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Abstract. Training an object class detector typically requires a large set of im-
ages annotated with bounding-boxes, which is expensive and time consuming
to create. We propose novel approach to annotate object locations which can
substantially reduce annotation time. We first track the eye movements of an-
notators instructed to find the object and then propose a technique for deriving
object bounding-boxes from these fixations. To validate our idea, we collected eye
tracking data for the trainval part of 10 object classes of Pascal VOC 2012 (6,270
images, 5 observers). Our technique correctly produces bounding-boxes in 50%
of the images, while reducing the total annotation time by factor 6.8× compared
to drawing bounding-boxes. Any standard object class detector can be trained on
the bounding-boxes predicted by our model. Our large scale eye tracking dataset
is available at groups.inf.ed.ac.uk/calvin/eyetrackdataset/.

1 Introduction

Object class detection is the task of predicting a bounding-box around each instance
of an object class in a test image. Traditionally, training an object class detector re-
quires a large set of images in which objects are manually annotated with bounding-
boxes [8,14,15,47,50] (Fig. 1). Bounding-box annotation is time consuming and
expensive. The authors of [20] report a 26s median time to draw a bounding-box during a
large-scale annotation effort for ImageNet by crowd-sourcing on Mechanical Turk. Ad-
ditionally, detailed annotation guidelines, annotator training based on these guidelines,
and manual checking of the annotation are typically required [14,20]. Annotating large
sets of images is therefore an enormous undertaking, which is typically supported by
crowd sourcing [1,13].

In this paper, we propose a novel approach to training object detectors which can
substantially reduce the time required to annotate images. Instead of carefully marking
every training image with accurate bounding-boxes, our annotators only need to find the
target object in the image, look at it, and press a button. By tracking the eye movements
of the annotators while they perform this task, we obtain valuable information about the
position and size of the target object (Fig. 1). Unlike bounding-box annotation, our eye
tracking task requires no annotation guidelines and can be carried out by completely
naive viewers. Furthermore, the task can be performed in a fraction of the time it takes
to draw a bounding-box (about one second per image, Sec. 3).

Eye movement behavior in scene viewing has been the subject of a large body of
research in cognitive science [22]. Experimental results indicate that human observers
prefer to fixate objects, rather than the background of an image [12]. This tendency is
particularly pronounced in visual search, as finding an object typically requires fixat-
ing it [51]. This strongly suggests that eye tracking data can be useful for training a
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Fig. 1. (Left) The standard approach to training an object detector, where all images in the train-
ing set are manually annotated with bounding-boxes. (Right) In our approach most of the images
are annotated only with human eye fixations (Rfix set). The key idea is to automatically predict
bounding-boxes for the images in Rfix set given only their fixations. For this we first train a
model to infer the spatial support of objects from the fixations, on a small subset of images anno-
tated by both fixations and bounding-boxes (Rbb+fix, only 7% of the images in our experiments).

system to automatically localize objects. However, fixation data only provides a rough
indication of the spatial extent of an object: humans have a tendency to fixate the center
of an object [33], and within animate objects (humans and animals), there is a strong
preference for fixating faces [24]. Furthermore, the eye movement record will include
fixations on salient non-target objects, and occasionally on the background.

Inspired by the above observations, we propose a technique for deriving a bounding-
box covering the whole target object given the fixations on the image (Sec. 4). We cast
bounding-box estimation as a figure-ground segmentation problem. We define a model
that takes human eye movement data as input and infers the spatial support of the target
object by labeling each pixel as either object or background. As the relation between
fixations and bounding-boxes can be complex and vary between object classes, we train
our model from a small subset of images annotated with bounding-boxes and fixations.
The subset is only a small fraction of the dataset we want to annotate (7% of the images
in our experiments). Once trained on this subset, we use our model to derive bounding-
boxes from eye movement data for the whole dataset, which can then be used to train
any standard object class detector, such as the Deformable Parts Model [15].

To test our hypothesis that eye tracking data can reduce the annotation effort required
to train object class detectors, we collected eye tracking data for the complete training
set of ten objects classes from Pascal VOC 2012 [13] (6,270 images in total). Each
image is annotated with the eye movement record of five participants, whose task was
to identify which object class was present in the image (Sec. 3). This dataset is publicly
available at groups.inf.ed.ac.uk/calvin/eyetrackdataset/.

We demonstrate through extensive experiments on this dataset that our segmentation
model can produce accurate bounding-boxes in about half the images, and that a modern
object detector [15] can be trained from them (Sec. 5).

2 Related Work

Eye Movement Data in Computer Vision. Researchers in cognitive science have a
long-standing interest in computational models that predict human eye movement be-
havior (e.g. [21,23,24]). Recently, however, a number of authors have started to use eye
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movement data for computer vision tasks. This includes work on image segmentation,
which shows that using fixation data to help segmentation algorithms leads to improved
performance [32,37,48]. Eye tracking data is also useful for face and text detection:
[25] cluster fixations to find regions in which the targets are likely to be found, and then
apply standard face and text detectors only there. Several authors have collected eye
tracking data for video and shown that saliency maps computed from these data can
improve action recognition [31,46].

Yun et al. [52] collect eye movement data for a 1,000 image subset of Pascal VOC
2008; three observers performed a three second free-viewing task. This data is then
used to to re-rank the output of an object class detector [15] on test images. Our dataset
is substantially larger (6,270 images, 5 observers), and our observers perform a visual
search task, which is faster (one second per image) and more likely to result in fixations
on the target objects (Sec. 3). Most importantly, we present a method for using eye
tracking data to train an object class detector, replacing ground-truth bounding-boxes,
rather than using them for post-processing at test time.

Weakly Supervised Learning. Our research is related to work trying to reduce the an-
notation effort required to train object class detectors. Weakly supervised methods train
from a set of images labeled only as containing a certain object class, without location
annotation [7,9,16,34,40,41,45]. These methods try to locate the object by searching
for patterns of appearance recurring across the training images. However, learning a de-
tector without location annotation is very difficult and performance is still below fully
supervised methods [9,34,39]. Recently a few authors have tackled learning object class
detectors from video, where the temporal continuity facilitates the task [28,36,42]. An-
other line of work leverages text naturally occurring near an image as a weak annotation
for its contents [3,11,19,30], such as on web pages or newspapers. This form of super-
vision has been particularly successful for learning faces of specific people [3], in part
because excellent generic face detectors are already available [47].

Our work provides a different way to reduce annotation effort which is complemen-
tary to those above. It could potentially be integrated with some of them for even greater
savings.

3 Eye Tracking Dataset

3.1 Materials

The images in our dataset were taken from the 2012 edition of the Pascal VOC challenge
[13]. We selected 10 of the 20 Pascal classes and included all trainval images for these
classes in our dataset. We grouped our 10 classes into pairs as follows (see below for
explanation): cat/dog, bicycle/motorbike, boat/aeroplane, horse/cow, sofa/diningtable.
For each pair of classes, we removed all images that contained objects of both classes
(e.g. images containing both horses and cows). This eliminated 91 images, or 1.4% of
total, and resulted in a dataset containing 6,270 images.
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(a) (b) (c)

Fig. 2. Examples of eye tracking data for three images of class motorbike. We show the sequence
of fixations (circles) for five participants (color coded). Note how the first fixation falls outside
the image (see main text for details).

3.2 Procedure

As explained in Sec. 2, results in the visual cognition literature indicate that free viewing
may not be the optimal task for collecting eye tracking data for training automatic object
detectors. A visual search task, in contrast, increases the likelihood that participants
fixate the target object, as this facilitates finding the target and help complete the task
correctly.

However, traditional visual search tasks require a large number of target-absent tri-
als. For example, if the task is to search for horses (the participants presses a “yes”
button if a horse is present in the image, and “no” otherwise), then the set of images
shown to the participant needs to contain images without horses (typically 50%, to min-
imize guessing). Such a setup would mean that eye tracking data is collected for a large
number of target-absent images, which then cannot be used to train a detector.

We therefore used the related task of two-alternative forced choice object discrimi-
nation, in which each image contains instances of one of two object classes (e.g. cow
or horse), and participants have to press one of two buttons to indicate which class is
present. This way, visual search data can be collected for two classes at a time, without
the need for target-absent images. In adopting this approach, we paired object classes
carefully, such that the two sets of images were similar in size (to minimize guessing),
and such that the objects were easily confusable (similar size and background, etc.), as
otherwise the task is too easy for human observers.

3.3 Apparatus

The experiment was conducted in a sound-attenuated room; participants were seated
60 cm from a 22” LCD screen (Samsung SyncMaster 2233, 100 Hz refresh rate, 5 ms
response time) while their eye movements were recorded using an Eyelink 2000 eye
tracker (SR Research Ltd., Ottawa), which sampled both eyes at a rate of 1,000 Hz, with
a typical spatial resolution of 0.25◦ to 0.5◦. A head rest was used to minimize partici-
pants head movements and improve recording accuracy. Button presses were recorded
using a Logitech gamepad that offers millisecond accuracy.

The experiment was controlled using Psychophysics Toolbox Version 3 [6]. Data
collection started with a standard nine-point calibration and validation. As explained
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below, participants viewed images blocked by pairs of classes; the images within a block
were presented in random order (a new sequence was generated for each participant).
Each trial started with a central fixation cross, displayed for 500 ms, after which the
image was displayed. The participant’s task was to press one of the two response buttons
to indicate the class to which the object(s) in the image belonged, after which the next
trial was started automatically. Drift correction was performed after every 20 images;
re-calibration was performed if the correction showed that this was necessary (after
approximately every 200 images). Participants were offered a five minute break every
30 minutes.

The images in the Pascal dataset differ in size, and they are all smaller than the
screen resolution used for the experiment (1,680 × 1,050 pixels). Instead of re-scaling
the images to this resolution (which would result in visual artifacts and make the task
unnatural), we presented the images in their original size, but at random offset from the
center of the screen. This has the advantage that participants cannot easily develop a
viewing strategy (e.g. always looking at the center of the screen, looking in the upper
half), thus ensuring that we obtain maximally informative eye movement data.

3.4 Participants

A total of 28 participants (11 male) took part in the data collection, all students at the
University of Edinburgh. They gave informed consent and were paid £10 per hour. The
materials were divided into seven blocks of around 1,000 images each, where each
block contained of all the images in one pair of classes, except for one large pairs
of classes (cat/dog), which was split across three blocks. Each participant saw all the
images in one block, except for five participants, who saw between two and four blocks
in multiple sessions. Blocks were distributed across participants such that every image
in every block was seen by five distinct participants.

3.5 Results

A total of around 178,000 fixations were collected, corresponding a mean of 5.7 fixa-
tions per participant per image. For example images with fixations superimposed, see
Fig. 2. Note that we removed the first fixation of each trial, as it almost always falls
on the location of the fixation cross, and thus is uninformative (as well as often being
outside the image, due to the off-center presentation).

The mean response time per image (the time from the onset of the image to the button
press) was 889 ms, ranging from 786 ms for cat 1090 ms for cow. This indicates that the
task can be performed very efficiently by human observers, especially compared to the
26 seconds reported in [20] as the time required to draw a bounding-box. Participants
were nevertheless highly accurate at the task, with a mean discrimination accuracy (per-
centage of correct button presses) of 95.2%, ranging from 92.9% for sofa/diningtable
to 96.1% for boat/aeroplane.

We then compared the positions of the human fixations with the locations of the
ground-truth bounding-boxes provided with the Pascal dataset. On average, 75.2% of all
fixations on an image fell within one of the bounding-boxes for that image, ranging from
57.3% for boat to 89.6% for cat. This provides initial evidence of our claim that fixation
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Fig. 3. Illustration of our method for predicting bounding-boxes from fixations. See sec. 4

data is useful for localizing objects, though it also indicates that there is considerable
inter-class variability in fixation behavior.

4 From Fixations to Bounding-Boxes

We present here our method for localizing objects in an image given fixations (Fig. 1).
We model this problem as figure-ground segmentation. Our model takes as input human
fixationsΦ for an image I in Rfix and infers the spatial support of the object by labeling
each pixel as either object or background. The method has two stages (Fig. 3):

I) Initial object segmentation (Sec. 4.1) The first stage predicts an initial estimate
of the object position by labeling each (super-)pixel individually. This predictor
captures the relation between fixations and object positions. It is trained on the
image set Rbb+fix, which is annotated with both fixations and manual bounding-
boxes. The output of this stage is a values for each pixel of I that corresponds to
the probability to be on the object.

II) Segmentation refinement (Sec. 4.2). The second stage refines the segmentation
with an energy model similar to GrabCut [38]. This includes pairwise dependen-
cies between neighboring superpixels, acting as a prior preferring spatially smooth
segmentations.

4.1 Initial Object Segmentation

We describe here the first stage of deriving object segmentations from fixations. We
use an SVM to classify superpixels into object or background based on a diverse set
of features computed from the fixations, such as the distance between a superpixel and
the nearest available fixation. Before the classifier is ready to label superpixels in a new
image, we train it on the set Rbb+fix. In this fashion it can learn a relation between
fixations and object positions specific for that object class (i.e. the relation between
these features and the fact that a superpixel is on the object or not). After training, the
classifier is applied to each image I ∈ Rfix, resulting in a soft segmentation mask M
(Fig. 3). Each pixel value in M corresponds to the estimated probability for it to be on
the object.
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(a) (b) (c) (d) (e)

Fig. 4. (a) The positions of the fixations in an image. (b) The near distance feature. (c) The rank
feature. (d) The appearance feature according to the distance of the nearest fixation. (e) The
objectness feature.

Features. We start by over-segmenting each image I into superpixels S using the Tur-
bopixels method [29]. Operating at the superpixel level greatly reduces the computa-
tional cost and memory requirements of our technique.

Let Φ be the set of fixations in the image. Each fixation is determined by four values:
the (x, y) position, the duration and the rank of the fixation in chronological order.

Fixation Position Features. As mentioned in Sec. 3, we acquired fixations under a
visual search task instead of the usual free-viewing task to increase the proportion of
fixations on (or near) the target object. Therefore, the position of the fixations directly
relates to the position of the object. This motivates us to construct good features indi-
cating whether a superpixel s lies inside the object based on its position relative to the
fixations (Fig. 5a):

– mean distance: the distance between the center of s and the mean position of all
fixations in the image.

– near distance: the distance between the center of s and the position of the fixation
nearest to s (Fig. 4b).

– mean offsets: the vertical and horizontal difference between the center of s and the
mean position of all fixations in the image.

– near offsets: the vertical and horizontal difference between the center of s and the
position of the fixation nearest to s.

Fixation Timing Features. In addition to the position of each fixation, the eye tracker
also delivers timing information, such as the duration and rank of each fixation. These
properties carry valuable information. Intuitively, the longer a fixation lasts, the more
significant it is. Moreover, in most images the first few fixations will not fall on the
target object yet, as the annotator is searching for it, while later fixations are likely to
be on the target (Fig. 4c).

– duration: the duration of the fixation nearest to s.
– rank: the rank of the fixation nearest to s.

Fixation Appearance Features. The features considered so far support learning a fixed
spatial relation between the fixations and the superpixels on the object. For example, we
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could learn that superpixels within a certain distance of the nearest fixation are likely
to be on the object. Or we could learn that most of the object mass is below the mean
fixation position (e.g. for the person class, as faces receive most fixations).

However, in images of natural objects this spatial relation might change from image
to image and therefore might be hard to recover when reasoning about image coordi-
nates alone. For instance, animals can appear in a wide range of viewpoint and defor-
mations, but viewers tend to fixate mostly their heads. This makes it difficult to guess
the full extent of their body based purely on the fixation positions.

Here we consider another family of features based on the appearance of superpixels
(i.e. their color distribution). The key idea is that, while the fixations do not cover the
whole object, many of them are on the object, and so provide examples of how it looks.
Hence, we can learn about object appearance from a few superpixels hit by fixations.
Analogously, we can learn about background appearance from superpixels far from fix-
ations. We can then transfer this knowledge to all superpixels in the image. For example
we might find out that a horse is brown and the background is green, even from just a
few fixations, and use this knowledge to segment out the whole horse (Fig. 1). Note that
this idea works regardless of the spatial relation between the shape and size of the horse
in the image and the fixation positions. It effectively creates a mapping from fixation to
segmentations that adapts to the contents of the target image.

More precisely, we estimate two Gaussian Mixture Models (GMM), one for the ob-
ject and one for the background. Each GMM has 5 components, each of which is a
full-covariance Gaussian over the RGB color space. We estimate the object GMM Aobj

from all pixels inside all superpixels hit by any fixation, as these are likely on the object
(Fig. 5b). Selecting background sample pixels is harder as the converse relation does
not hold: the fact that a superpixel is not hit by any fixation does not reveal much about
it being on the background or the object (in fact nearly all superpixels are not hit by a
fixation, as fixations are extremely sparse). Therefore, we sample superpixels accord-
ing to three criteria, leading to three different background GMM models Abg , and we
leave it to the learner to decide how to best weight them: (1) sample proportionally to
the distance to the mean fixation, resulting in many samples far from the mean fixation
and less and less samples as we get nearer; (2) sample proportionally to the distance to
the nearest fixation. This is simply an alternative way to express ‘far from the expected
object location’; (3) sample inversely proportionally to the objectness probability (see
next paragraph).

After estimating the appearance models Aobj , Abg , we use them to evaluate ev-
ery superpixel s in the image, resulting in per-pixel likelihoods of object/background
p(s|obj) = Aobj(s), p(s|bg) = Abg(s). We combine these likelihoods in a per-pixel
posterior probability of being on the object with Bayes’ formula under a uniform prior:
p(obj|s) = p(s|obj)/(p(s|obj)+p(s|bg)) (Fig. 4d). We compute three different posteri-
ors, by using each of the three background models in turn, resulting in three appearance
features for each super-pixel.

Objectness Feature. As an additional feature, we incorporate the objectness mea-
sure [2]. Objectness estimates the probability that an image window contains an object
of any class. It is designed to distinguish windows containing an object with a well
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(a) (b)

Fig. 5. Feature extraction. (a) Fixation position features. The yellow circles indicate the positions
of the fixations in the image, while the red circle indicates the mean position of all fixations. The
figure shows the distances from a superpixel center (red cross) that are required to compute all
the feature position features. (b) Selecting foreground and background superpixels to estimate
appearance models for the fixation appearance features. The selected foreground superpixels are
indicated in red, while the sampled background superpixels according to the distance from the
nearest fixation are in green.

defined boundary and center, such as cows and telephones, from amorphous background
windows, such as grass and road. It measures distinctive characteristics of objects, such
as appearing different from their surroundings, having a closed boundary, and some-
times being unique within the image.

We sample 1,000 windows using [2] according to their probability of containing
an object. Then we convert this measure to per-superpixel probabilities by averaging
the objectness value over all windows covering a super-pixel. This objectness feature
helps by pushing the segmentation method towards objects and away from backgrounds
(Fig. 4e).

Training a Superpixel Classifier. We train a separate classifier for each object class, as
the relation between fixations and objects can be complex and vary between classes. As
training samples we use the feature vectors of all superpixels from the Rbb+fix images
of a class (Fig. 3). Each superpixel is labeled according to whether it is inside a ground-
truth bounding-box or not. After whitening the features, we train a linear SVM with the
very efficient implementation of [43] on a random 80% subset of the training data. We
set the regularization parameter C by validation on a held-out 10% of the data, and then
re-train the SVM on the total 90% of the data. In order to get a smooth, probabilistic
output we apply Platt scaling [35] and fit a sigmoid to the output of the SVM on the
remaining 10% of the training data.

Applying the classifier to a new image I ∈ Rfix yields a soft-segmentation mask M
where each pixel value corresponds to the estimated probability of being on the target
object. This is the output of the first stage of our method.

4.2 Segmentation Refinement

We describe here the second stage of deriving object segmentations from fixations.
This refines the soft-segmentation M output by the first stage by taking into account
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pairwise dependencies between neighboring superpixels and by improving the appear-
ance models.

Let ls ∈ {0, 1} be the label for superpixel s and L be the labeling of all ls in the
image. We employ a binary pairwise energy function E defined over the superpixels
and their labels, analog to [26,38]

E(L) =
∑

s

Ms(ls) +
∑

s

As(ls) +
∑

s,r

V (ls, lr) (1)

As in [26,38], the pairwise potential V encourages smoothness by penalizing neigh-
boring pixels taking different labels. The penalty depends on the color contrast between
the pixels, being smaller in regions of high contrast (image edges). The summation over
(s, r) is defined on an eight-connected pixel grid.

Because of the probabilistic nature of the soft segmentation mask M , we can use
Ms(ls) = M(s)ls(1 −M(s))1−ls as a unary potential (with Ms the value of the mask
at superpixel s). As Ms estimates the probability that superpixel s is on the object, this
potential encourages the final segmentation to be close to M (see [26]). This anchors
the segmentation to image regions likely to contain the target object, while letting this
second stage refine its exact delineation.

The second unary potential As evaluates how likely a superpixel s is to take label ls,
according to object and background appearance models. As in the classic GrabCut [38],
an appearance model consists of two GMMs, one for the object (used when ls = 1) and
one for the background (used when ls = 0). Each GMM has five components, each a
full-covariance Gaussian over the RGB color space.

In traditional work using similar energy models [4,38,49], estimating the appear-
ance models requires user interaction to indicate the image region containing the object
(typically a manually drawn bounding-box or scribbles). Recently, [26] proposed to au-
tomatically estimate the appearance models from a soft segmentation mask produced
by transferring segmentations from manually annotated images in a training set. In-
spired by that idea, we estimate our appearance models from the mask M obtained
from fixations in Sec. 4.1 (so our method does not require training segmentations).

After this initial estimation, we follow [38] and alternate between finding the opti-
mal segmentation L given the appearance models, and updating the appearance models
given the segmentation. The first step is solved globally optimally by minimizing (1)
using graph-cuts [5] as our pairwise potentials are submodular. The second step fits
GMMs to labeled superpixels. Defining the energy over superpixels [18,27,44] instead
of pixels brings great memory savings and reduces the cost to optimize over L. As
demonstrated in [18], the accuracy of the superpixel model is essentially identical to
the corresponding pixel model.

The final output of our method is a bounding-box enclosing the largest connected
component in the segmentation (Fig. 3).

5 Experiments

We carry out experiments on the challenging Pascal VOC 2012 benchmark [13]. We
first evaluate the ability of our method to derive object bounding-boxes from fixations
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Fig. 6. CorLoc performance for the baselines (blue bars) and several stripped down versions of
our model (green+red) bars. The height of the green bars indicate the performance of the initial
segmentation method (i) using only position and timing features, (ii) adding appearance features,
(iii) adding the objectness feature, and (iv) using all features and fixations from 5 annotators (the
previous three bars use only 2 annotators). The height of the red bars show the improvement
brought by the refinement stage.

on the trainval part of the dataset (Sec. 5.1). Next, we train the object class detector
of [15] from these bounding-boxes and compare its performance on the test set to the
original model trained from ground-truth bounding-boxes (Sec. 5.2).

5.1 From Fixations to Bounding-Boxes

Data. We consider 10 classes from Pascal VOC 2012, for a total of 6,270 images in
the trainval part (see Sec. 3.1 for a list of classes). We split each class into two subsets
Rbb+fix and Rfix. We use both ground-truth bounding-boxes and human fixations
from the set Rbb+fix to train our segmentation model. This subset contains only 7%
of all trainval images. This fraction was chosen so that each class has ≥ 20 images.
On average, each class has only 44 images. After training, we use our model to predict
bounding-boxes for images in the Rfix set, which are annotated only by fixations.

Evaluation Measure. We report performance as CorLoc [9,34,36,40], i.e. the percent-
age of images in Rfix where a method correctly localizes an object of the target class
according to the Pascal criterion [14] (intersection-over-union≥ 0.5).

Baselines. In Fig. 6 we evaluate several informative baselines: (1) image center: a
window in the image center with area set to the average over the object bounding-boxes
in the Rbb+fix set. This baseline provides an indication of the difficulty of the dataset;
(2) all fixations: a bounding-box around all fixations; (3) objectness: the window with
the highest objectness probability, out of 1000 sampled using [2]; (4) DPM: the high-
est scored detection returned by a Deformable Parts Model detector [15] trained on the
Rbb+fix set; (5) regression: linear regression from the mean and variance of the fixa-
tion positions to a bounding-box. This models the spatial relation between the cloud of
fixations and the object with a single translation and anisotropic scaling transformation,
constant across all images of a class.

As Fig. 6 shows, the image center baseline achieves 33.2% CorLoc, confirming the
dataset contains mostly images with smaller, often off-center objects. Interestingly, all
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Fig. 7. Qualitative results of our method for localizing objects given fixations. The fixations are
indicated with yellow circles while the predicted bounding-boxes are in green. Successful exam-
ples are shown in the first four rows for various classes, while some failure cases are shown in
the last row. Note how our method nicely outputs a bounding-box covering the whole object even
when the fixations are concentrated on only part of it, often the center, or the head.

fixations fails entirely, demonstrating that the task of deriving bounding-boxes from
fixations is far from trivial. Regression does much better, finding the object in 35.6%
of the images. This highlights the need for learning the relation between fixations and
bounding-boxes. Note how Objectness also performs quite well (35.0%). It can find
some objects even when used on its own, confirming observations made by earlier re-
search [17]. As regression and objectness incorporate elements of our full method, they
set the standards to beat. Finally, the DPM baseline reaches only 34.0% CorLoc, show-
ing that the problem cannot be solved simply by training an object detector on the small
fully annotated set Rbb+fix.
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Results. Fig. 6 shows the CorLoc achieved by several stripped down version of our
model. We study the impact of using increasingly more features (Sec. 4.1), and the
difference between using only the initial segmentation stage (Sec. 4.1) or also the seg-
mentation refinement stage (Sec. 4.2). To quantify the performance of the initial seg-
mentation stage, we threshold the soft-segmentation mask M and fit a bounding-box
around the largest segment. The threshold is optimized on the training set Rbb+fix.

The results reveal several interesting observations: (1) all feature types we propose
contribute to the overall performance of the full model, as adding each type in turn pro-
gressively leads to higher CorLoc; (2) with 49.6% CorLoc, our full model significantly
outperforms all baselines, including regression and objectness. This shows that it can
learn better, more complex relations between the fixations and the object’s spatial ex-
tent than the regression baseline. It also shows that, while objectness is a valuable cue to
the position of objects, our model goes well beyond it; (3) the segmentation refinement
stage always helps, adding between 3% and 6% CorLoc depending on the features used
in the initial segmentation stage.

As a reference, the recent weakly supervised method [39], which produces bounding-
boxes on a set of images labelled only as containing a class, achieves 32% in a similar
setting on Pascal VOC 2007 (which is a dataset of similar difficulty). This provides a
ballpark for what can be expected when using such alternative methods.

Our results discussed above used fixations from just two annotators. This is an espe-
cially economical annotation scenario, as it takes only a total of about two seconds to
annotate an image, substantially less than the 26 seconds it takes to draw a bounding-
box [20]. However, as we collected fixations from five annotators per image (Sec. 3), for
completeness we report also the performance of our model when using all annotators
(rightmost bar in Fig. 6). As performance improves only marginally, we conclude that
our model efficiently exploits the information provided by two annotators, and keep this
as the default setting in the next experiment.

5.2 Training Object Class Detectors from Fixations

Settings. In the previous subsection we automatically derived bounding-boxes from
fixations for the Rfix part of the Pascal VOC 2012 trainval set (i.e. 93% of the total).
Here we use these predicted bounding-boxes, along with the 7% images in Rbb+fix

with ground-truth bounding-boxes, to train a DPM detector per class [15]. Following the
standard Pascal VOC protocol, the negative training set for a class contains all trainval
images not containing that class. After training, the detectors are applied to the Pascal
VOC 2012 test set (10,991 images). Performance is quantified by the mean average
precision (mAP) over all 10 classes, as returned by the Pascal VOC evaluation server.
We compare performance to DPM detectors trained from exactly the same images, but
all annotated with ground-truth bounding-boxes.

Results. The mAP of detectors trained from bounding-boxes derived by our method is
12.5%, compared to 25.5% for the detectors trained from ground-truth bounding-boxes.
We consider this an encouraging result, given that our scenario enables to train these
detectors in 6.8× less total annotation time compared to drawing bounding-boxes on
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all images. This estimate takes into account all relevant factors, i.e. two annotators per
image at one second per image, the time to set up and calibrate the eye tracker, breaks
between blocks of images, and the time to draw bounding-boxes on the 7% images in
Rbb+fix. Interestingly, training DPMs from ground-truth bounding-boxes for a 6.8×
smaller training set leads to comparable performance as our method (13.7%).

6 Conclusions

We have presented a novel approach to train object detectors. Instead of the traditional,
time consuming manual bounding-box annotation protocol, we proposed to learn the
detector from eye movement data recorded while annotators simply look for the object
in the training images. We proposed a technique to successfully derive object bounding-
boxes from such eye movement data and demonstrated that they can be used to train a
modern object detector [15].

In its current form, when given equal total annotation time, our scheme leads to de-
tectors that are about as good as those trained from manual bounding-box annotations.
In future work we plan to further improve the quality of our segmentation model, so as
to localize more objects and more accurately, which should lead to training better detec-
tors. Moreover, the bounding-boxes predicted by our method could be sent to Amazon
Mechanical Turk for verification, leading to cleaner training sets at a small additional
cost. As another direction, we plan to extend the work to connect it to weakly supervised
models that look for repeated appearance patterns in multiple training images [10,40].
Finally, we would like to extend the work to video, ideally moving towards the dream
paradigm of ‘learning object detectors while watching TV’.
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