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Abstract. We present Active Random Forests, a novel framework to
address active vision problems. State of the art focuses on best view-
ing parameters selection based on single view classifiers. We propose a
multi-view classifier where the decision mechanism of optimally chang-
ing viewing parameters is inherent to the classification process. This has
many advantages: a) the classifier exploits the entire set of captured im-
ages and does not simply aggregate probabilistically per view hypothe-
ses; b) actions are based on learnt disambiguating features from all views
and are optimally selected using the powerful voting scheme of Random
Forests and c) the classifier can take into account the costs of actions.
The proposed framework is applied to the task of autonomously unfold-
ing clothes by a robot, addressing the problem of best viewpoint selection
in classification, grasp point and pose estimation of garments. We show
great performance improvement compared to state of the art methods.

Keywords: Active Vision, Active Random Forests, Deformable Object
Recognition, Robotic Vision.

1 Introduction

Object recognition and pose estimation has been studied extensively in the
literature achieving in many cases good results [15,24]. However, single-view
recognition systems are often unable to distinguish objects which depict similar
appearance when observed from certain viewpoints. An autonomous system can
overcome this limitation by actively collecting relevant information about the
object, that is, changing viewpoint, zooming to a particular area or even inter-
acting with the object itself. This procedure is called active vision and the key
problem is how to optimally plan the next actions of the system (usually a robot)
in order to disambiguate any conflicting evidence about the object of interest.
The majority of state of the art techniques [7,13,12] in active vision share the
following idea: one single-view classifier is trained to recognize the type and pose
of target objects, whereas a subsequent step uses the inference probabilities to
plan the next actions so that conflicting hypotheses are disambiguated. Although
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Fig. 1. Robot autonomously unfolding a shirt. a) Grasping lowest point. b) grasping
1°* grasp point. c) grasping 2™* grasp point. d) final unfolded configuration

intuitive, this approach makes the combination of features from multiple views
difficult whereas hypotheses from different views can only be exploited a poste-
riori (i.e. Bayesian formulations). In addition, their performance heavily relies
on the performance of the single-view classifier. However, designing a classifier
that can generalize across views is particularly challenging especially when illu-
mination variations or deformations are considered. Another problem in active
vision which hasn’t been addressed by many state of the art techniques [13,12],
is defining the cost associated with each action.

To cope with the above challenges, we propose Active Random Forests which
can be considered as an “active classifier”. The framework is based on classical
Random Forests [3] having also the ability to control viewing parameters during
on-line classification and regression. The key difference is that the classifier it-
self decides which actions are required in order to collect information which will
disambiguate current hypotheses in an optimal way. As we will demonstrate,
this combination of classification and viewpoint selection outperforms solutions
which employ these two components in isolation [7,13,12]. Furthermore, infer-
ence is made using the entire set of captured images, taking advantage of the
various feature associations between different viewpoints. The on-line inference
and action planning become extremely fast by the use of Random Forests, mak-
ing the framework very suitable for real-time applications such as robotics. In
summary, the main contributions of our framework are:

— A multi-view active classifier which combines features from multiple
views and is able to make decisions about further actions in order to accom-
plish classification and regression tasks in an optimal way.

— Novel decision making criteria based on distribution divergence of train-
ing and validation sets while growing the decision trees.

— A decision selection method during classification and regression using
the powerful voting scheme inherent to Random Forests.

— A method for taking into account the possible costs of actions.

Letting the classifier decide the next disambiguating actions introduces much dis-
criminative power to the framework, as will be shown in Section 5. We demon-
strate the proposed framework in the challenging problem of recognizing and
unfolding clothes autonomously using a bimanual robot, focusing on the prob-
lem of best viewpoint selection for classification, grasp point and pose estimation
of garments.
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2 Related Work

Active vision literature focuses mainly on finding efficient methods for select-
ing observations optimally while little attention is paid to the classifier which is
kept simple. The majority of works adopted an off-line approach which consists
of precomputing disambiguating features from training data. Schiele et al. [18]
introduced “transinformation”, the transmission of information based on statis-
tical representations, which can be used in order to assess the ambiguity of their
classifier and consequently find the next best views. Arbel et al. [1] developed a
navigation system based on entropy maps, a representation of prior knowledge
about the discriminative power of each viewpoint of the objects. In a subsequent
study, they presented a sequential recognition strategy using Bayesian chaining
[2]. Furthermore, Callari et al. [4] proposed a model-based active recognition
system, using Bayesian probabilities learned by a neural network and Shannon
entropy to drive the system to the next best viewpoints. Also, Sipe and Casasent
[19] introduced the probabilistic feature space trajectory (FST) which can make
estimation about the class and pose of objects along with the confidence of the
measurements and the location of the most discriminative view. Such methods
are computationally efficient both in training and testing. On the other hand,
they rely mainly on their best hypotheses based on prior knowledge which can
in fact have low probabilities on a test object while features from the visited
viewpoints are assumed independent in order to make the final inference.

One of the most representative works in the same direction was made by
Denzler et al. [7] who tried to optimally plan the next viewpoints by using mu-
tual information as the criterion of the sequential decision process. They also
presented a Monte-Carlo approach for efficiently calculating this metric. Later,
Sommerlade and Reid [20] extended this idea in tracking of multiple targets
on a surveillance system. One drawback of this approach was that the accumu-
lated evidence about the visited viewpoints did not affect the viewpoint selection
strategy which was based on precomputed leant actions. An improvement over
this idea was made by Laporte and Arbel [13] who introduced an on-line and
more efficient way of computing dissimilarity of viewpoints by using the Jeffrey
Divergence weighted by the probabilistic belief of the state of the system at each
time step. This work however, combines viewpoint evidence probabilistically us-
ing Bayesian update which relies on the consistent performance of the features
or the single-view classifier used (in at least some viewpoints), which is generally
challenging in high dimensional feature spaces like the problem of pose estima-
tion of deformable objects. A recent work on active vision was made by Jia et
al. [12] who used a similarity measure based on the Implicit Shape Model and
other prior knowledge combined in a boosting algorithm in order to plan the
next actions. However the employed similarity measure is not suitable for highly
deformable objects such as garments, whereas the boosting strategy based on
certain priors makes a minor improvement over [7] and [13]. Finally, there are
some active vision applications to robotic systems in real scenarios [22,14,23,17]
mainly based on the previously described works, showing promising results.
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Fig. 2. Clothes Analysis. a) Grasp point g and pose vector p. b) The depth and curva-
ture channels and the random positions used in binary pixel tests. ¢) Possible lowest
points of clothes. Gray boxes are the symmetric points of the blue ones. Green diamonds
show the desired grasping points for unfolding

Our work is based on the method proposed in [8]. In that work the authors
have used Random Forests for identifying garments and grasping points, while
they also propose an active scheme based on POMDPs for dealing with uncer-
tainty. In that work, viewpoint selection was made sequentially by taking nearby
viewpoints, which is a sub-optimal solution whilst in some cases slows down the
entire process. Our work is built on the same principles, making active vision
faster and more efficient by the use of Active Random Forests. In addition, we
estimate the pose of the garment in order to guide the robot’s gripper to grasp
a desired point, which reduced grasping errors compared to the local plane fit-
ting techniques employed in [8]. Most importantly, our framework can be easily
extended to other active vision problems.

3 Problem Overview

We will describe our framework of Active Random Forests in the context of our
target application: autonomously unfolding clothes using a dual-arm robot. This
problem consists of picking a garment from a table in a random configuration,
recognizing it and bringing it into a predefined unfolded configuration. In order
to unfold a garment, the robot has to grasp the article from two certain grasp
points sequentially (e.g. the shoulders of a shirt) and hang it freely to naturally
unfold by gravity, imitating the actions of a human (Fig. 1). There are three un-
derlying objectives in such procedure: Garment type classification, grasp points
detection and pose estimation as shown in Fig. 2(a). We will describe in short
these objectives, based on [8]:

For classification, 4 basic garment types are considered: shirts, trousers, shorts
and T-shirts. In order to reduce the configuration space of a garment picked up
randomly, the robot first grasps its lowest point[8]. Fig 2(c) shows the possible
lowest points which are 2 for shorts and T-shirts, and one for shirts and trousers.
Therefore, the classes considered are 6, corresponding to the possible lowest
points. The grasp points used for unfolding are manually defined, shown in Fig.
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2(c) (diamonds). The robot should sequentially find and pick these points so that
a garment can be unfolded. While pose cannot be clearly defined on deformable
objects, in our problem we define it as the direction from which a desired point
on the garment should be grasped by the robot arm, depicted in Fig. 2(a). In
the next Section we will describe how these objectives can be addressed using
our Active Random Forests framework for efficient viewpoint selection.

4 Active Random Forests

4.1 Training

One training sample of Active Random Forests should consist of all the images
that can be obtained from a certain training object using the possible actions
and controllable viewing parameters available in the system. In our problem,
only viewpoint selection is considered and therefore training samples can be
represented as a tuple (I(v),c,g(v),p(v)),v € V where I is a vector containing
the depth image of the garment, c is the class, g is a 2D vector containing the
position of the desired grasp point in the depth image (thus depicting a 3D
point), p is a 2D vector containing the pose of the cloth defined in the XY plane
as shown in Fig. 2(a) and 'V is the set of all possible viewpoints v of the garment.
Viewpoints are considered around the Z axis which coincides with the holding
gripper, covering the whole 360° degrees. We discretized the infinite viewpoint
space into V equal angle bins. Vector g(v) is not defined if the point is not visible
from viewpoint v.

Each split node of Random Decision Trees stores an array of the already seen
viewpoints V' which also passes to its children. Starting at the root node, the
only seen viewpoint is the current one (V' = {V,}). Following [8], at each node
a random set of splitting tests is generated with each test containing a random
seen viewpoint v € V' taken from uniform distribution over V', a feature channel
C; = {C1,C2}, a tuple of random positions M(uq, uz,usg) on the image (Fig.
2(b)) and a binary test f(v,C;, M) > t using threshold ¢, selected from a pool
of possible binary tests. Channel C; is the raw depth data of the garment as
captured from a depth sensor and channel C5 is the mean curvature of the
surface[8]. Also we used the binary tests proposed in [8] containing simple pixel
tests in the depth or curvature channel, which showed good results and low
execution time.

While in [8] two separate forests and a POMDP were applied sequentially for
classification, grasp point detection and rotation actions respectively, our new
forest is able to make classification, grasp point detection and pose estimation
using the same tree structure. To achieve this, we apply a hierarchical coarse to
fine quality function for node splitting as in [21], so that the upper part of the
trees perform classification of garments hanging from their lowest point and the
lower part perform regression of grasp point or pose vectors. The overall quality
function has the following form:

Q=aQc+ (1 -a)Qr (1)
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where Q. is a quality function for classification, @, a quality function for re-
gression and « an adapting parameter. We adopt the traditional information
gain using Shannon Entropy for (). and the corresponding information gain for
continuous Gaussian distributions as defined in [5] for @,.. Specifically, letting S
be the set of training samples reaching a split node, and f be a random binary
function applied to S, the latter will be split into two subsets, S; and S, ac-
cording to a random threshold ¢. Then, Q. is the sum of the entropies of the 2
children nodes while the quality function for regression @, is defined as:

s

Qr:*zi: ‘S|

where Aq(,) is the covariance matrix of the vectors q(v), with q(v) = g(v) or
p(v) chosen randomly. For switching between classification and regression (of p
or q), the maximum posterior probability of the samples in a node is used, with
the parameter « is set to:

|4
Zln ‘Aq(v)(si” (2)

v=1

oo {1, if max P(c) <t. 3)

0, if maxP(c) > t.

where t. is a predefined threshold, typically set to 0.9. At a split node, the qual-
ity function in Eq. (1) is evaluated against a random set of split tests, and the
one that maximizes @ is finally selected. When the maximum posterior proba-
bility max P(c) of a class in a node is below t., the tree performs classification,
otherwise performs regression of grasp point location or pose, selected randomly,
in a course to fine manner.

4.2 Incorporating Actions

When object recognition is not feasible by single view observations, some actions
should be taken to change the current viewing conditions. Furthermore, such
actions are also needed when searching for a particular region of the object which
is not visible in the current view. In contrary, actions may have an execution
cost which should be taken into account in the selection process. Therefore, the
criteria for making a decision about an action should be the informativeness of
the current observations, the belief about the visibility of the region of interest
in the current observations and the execution cost of a potential action.

The analysis in section 4.1 was made taking into account the set of already
seen viewpoints of the object V’, which at the root node contains only the current
view V. The split nodes keep splitting the training set for a few times using this
view, until, in some cases in certain depth of the trees, the current view stops
being informative and the tree starts overfitting on the training samples reached
the nodes. The point at which such behaviour appears is crucial and requires a
further action to be taken (or another viewpoint to be seen in our problem) so
that more disambiguating information can be collected. We achieve this by using
a validation set in parallel with the training set and measure the divergence of
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the posterior distributions among these two sets in a node. Specifically, we split
the initial training set S into 2 equal-sized random subsets, with St being the
actual training set and Sp the validation set. For finding the best split candidates
at a node only the training set is considered. However, the validation set is also
split using the best binary test found and is passed to the left or right child
accordingly. Thus, at node j, the sample sets that arrive are the training set S7.
and the validation set Sfj.

In order to determine the presence of overfitting, the training set is compared
against the validation set at each split node. For measuring the divergence of
two sets, we have experimented with two alternative metrics which were tested
and compared in the experimental results (Section 5). The first is the Hellinger
distance[16], a statistical measure defined over validation set S7. and S7, as:

HL(S7]S}) = ;2 J 203 (\/Psyl0 = /Py @) (4)

when comparing the class distributions of the training set S% and validation set
Sé having C classes. Pg(c) is the class probability distribution of the set S. The
Hellinger distance satisfies the property 0 < HL < 1 and it takes its lowest value
0 when training and validation set distributions are identical and its maximum
value 1 when one distribution is 0 when the other is positive. Similarly, assuming
that grasp point and vectors at node j are normally distributed variables, the
averaged squared Hellinger distance over the possible viewpoints is:

(140 (S2) 1 Aqw) (D)

"t ) exp{—;uTAflu} (5)

S 1
HL*(S$7|1Shia) = |, 31—

vEV

where 4 .
u= IJ‘q(U)(S]T) - l"’q(v) (SJD) (6)
Hq(y)() is the mean value of vectors q (= g(v) or p(v)) in viewpoint v and A

the average covariance matrix of S% and Sfj.

The other metric is the so called Jensen—Shannon divergence which measures
the information divergence of two probability distributions and is actually a
symmetric version of the Kullback—Leibler divergence. Measuring the class dis-
tribution divergence of training and validation sets, Jensen—Shannon divergence
is defined as:

¢ PS%(C) PS

o i (€)
JS(S%HSJD) = é’ZPS% (C) log Pm(C) + PS{j (C) log Pn]j(C)

(7)
where P, is the average class distribution of Sp and Sp. Again, JS satisfies
the property 0 < JS < 1, where 0 indicates identical distributions while 1
indicates maximum divergence. For measuring the information divergence of our
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continuous variables over two sets, we substitute (7) with multi-variate Gaussian
distributions and compute the average over viewpoints V, which results in:

JS(S%15h:q) Wz( (Aq@)(85)™" + Aquy(55) ") u

7 (Aq)(55) ™ Ag)(Sh) + Aqu (Sh) ™ Aqeuy (SF) — 21))
(8)

where u is defined in Eq. (6). More details about (8) can be found in [16].

When the divergence of the training and validation set A (= JS or HL) is
above a threshold ¢t 5, the node becomes an action-selection node and an action
should be taken in order to change the viewing parameters, which in our problem
is a rotation of the robot gripper in order to change the viewpoint v. Therefore,
in an action-selection node the whole set of possible viewpoints V is considered
in the selection of the best random test.

There are two main directions regarding the selection criteria of a new view-
point, from which only the first has been studied in the literature [12,19,7,13,4]:

— Viewpoints can be reached at the same cost, while when moving from view-
point i to viewpoint j, no further information can be captured from the
viewpoints in between.

— Moving from viewpoint i to viewpoint j has a cost relative to the distance
of i and j, while when moving from i to j, images from the intermediate
viewpoints can be also captured without additional cost.

Our problem belongs to the second category, however we consider also the first
case for comparison with previous works. Assuming no cost for the transition
between viewpoints, the distribution of V used for randomly selecting a new
viewpoint in an action-selection node is uniform (Fig. 3(a)). For our problem
however, it is more realistic to assume a cost relevant to the degrees of rotation
of the gripper needed to see a viewpoint, while during rotation, all intermediate
images can be captured. The distribution of V in an action-selection node in this
case is depicted in Fig. 3(b). If the furthest viewpoint seen so far is vy,qq, then all
viewpoints v = 1...0;4, are also seen and have equal distribution p to be selected,
as no action is required. The next viewpoints have an exponential distribution
pe=(0=Vmaz)/V for 4 = (Vrmaz +1)...V. Parameter p can be easily found by solving
ZUV=1 P(v) = 1. Using such distribution, further viewpoints are less likely to be
selected by a split test. Modifying the distribution from which the viewpoints v
are randomly selected and tested, is equivalent to weighting them.

One other issue when searching for a particular region of an object like a grasp
point on a garment, is that it may be invisible in the acquired images. In this
case, a viewpoint is needed so that not only it disambiguates the current belief
about the category or the pose of the object, but it also makes the particular
region visible. The visibility of samples reaching a node can be measured by the
vectors in g(v) where viewpoints with non-visible grasp points are not defined.
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Fig. 3. Viewpoint distribution for random test selection. a) Uniform distribution, b)
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bution using (b).
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To achieve this, a visibility map B is constructed as:

B(v) =

> scsi 0(s,v) b(s,v) = {1, if gs(v) exists (©)

Dvrev 2sesi b(s: V)] 0, if gs(v) is not defined

An example is shown in Fig. 3(c). When visibility is low in the collected views,
B(v) is multiplied with the current distribution of the set V calculated previ-
ously, so that preference is given to the viewpoints where the grasp point is more
probable to be visible, as shown in Fig. 3(d)—(e).

An action-selection node can now select the next best viewpoint vpes; ran-
domly evaluating binary tests from viewpoints taken from the calculated distri-
bution P(v). The random tests are evaluated on the whole set S = S7. U S7,.
This results in finding the best viewpoint vpes; which optimally separates the
diverging samples and helps the tree disambiguate its hypotheses. The samples
that arrive at each child of the action-selection node are again split randomly
into training and validation sets and the tree enters the next stage where again
only the seen viewpoints are considered, which are now increased by 1 (Fig. 4).
That is: V' = V' purent U Upest. This stage follows the same hierarchical quality
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function in Eq. (1) and the tree continues growing until another action-selection
node is encountered or a leaf node is created. The criteria of making a leaf node
is setting a minimum number of samples allowed in a node. Finally, in the leaf
nodes, along with the class distribution P(c) we store only the first 2 modes of
g(v) and p(v) per class as in [9], weighted by the class probability, for memory
efficiency during inference.

4.3 Inference

In order to make an inference using an Active Random Forest, the current arbi-
trary view of a garment, which is grasped and hanging from its lowest point, is
captured and starts traversing the trees. Although in some trees the current view
can reach a leaf node, in other trees it reaches an action-selection node where
other viewing parameters are needed or another viewpoint is required (Fig. 5).
Then, the action-selection nodes vote for the next best action that should be
taken for collecting more information, in a similar way that leaf nodes vote for
the best class of an object. Next, the most voted action is executed and another
image is captured. The trees that voted for the selected action can be now tra-
versed further by using the newly acquired image, and some of them may reach
a leaf node. However, if there are not enough leaf nodes, being below a threshold
Ny, this process continues iteratively until Ny, leafs are reached. In each itera-
tion, the most voted action is executed. The system updates the set of images
captured at the end of each iteration with the last observation so that the whole
set can be used by the trees in order to be traversed as deep as possible. The
final inference about the class is made by averaging the class distribution of the
leaf nodes. Grasp point detection and pose estimation are made using Hough
voting from the vectors g and p of the leafs in the 3D space, combining all the
viewpoints seen. Algorithm 1 summarizes the inference procedure and Fig. 5
illustrates the framework. We should mention that it is not required that all the
trees should reach a leaf node, as some may have ended in an action-selection
node. Parameter N, is discussed in the experimental results, in Section 5.
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Algorithm 1. ARF Inference

1: Input: A trained ARF, the current arbitrary viewpoint Veyrrent
2: Output: garment class c, grasp point location g and pose p
3: function INFERENCE(ARF)

4 Vseen = {Veurrent > Initialize the set of seen viewpoints
5 Leafs = > Initialize the set of leaf nodes reached
6: while true do

7 Initialize decisionVotes array to 0

8: for all Trees T in ARF do

9: node < traverse(T, Vseen)

10: if node = leaf then

11: Leafs < LeafsUnode

12: ARF « ARF\T

13: else if node = action selection node then

14: Increase decisionVotes[node — decision]

15: if Number of Leafs > N, then break

16: Execute Action for Decision: d = argmax (decisionVotes(d))

17: Update current view Veyrrent

18: ‘/Seen — VSeEn U chT‘Tent

19: return Average class ¢ and Hough Votes Hg (), Hp(y) from Leafs

We should also note that in the experiments, this voting scheme produces
a response similar to a delta function, significantly concentrated to one action.
Such response is the result of the combination of many weak classifiers which
vote for the most discriminating view at a time. We finally note that the more
discriminative a view is, the more leaf nodes are reached, while if the first view
is discriminative enough, no further actions may be required.

5 Experimental Results

Experimental Setup. To evaluate the ARF framework, we used our database
which consists of 24 clothes, 6 of each type. Each garment was grasped by
the robot gripper from each lowest point(s) 20 times to capture the random
cloth configurations, collecting 40 depth images while it was rotating 360 de-
grees around its vertical axis. The total number of images collected is 57,600
taking into account the symmetric images as well. Another 480 unseen images
for each category were used as our test samples. The training samples consist
of sets of images I(v) containing images of a certain garment from every view-
point v and having every arbitrary view as the first view. The steps involved in
the unfolding process using the robot are: grasp the lowest point, recognize the
garment and detect the 1°¢ desired grasp point and pose, grasp desired point,
search for the 2"¢ desired grasp point and pose (no classification needed), grasp
final point and unfold. In the experiments bellow, classes ¢; — ¢g correspond to:
shirts, trousers, shorts grasped from 15¢ lowest point (leg), shorts grasped from
the 2" lowest point (waist), T-shirts grasped from the 15 lowest point (waist),
T-shirts grasped from the 2% lowest point (sleeve). We train an ARF using these
classes so that the robot can recognize the cloth and grasp the first desired point,
based on its pose. Furthermore, we train another ARF which is used to detect
the 2"? desired point and pose. The second ARF does not perform classification
as it is already addressed. The second ARF is trained using images from clothes
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hanging from their first grasp point. Thus, we define as ¢;-2 the class ¢; when
hanging from the 1%t grasp point and no classification is calculated for it. Last,
We have discretized the possible viewpoints into 40 equal bins of 9 degrees each,
which provides enough accuracy keeping training time reasonable(few hours).
We assume a correct grasp point estimation if it is at most 10cm close to ground
truth, whereas 18 degrees divergence is allowed for a correct pose estimation.

Parameter Analysis. An important issue in the experiments was setting up
the parameters correctly. The first parameter which needs to be defined is t 5, the
threshold of the divergence of the training and validation sets of a node, above
which a new decision should be made. Fig. 6(a) shows the average performance
of classification, grasp point and pose estimation of an ARF containing a large
number of trees (discussed below) with ¢4 varying from 0 to 1 for both metrics
HL and JS. When t 4 is 0, every node in the forest becomes an action-selection
node and the forest tends to overuse the possible viewpoints available for infer-
ence increasing the total number of actions required. On the other hand, when
ta is 1, there is no action-selection node and the forest behaves as a single-view
classifier. Fig. 6(a) shows that when HL is used, performance starts decreasing
for to > 0.2 while the same happens when JS is used for ¢4 > 0.1. These are
the limit values for t, above which the classifier tends to behave as a single-
view classifier and below which it starts using redundant actions. Having ta
defined for both of our metrics, the next parameters that should be defined are
the total number of trees and the minimum number of leaf nodes N, needed by
an ARF in order to make an inference. Because ARFs have a decision voting
scheme along with the leaf-node aggregation, we make the following observation:
Assuming that N, leaf nodes are sufficient to make an inference and an ARF
has reached N, — 1 leafs, it would be desired to have another N, trees to vote
for the next decision. Therefore, Ny, is set to Np/2, which is half the number
of trees in the forest. Fig. 6(b) shows the average accuracy of our ARF, making
use of the previous observation. Both metrics reach the same level of accuracy
with JS requiring more trees. However, Fig. 6(c) shows that by using JS the
forest requires significantly less movements than H L to achieve the same results.
Therefore, JS was used for all the subsequent experiments.

Performance and Comparisons. Fig. 6(d) shows the performance of ARF in
all possible situations, with pose estimation being the most challenging objective.
This figure was created without considering the weights of the actions. In the
opposite case however results were very similar, thus Fig. 6(d) represents both
scenarios. These two cases are compared in Fig. 6(e) which shows that weighting
actions slightly increases the required viewpoints needed for inference. On the
other hand, in Fig. 6(f), the required actions in the case of considering their
weights have significantly lower cost than the actions in the first case, without
sacrificing accuracy. The cost of an action was considered to be the degrees of
rotation the gripper required in order to reach the desired viewpoint. Fig. 6(f)
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Fig. 6. Plots from experimental results showing: a) the divergence threshold ta, b)
Number of trees, ¢) average number of movements, d) ARF success rates, ¢) Number
of movements for weighted and non-weighted actions policy f) average cost of actions
of the two policies, g-h-i) Classification-Grasp Point-Pose estimation

shows the sum of the costs of all the actions needed for inference. In order to
compare the ARF results, we have used two kinds of baseline methods: 1)single-
view classification methods without incorporating actions; 2) active viewpoint
selection methods based on a single-view method and utilizing information from
entire history of selected viewpoints by updating the probability of the cur-
rent state after each action. The first single-view classifier is based on Random
Forests[8], modified to perform pose estimation. The second such classifier is
based on multi-class and regression SVM[11,10]. The features used were the raw
depth image of a garment and the HOG features[6] applied on the depth image.
The first active vision technique used is based on POMDP[8], the second uses
the viewpoint selection criterion proposed in [7] based on mutual information
(displayed as MT) and the third uses Jeffrey Divergence metric as proposed in
[13](displayed as JD). In all cases, we executed a random viewpoint selection for
comparison. Finally, for a fair comparison we did not take into account the costs
of actions and the visibility map (Eq. 9). Fig. 6(g) - 6(i) show the results for
classification, grasp point detection and pose estimation respectively. In all cases,
methods based on the SVM classifier had the worst performance. In classification
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Fig. 7. Success and failure cases (the last two) of some clothes. The arrow under each cloth
indicates its pose. The first error is in grasp point detection, the second in pose estimation.

and point detection, the single-view classifiers have consistent good performance
and therefore the active vision approaches had a positive impact on the infer-
ence. In both cases, ARF achieves equal accuracy with the best active vision
technique in each case. The power of ARFs however, is shown in Fig. 6(i), where
they outperform previous works for pose estimation by almost 20%. The reason
is that when dealing with such a challenging problem, the single-view inference
has low accuracy producing many equally probable hypotheses. This makes clas-
sical active vision approaches perform similar to a random viewpoint selection
strategy. In contrast, ARF combines features from the most discriminant views
learned in training, and thus is not so affected from single-view uncertainty. Last,
for achieving all the three objectives all active vision techniques were allowed to
execute at most 20 actions, above which no further improvement was noticed,
even when all viewpoints were seen. In contrast, as shown in Fig. 6(c), ARF
shows high accuracy with an average of 3.5 moves, which is significantly lower.
Fig. 7 shows some success and failure cases using some test clothes. The failures
on the right are due to wrong grasp point detection and wrong pose estimation
respectively. Also our supplementary video' shows the whole unfolding proce-
dure using a dual arm robot, along with comparisons of ARF with the state of
the art in real scenarios.

6 Conclusion

We presented Active Random Forests, a framework for addressing active vision
problems, and applied it to the task of autonomously unfolding clothes. We have
focused on best viewpoint selection in classification, key point detection and pose
estimation of 4 types of garments. The idea of incorporating the decision pro-
cess of executing disambiguating actions inside Random Forests and combining
features from multiple views outperformed classical active vision techniques, es-
pecially in the challenging problem of pose estimation of clothes. Furthermore,
the required number actions is significantly reduced. This framework is also open
to other actions which can be integrated like zooming to a particular region or
any kind of interaction with the object. This direction is left as future work.
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