yaw head rotation. Prior to evaluating all algorithms, we rescaled all test faces
to a canonical size (200 pixels) and rotated them to make the eyes level.

4.2 Comparisons with Recent Works

In this section we quantitatively compare our algorithm with recent works [1,
2, 23, 25, 27–30]. The source datasets for training consist of Multi-PIE, Helen,
and LFPW. For our algorithm, we used the ground truth landmark annotations
shown in Figure 2 for Multi-PIE, Helen, and LFPW as training. The ground
truth landmarks come from both the original annotations and the 300-W anno-
tations (300-W annotations are favored in cases of redundant definitions). We
note that there are 85 unique landmark types across all datasets.

Our target datasets for testing are AFW [30] and IBUG [17]. We use these
two datasets for evaluation because they are particularly challenging, e.g., they
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Fig. 3. Two sets of cumulative error distribution (CED) curves on AFW and IBUG
face datasets. In all cases, the average localization error is normalized by the face size
as defined in [30]. The numbers in parantheses are the fraction of faces at 0.05 error.
Here we compare the accuracy of our approach with several recent works: Asthana
et al . [1], Tzimiropoulos and Pantic [23], Zhou et al . [29], Belhumeur et al . [2], Zhao
et al . [28], Zhu and Ramanan [30], and Yu et al . [27]. We see that our approach
generally produces significantly more accurate results among those evaluated above.
Best viewed in color.

include a large percentage of faces with extreme facial expression and/or head
pose. In contrast, other popular datasets like BioID [9], Helen [11], LFW [8], and
LFPW [2] contain faces with less challenging variations, which are consequently
well addressed by current methods.

We made every effort to implement Belhumeur et al . [2] and Zhou et al . [29]
algorithms faithfully; we trained them on the source dataset (Multi-PIE, Helen,
and LFPW) using only 300-W annotations. For all other algorithms, we used
the original authors’ implementations. We used the off-the-shelf models provided
with each implementation, with the exception of Zhao et al . [28]. Zhao et al .
compute target face-specific models online from a given training database; for
their algorithm, like Belhumeur et al . [2] and Zhou et al . [29], we provided Multi-
PIE, Helen, and LFPW faces as training data using only 300-W annotations.

Initialization. For Belhumeur et al . [2] and Zhou et al . [29] we initialized the
position of each landmark detector using a mean face shape aligned to the face.
The diameter of each detector window was set to the larger of 33% of the face
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Fig. 4. CED curves comparing our accuracy with SDM [25]. We observe that SDM is
sensitive to initialization, especially for non-frontal faces, and so we evaluate it using
three different initialization strategies. Initialization 1 and 3 follow the authors’ strat-
egy: fit a mean shape to the face detection rectangle. For 1 we follow [17] and use the
rectangular hull around all 68 ground truth landmarks, and for 3 we use a much tighter
rectangular hull around the interior 49 ground truth landmarks. Initialization 2 follows
the strategy of [28]: fit a mean shape to the target face using ground truth eye centers.
Our performance is similar to SDM–Initialization 2, and is slightly lower on average
than SDM–Initialization 3. However, we remark that Initialization 3 provides an artifi-
cially favorable initialization to SDM because it is much tighter than Initialization 1. In
contrast, our approach is not sensitive to the initialization: we initialize our algorithm
using a 25% larger bounding rectangle than Initialization 1 (the least reliable but most
realistic initialization here), and we do not rely on an initial shape. Unlike SDM, our
full pipeline can use known landmarks in the target image as constraints to further
significantly improve accuracy, as shown in Figure 6. Best viewed in color.

size or large enough to overlap the true landmark location. Zhao et al .’s imple-
mentation [28] is initialized via eye detectors; we provided their algorithm with
ground truth eye centers. Tzimiropoulos and Pantic’s [23] algorithm requires
a face bounding box for initialization; for this we provided the ground truth
bounding boxes as defined by [17].

Zhu and Ramanan’s [30] algorithm is tied to their detection algorithm, and
so we do not provide it with an initialization. We set their detection threshold
to −∞ to avoid missing faces. For each ground truth face annotation, we select
the output face with the largest bounding box overlap (the area of intersection
divided by the area of union), and we ignore all false positives. Zhu and Ramanan
provide three models with their implementation. We used their Independent-1050
model for all of our experiments since it generally performs best.

Asthana et al . [1] and Yu et al . [27] each rely on a version of [30] for ini-
tialization, and so we do not provide one separately. However, since Yu et al .’s
implementation only returns landmark estimates for the highest scoring face in
each image, we isolated the true face by cropped it out (the crop window was
centered on the true face and set to approximately twice the face height/width).

Xiong and De la Torre’s Supervised Descent Method (SDM) [25] is considered
the current state of the art. The authors use the Viola-Jones face detector [24]
for initialization. Unfortunately, Viola-Jones fails to detect 10% and 26% of
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. Qualitative results on AFW faces (a)-(f) and IBUG faces (g)-(h) with varying
numbers of known landmarks in the target images. Green points are estimated land-
mark locations, and red points are known landmark locations. From the top row to
the bottom row, results were computed with 32, 21, 6, and 0 known landmarks. We
see that errors are corrected with additional known landmarks, e.g ., the eyebrows in
(a) and (f), and the lips in (d) and (g). Even with no known landmarks (bottom row),
our algorithm performs well on challenging faces, including those with significant head
pitch rotation (a, e, g, and h), head yaw rotation (b, c, g, and h), occlusion (b and h),
and facial hair (a and e). Figure 3 shows quantitative results with no known landmarks
in the target images. Best viewed electronically in color.

AFW and IBUG faces, respectively, despite our pre-rectification step. We instead
initialized SDM using three different strategies, described in Figure 4.

Quantitative Results. Figure 3 shows two sets of cumulative error distribution
(CED) curves, which compare the accuracy of our approach with others. Using
Multi-PIE, Helen, and LFPW as source datasets, our algorithm produces 84
landmark estimates (a union of both 300-W and original annotations from the
three source datasets).3 We evaluated the accuracy of 66 landmarks in Figure 3
because [1] estimates 66 landmarks. Errors are computed relative to the 300-W
ground truth landmarks as the mean point-to-point error normalized by the face
size. We compare with SDM [25] separately in Figure 4 because the authors’
implementation estimates 49 landmarks instead of 66. We see that our approach
generally outperforms recent methods on AFW and IBUG faces.

3 We supplemented the 300-W annotations on Helen with 10 landmarks from the
original annotations (three on each eyebrow, four on the nose). When we use LFPW
as a source dataset, we use only the 29 landmarks from the 300-W annotations
that coincide with the original annotations. When we use AFW and IBUG as source
datasets, we use only the six 300-W annotations that coincide with the original AFW
annotation. Figure 2 shows the layout of landmarks for each source dataset.
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Fig. 6. Quantitative evaluation of our full pipeline with six different trials, each as-
suming a different number of known landmarks. The top row shows the arrangement
of known landmarks for each trial. “6 known” corresponds to the original AFW lay-
out; “21 known” corresponds to AFLW; and “32 known” closely resembles the original
LFPW annotations. In (a) we see the overall mean accuracy is high with 0 known
landmarks (96.5% at 0.05), and the accuracy continues to improve significantly as ad-
ditional landmarks become known. For reference, Belhumeur et al . [2] showed that
their algorithm surpasses the average accuracy of human labelers on most landmarks,
and our algorithm further improves Belhumeur et al .’s localization accuracy (see Fig-
ure 3) even with 0 known landmarks. We note that inherent ambiguities exist on the
face, especially on longer contours such as the lips and the outer face contour. For
example, a landmark estimate on the outer contour may be qualitatively correct, but
in disagreement with “ground truth” in terms of its location along the contour. This
phenomenon partly explains the lower CED curves in (c), (e), and (f). In general, we
see that our approach correctly estimates landmarks on a large majority of faces, espe-
cially with 21 or 32 known landmarks. This suggests that our approach is well-suited
for automatically supplementing the landmarks in large, sparsely annotated datasets
like AFLW. Best viewed in color.
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4.3 Evaluation with Known Target Landmarks

We have quantitatively evaluated our full pipeline using 1035 images from LFPW
as the target dataset, and using Multi-PIE, Helen, AFW, and IBUG as source
datasets. The union of the different annotation definitions results in a total
of 85 landmarks. We performed six different trials, with each trial assuming a
different number of known landmarks in the target dataset: 0, 6, 9, 15, 21, and
32. Among these different numbers, we chose 6 because it corresponds to the
original AFW annotations; we chose 21 because it corresponds to annotations
provided in the AFLW dataset [10]; and we chose 32 because it closely resembles
the original annotations in LFPW. The top of Figure 6 shows the arrangement
of known landmarks for each trial. For each face, we measure the accuracy of
79 landmarks (out of 85 estimated) relative to ground truth annotations from
300-W and the original LFPW dataset; the ground truth of the remaining 6
landmarks are not available for LFPW.

The CED curves in Figure 6 show the accuracy of our algorithm on each of
these trials across 79 landmarks. We see that the accuracy of our algorithm is
high with 0 known landmarks (96.5% at 0.05 average overall), and the accuracy
continues to improve with additional known landmarks.

A prime target dataset for our approach is AFLW [10], which contains 25,000
in-the-wild face images from Flickr, each manually annotated with up to 21
sparse landmarks. Our approach is well-suited to automatically supplementing
AFLW with additional landmarks from source datasets like Multi-PIE [7] and
Helen [11]. Our supplementary AFLW landmarks are available at our project
website: http://www.cs.wisc.edu/∼lizhang/projects/collab-face-landmarks/.

5 Conclusions

Our quantitative comparison shows that our approach generally significantly
outperforms recent methods, and achieves accuracy comparable to the current
state of the art on challenging in-the-wild faces, even with zero known landmarks
in the target dataset. Our evaluation using different numbers of known landmarks
in the target dataset show that our approach is well-suited to automatically
supplementing an existing dataset with additional landmarks from other source
datasets. However, our algorithm is not perfect and occasionally makes mistakes.
For infrequent problem cases, our system naturally allows the user to provide
a few additional landmarks as constraints. For these reasons, we want to build
upon our system to include humans in the loop as part of a crowdsourcing
platform for efficiently adding landmarks to large face datasets.
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