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Abstract. A common approach to non-parametric BRDF estimation is
the approximation of the sparsely measured input using basis decom-
position. In this paper we greatly improve the fitting accuracy of such
methods by iteratively applying a novel correction function to an initial
estimate. We also introduce a basis to efficiently represent such a func-
tion. Based on this general concept we propose an iterative algorithm
that is able to explicitly identify and treat outliers in the input data.
Our method is invariant to different error metrics which alleviates the
error-prone choice of an appropriate one for the given input. We evalu-
ate our method based on a large set of experiments generated from 100
real-world BRDFs and 16 newly measured materials. The experiments
show that our method outperforms other evaluated state-of-the-art basis
decomposition methods by an order of magnitude in the perceptual sense
for outlier ratios up to 40%.

Keywords: Non-parametric BRDF estimation, reflectance, basis de-
compostion, correction function, error metric, sparse data, outliers.

1 Introduction

How an object appears in reality is essentially determined by the complex in-
teraction of its shape, its surface materials and the lighting environment it is
currently observed in. Reproduction of this appearance is important in the con-
text of various application domains such as advertisement, movie-production
and cultural heritage preservation where realistic images of real objects need
to be synthesized. This can be achieved by capturing and modeling the shape
and surface material properties of the objects. In the last decades a considerable
amount of progress has been made that allows to capture and model the 3D
shape of an object precisely. This paper thus focuses on the robust and precise
modeling of captured surface material properties only.

It is well known that the appearance properties for opaque materials are
effectively described using the Bidirectional Reflectance Distribution Function
(BRDF) [22]. For a specific material this function describes how much light
from a specific incident direction is reflected to an outgoing direction. Various
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types of BRDF measuring devices were proposed in the past – one device group
for measuring isolated material probes (e.g. [18,19]), another group allowing a
combined acquisition of geometry and reflectance of general objects (e.g. [12,14]).
Regardless of the respective technical implementation all devices have in com-
mon that they can independently drive a light source and a sensor to different
positions around the object of interest and thereby sample how the BRDF re-
sponds at these specific incident / outgoing directions. Densely sampling the
BRDF is however intractable: As pointed out in [13], sampling at an angular
resolution of 1 degree would already amount to a total number of 2 × 108 re-
quired measurements. Further, the BRDF is usually a complex function that
can change drastically by several orders of magnitude for even small angular
changes. This makes the extrapolation of a complete BRDF from a sparse set
of measurements a complicated task that has not been completely solved yet.
However, a full reconstruction that describes how the BRDF behaves under all
configurations is essential for photo-realistic image generation.

In this paper we assume that we are provided with a sparse, irregularly sam-
pled set of angular measurements. The task is to reconstruct the complete BRDF
that accurately describes the sparsely measured behavior. This is particularly
difficult for the following two properties of real measured data: First, even if the
light and capturing directions were sampled in a regular way, the measurements
themselves are usually irregular for curved objects, because the local coordinate
system changes over the surface. Additionally, holes exist for areas that were
occluded during acquisition. Second, measured reflectance data often contains
outliers originating from imprecise calibration of the devices, imprecise recon-
struction of the geometry, global illumination artifacts or self-shadowing. Our
method is robust with respect to these practical considerations, achieves more
accurate solutions than proposed state-of-the-art methods and to the best of
our knowledge we are the first to explicitly consider and identify outliers during
BRDF reconstruction (an overview of the problem is given in Figure 1).

1.1 Related Work

Parametric Model Fitting. Traditionally, parametric models – either em-
pirical or based on a theoretical model – provide the BRDFs currently used
in computer graphics. These range from ad-hoc models (e.g. Blinn-Phong [3],
Lafortune [15], Ashikhmin [2], DSBRDF [23]) designed for efficiency, to phys-
ically derived descriptions either based on micro-facet theory (e.g. Ward [30],
Cook-Torrance [4], Schlick [28]) or wave optics (e.g. He [11]). Independent of
the derivation all parametric models are analytic functions that are well defined
over the whole BRDF domain and only depend on a small set of meaningful
parameters. Consequently, an obvious solution to the task would be to choose
a parametric model and tune its parameters in a way that best fits the sparse
set of actual measurements (in fact some models [15,30] were designed especially
with this purpose in mind). The ability of analytic functions to describe mea-
sured reflectance behavior was examined in [21]. As it turns out, reducing a rich
set of measurements to only a small set of parameters can introduce significant
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Fig. 1. Problem overview: First row (left) shows raw measured isotropic BRDF data (a
2D projection of the 3D BRDF table for visualization). Red corresponds to unmeasured
areas. The right side of the first row shows a synthesized sphere based on the raw
BRDF data. Note that for this specific camera / light configuration e.g. the specular
lobe was never measured. A BRDF estimation algorithm tries to compute the full
BRDF data based on the sparse raw input. The second row shows synthesized spheres
using the estimates of different non-parametric algorithms (numerical values indicate
the fitting error). The different state-of-the-art algorithms compute either physically
implausible results (see scattered data interpolation and local basis decomposition)
or non-accurate solutions (see global basis decomposition). Further, the estimate for
the basis decomposition methods is highly dependent on the choice of an appropriate
error metric for the current dataset (compare linear vs. logarithmic error metric) which
can result in unpredictable solutions. Our method achieves accurate estimates that are
additionally physically plausible. Additionally, our method is invariant with respect to
different error metrics

errors: First, a specific reflectance model must be chosen a priori. However, each
model was designed having a specific reflectance behavior in mind. In an extreme
case there might not be any parameter configuration for the chosen model that
describes the measured data well. Second, an error metric has to be chosen in
order to mathematically define what the best parameter setting is. As pointed
out in [9] this is non-trivial because choosing a parameter setting that minimizes
a specific numerical error might not lead to a well fitting result in the perceptual
sense. For BRDF fitting it is not yet clear which error metric is the most suit-
able to model human perception. Third, the models are usually highly nonlinear
in their parameters which requires nonlinear optimization techniques for the pa-
rameter fitting. However, for these methods the quality of the fit is dependent on
a good initial guess, and reaching a global minimum cannot be guaranteed. Be-
cause of these issues, research has shifted towards a non-parametric description
of measured materials.
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Non-parametric Description. The methods in this category allow for a po-
tentially greater accuracy and generality for describing measured reflectance be-
havior. The most general, non-parametric description of a BRDF is a regularly
sampled multidimensional table where the available scattered data points are
resampled to. To fill the unmeasured entries, it was proposed in [20,17] to use
the general purpose scattered data interpolation technique Pull-Push [10].

Most non-parametric techniques however describe the BRDF using basis de-
composition. Hereby a BRDF ρ is approximated using a weighted linear combi-
nation of basis functions Ψi as

ρ(x) ≈
∑

i

αiΨi(x) . (1)

The literature proposes a large set of suitable basis functions Ψi: Spherical har-
monics [32,25], Zernike polynomials [13], spherical wavelets [29,16,20], radial ba-
sis functions [33,31], measured BRDFs [20,31,26,1] and rational functions [24].
The basis operates either globally (i.e. each Ψi is non-zero in large areas of the
parameter domain) or locally (i.e. each Ψi is non-zero only in a small area of the
parameter domain).

In this paper we address two problems that exist for all basis decomposition
methods in general:

1. The choice of a local or global basis is until today a choice of accuracy versus
robustness (as also examined in [31]): Choosing a local basis will allow for a
better matching of the measured input since the weighting factors αi can be
chosen more independently. However, outliers in the input will then directly
propagate to the final solution. Choosing a global basis behaves reversely:
While it is in general more robust with respect to outliers, the weighting
factors are less independent, thus the approximation accuracy is degraded.

2. Previous methods are not robust with respect to different error metrics (see
Figure 1): The weighting factors ai are chosen in a way that the linear
combination fits best to the measured input data. Thus, an appropriate
error metric to be minimized must be chosen a priori. This generates the
same problems as in the parametric case: The estimated solution quality is
highly dependent on this choice and a minimization in the numerical sense
is not necessarily a minimization in the perceptual sense.

We propose a non-parametric method that addresses these problems as fol-
lows: It operates globally, thus is very robust with respect to outliers in the input.
Our key idea is then to avoid the inevitably reduced accuracy of a global basis
by iteratively applying different corrections to the initial solution. We therefore
introduce the novel concept of BRDF correction functions and provide a novel
global basis that can be used to model these functions effectively. In order to
converge to the best solution during this iterative process we explicitly consider
and identify outliers in the measured data. To the best of our knowledge this
was not done by any previously proposed method. Additionally, our method is
intrinsically robust with respect to different error metrics due to its iterative na-
ture: A specific error metric only changes the iteration sequence but the overall
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estimate still converges to the same solution. We show in the evaluation section
that our method has a higher robustness and accuracy than previous global and
even local and tabular state-of-the-art methods.

1.2 Background

In its most general form a BRDF ρ can be represented as a 4-dimensional table
ρ(θi, φi, θo, φo) which is indexed by the spherical coordinates (θ, φ) of the inci-
dent and outgoing direction. This function then defines how much light from an
incident direction i is reflected to an outgoing direction o.

It was shown that the Rusinkiewicz re-parametrization [27] is much more
suitable for basis decomposition because features in common BRDFs are aligned
with the transformed coordinate axes. The BRDF is therefore usually expressed
as a function based on the half-vector h between incoming and outgoing light
direction and a difference vector d (please refer to [19,20,27] for a more detailed
explanation). This yields

ρ(θh, φh, θd, φd) . (2)

Several constraints can be formulated regarding the estimated solution which
can reduce the dimensionality (i.e. the complexity) of the BRDF function: Many
methods [20,25,13,33,31,26,24] (and also our) estimate a solution in the space
of isotropic materials and such materials can already be represented using a 3-
dimensional function ρ(θh, θd, φd). All opaque materials without “grain” are in
fact isotropic, hence this establishes a valid and meaningful complexity reduction.

2 Method

To robustly initialize our method we use a global basis: It was examined in
[20,31,26,1] that novel BRDFs can be described using a basis of previously
measured BRDFs. In [19] a publicly available database is introduced that con-
tains 100 densely and precisely measured isotropic materials Mi that are used
in [20,31,1] as basis functions.

Our initial estimate � for a sparsely measured BRDF ρ can thus be written
as a weighted linear combination

�(θh, θd, φd) =
∑

i

αiMi(θh, θd, φd) ≈ ρ(θh, θd, φd) . (3)

Our key idea is to formulate a BRDF correction function σ that represents
the error of this initialization. There exist many different possibilities to do this,
but we chose to represent σ by means of scaling factors, which yields

σ(θh, θd, φd) =
ρ(θh, θd, φd)

�(θh, θd, φd)
. (4)

Using scaling factors is very reasonable because we will later only transform
similar BRDFs, thus its values will be closely distributed around 1 for the whole
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parameter domain. Consequently, a correction function (as defined in Equation
4) is usually of drastically lower complexity than a BRDF which may change
rapidly. If the correction function σ is known, the initial estimate is corrected by

ρ(θh, θd, φd) = σ(θh, θd, φd)�(θh, θd, φd) . (5)

It is clear that finding the true correction function σ is as hard as finding the
true BRDF ρ. However, it will turn out later that finding a good approximation
can be performed robustly and more efficiently than in the BRDF case. When
applying such an approximate correction function on � we can improve our initial
estimate and iterate this process until convergence.

Our approach to approximate σ is to perform another basis decomposition
using a set of suitable basis functions Ci, which yields

σ(θh, θd, φd) ≈
∑

i

βiCi(θh, θd, φd) . (6)

Our intuition was – analogous to the BRDF approximation – that novel cor-
rection functions can be well described using a basis of previously generated
correction functions Ci.

To generate a large set of correction functions we again used the material
database provided in [19]: For each BRDF Mi from this database, we compute
an approximation � using the remaining 99 materials as a basis. We then compute
the corresponding correction function σ using Equation 4 (with ρ = Mi). Note
that σ is well defined over the whole isotropic BRDF parameter domain.

For each correction function Ci generated this way, we observed two important
characteristics:

1. The values of each correction function are distributed within a narrow range.
2. Each correction function itself is a relatively smooth function.

These characteristics are in sharp contrast to measured BRDF data whose min-
imal and maximal values often differ by several orders of magnitude and usually
show a disproportionately steep increase close to the specular lobe. This justifies
our concept of using BRDF corrections since it indicates that the space of all
correction functions is a less complex space than the space of all materials.

To verify that Ci indeed defines an expressive basis we evaluated how well
each correction function itself is described using the remaining 99 correction
functions as a basis. Even though the functions are of very different appearance
they are in general very well represented within this basis (see Figure 2) with
an average deviation to the original scaling function of only 0.076 units. This
indicates that the space of all correction functions is well described through our
generated basis. In the supplementary material we additionally analyze how the
size of the generated basis affects the fitting accuracy of the final solution.

2.1 Algorithm

Based on the previous considerations we outline the following algorithm that
exploits the concept of correction functions to provide a robust and accurate
BRDF estimate for a sparse set of material measurements:
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Fig. 2. Our novel BRDF corrections basis (11 out of 100); 1st row: Color coded 2D
slices (x-Axis =̂ θh, y-Axis =̂ θd, φd = 90◦) of our generated 3D BRDF correction
functions Ci for densely measured materials. 2nd row: Approximations of the upper
correction functions using the remaining 99 correction functions as basis. Each of these
functions is well approximated even though they have very different appearance

1. We compute a dense initial material estimate for the sparse input using Mi

as basis functions.
2. We compute a correction factor for each value of this estimate where an

input measurement is available. During this process outliers are identified
and assigned with a low weight.

3. For this weighted sparse set of correction factors we can approximate the
underlying dense correction function using our generated Ci as basis func-
tions.

4. We improve our initial estimate by applying this correction function.
5. We iterate this procedure until convergence (go to step 2).

2.2 Basis Decomposition

In this subsection we demonstrate how we perform the basis decomposition used
for the initialization and for each iteration step of our algorithm.

We assume that we are initially provided with a sparse set of n measurements
(θhi, θdi, φdi, ρi, wi), i.e. a function was measured at ρ(θhi, θdi, φdi) = ρi with a
confidence of wi (wi could e.g. be provided by the measurement device or set to
1 if unknown). Given an error metric ε we compute the best representation of
this function by a dense basis Ψ = {Ψ1, . . . Ψm} as

⎛

⎜⎝
ε(ρ1)
...

ε(ρn)

⎞

⎟⎠ ≈

⎡

⎢⎣
ε(Ψ1(θh1, θd1, φd1)) . . . ε(Ψm(θh1, θd1, φd1))

...
...

ε(Ψ1(θhn, θdn, φdn)) . . . ε(Ψm(θhn, θdn, φdn))

⎤

⎥⎦

⎛

⎜⎝
α1

...
αm

⎞

⎟⎠ , (7)

abbreviated as b ≈ Ax.
We can write the squared error of this basis decomposition as

dT d = (Ax− b)T (Ax − b) = (xTAT − bT )(Ax− b)

= xTATAx− 2bTAx+ bT b .
(8)

To include the given confidence weighting we define W = diag(w1, . . . , wn) and
extend Equation 8 as

dTd = xTATWAx− 2bTWAx+ bTWb . (9)
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We want to minimize the squared error, thus we can drop the constant term
bTWb and define Q = ATWA and cT = bTWA. This leads to the canonical
form of a quadratic programming (QP) problem, which is

minimize
x

J(x) =
1

2
xTQx+ cTx ,

subject to Dx ≤ d (inequality constraint) and

Ex = e (equality constraint) .

(10)

We can solve this efficiently, e.g. using an online active set strategy [7] imple-
mented in [6]. We set D = −I and d,E, e = 0 to constrain x ≥ 0 for a basis
decomposition with only positive factors. The final solution is then given as

ρ(θh, θd, φd) ≈ ε−1(

m∑

i=1

αiε(Ψi(θh, θd, φd))) . (11)

2.3 BRDF Correction

If we are provided with a dense BRDF estimate � for a sparse set of n mea-
surements (θhi, θdi, φdi, ρi, wi) we may generate a sparse set of correction factors
(θhi, θdi, φdi, σi, vi) by setting

σi =
ρi

�(θhi, θdi, φdi)
. (12)

Using our novel basis functions Ci, the underlying dense correction function σ
may be generated from this sparse set. We can then use σ to correct the current
BRDF estimate (Equation 5).

However, very relevant in this context are outliers in the measured BRDF
values ρi. These will result in wrong scaling factors that will affect the quality
of σ. In the worst case the generated correction function could even degrade the
current estimate. As a result our method would diverge. It is thus extremely
important to identify and treat all outliers accordingly. An intrinsic feature of
our algorithm is that at each iteration step � is already a robust, non-parametric
approximation of the sparsely measured BRDF ρ. By comparing each measured
input value with its corresponding estimate �i = �(θhi, θdi, φdi) we can thus
robustly estimate outliers even in the non-parametric case and assign a low
weight vi to them before estimating the dense correction function. We set

vi = wie
−γ

|ρi−�i|
�i , (13)

i.e. we assign an exponentially lower weight to the correction factor the more
�i and ρi differ. γ is the only parameter of our algorithm and needs to be cho-
sen appropriately depending on the dynamic range of the input values and the
estimated outlier ratio.

Note that there might be more elaborate heuristics for detecting outliers.
However, we found this simple one to work quite robustly. During any of the
experiments performed for the evaluation we never experienced our method di-
verging (though we cannot guarantee this formally).
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2.4 Implementation

Before our algorithm can be applied, we need to compute the new basis Ci once.
This can be done as explained in Section 2. We used a logarithmic error metric
ε(x) = ln(1 + x) and W = I for the basis decomposition (Subsection 2.2). The
same basis Ci is used for all iterations of our algorithm.

When provided with a sparse set of measurements (θhi, θdi, φdi, ρi, wi) our
algorithm performs the following steps (individually per RGB color channel) to
estimate the complete BRDF ρ:

1. Initialize a dense BRDF � for the sparse input using basis decomposition
with

Ψ = {M1, . . . ,M100} and ε(x) = ln(1 + x) . (14)

2. Generate a sparse set of correction factors (θhi, θdi, φdi, σi, vi) with:

σi =
ρi

�(θhi, θdi, φdi)
and vi = wie

−γ
|ρi−�i|

�i (�i = �(θhi, θdi, φdi)) . (15)

3. Using these correction factors, estimate a dense BRDF correction function
σ using basis decomposition with

Ψ = {C1, . . . , C100} and ε(x) = x . (16)

4. Correct the current BRDF estimate � using

�(θh, θd, φd) := σ(θh, θd, φd)�(θh, θd, φd) . (17)

5. Stop if the maximum iteration count has been reached or σ is 1 almost
everywhere, otherwise go to 2.

3 Evaluation

We first demonstrate how our method is executed based on an example. We
assume a sparse and irregular sampling of an isotropic BRDF to be given as
input which was obtained by capturing a specular red material under different
viewing and lighting directions. Our task is to extrapolate this sparse input to
a consistent tabular dense BRDF representation suitable for image synthesis.
We assume that only 10% of the discretized BRDF domain has been sampled
at random positions. However, due to inevitable inaccuracies in the geometry
reconstruction as well as in the sensor and light calibration, the data set exhibits
a significant amount of outliers: In 40% of the cases a BRDF measurement value
does not belong to the provided calibrated pair of incident and outgoing direction
but to a random value of the BRDF.

The high ratio of outliers makes this dataset extremely challenging for existing
non-parametric methods. In Figure 3 we show the solutions provided by different
types of non-parametric state-of-the-art methods:
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26.88 23.21 47.79 13.67 8.83

Sparse Ground Global Global Local Local Tabular
Input Truth [20,31,26,1] [20,31,26,1] [33,31] [33,31] [20,17]

εlin εlog εlin εlog

20.0

0.0

Fig. 3. Evaluation of different BRDF estimation techniques: The top row shows a 2D
slice of the underlying 3D BRDF data (x-Axis =̂ θh, y-Axis =̂ θd, φd = 90◦), while
the center row shows a rendered sphere of this material in a natural environment. The
bottom as well as the numerical values indicate the image difference in the CIELAB [5]
space of the current sphere with respect to the ground truth (from blue (0.0), over green
to red (20.0 and higher)). All evaluated method types (global, local, tabular) could not
provide a satisfactory solution. Moreover, the solution quality also depends highly on
the chosen error metric (e.g. linear εlin(x) = x, logarithmic εlog(x) = ln(1 + x))

– Global basis decomposition: Using a linear combination of measured materials
(as proposed in [20,31,26,1]) performs most physically meaningful with respect
to the outliers. The reason for this is that each basis function is globally defined
over the whole BRDF domain, thus physically non-meaningful outliers cannot be
part of the solution. However, the outliers do affect the global solution quality,
leading to a bad overall fit for in example.
– Local basis decomposition: In this class of methods the solution is provided
by a basis decomposition where each basis function only has a local support
on the BRDF domain (such as radial basis functions as proposed in [33,31]).
These methods have a larger flexibility and allow for a potentially better fitting.
However, outliers directly contribute to each basis function making the overall
fitting less robust and less physically plausible.
– Tabular representation: This representation provides the largest flexibility be-
cause each measured value is directly represented. The missing values are com-
pleted using scattered data interpolation techniques (such as Pull-Push [10] as
propsed in [20,17]). However, because the outliers are also interpolated over the
BRDF domain this results in a physically implausible solution in this example.

All these evaluated method types cannot provide a satisfactory solution for
our examplary dataset. Also the final solution quality is highly dependent on
the chosen error metric. The various steps that our algorithm executes for this
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Fig. 4. Based on the sparse input (A3) our method is initialized by a linear combination
of measured BRDFs (B1), the error of this initialization is shown in B2-3. Using this
initialization we compute a sparse set of correction factors (C1) for which we estimate
a dense correction function (C2). Note the similarity to the ground truth correction
function (C3) even in the significant presence of outliers. Column D shows the corrected
initial estimate, the error is already drastically reduced (D2-3) (error scale as in Figure
3). Columns E-F correspond to C-D for the second iteration. The last column shows
the estimated solution after 10 iterations with almost no perceptual difference

example are illustrated and explained in Figure 4. Already after a single iteration
we can achieve a solution that is significantly better than those of all other
evaluated methods. After a few more iterations our estimate is perceptually
almost indistinguishable from the original BRDF.

3.1 Benchmark

To give a representative evaluation how our algorithm performs when compared
to other state-of-the art methods we performed a large number of experiments
and compared the results. The material database in [19] provides 100 densely
measured materials which served as a ground truth for our experiments. From
each material we generated several sparse input sets with different characteris-
tics. These differed in the data ratio (i.e. the number of randomly chosen samples
from the ground truth BRDF table) and the outlier ratio (i.e. the probability for
each sample to have consistent information). We assigned to each outlier a ran-
domly chosen reflectance from the ground truth BRDF table (which is actually
a more difficult problem than assigning completely random outlier values).

Similar to the previously given example we evaluated representative methods
from each solution type in the literature: For global basis decomposition we chose
a linear combination (LC) of measured materials (as proposed in [20,31,26,1])
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Table 1. Mean CIELAB [5] error of all evaluated methods under varying outlier and
data ratio. To give a visual impression of these numerical values the table cells are
colored using the same colors as for the error visualizations in Figure 3 and 4

Data ratio

Our 1.0 0.7 0.5 0.3 0.1

O
u
t
li
e
r

r
a
t
io

0.00 0.28 0.29 0.29 0.29 0.31
0.20 0.36 0.37 0.44 0.41 0.49
0.40 0.73 0.72 0.75 0.78 0.92
0.60 2.06 2.10 2.05 2.23 2.31
0.80 4.86 4.89 4.83 4.81 4.83

Data ratio

RBF 1.0 0.7 0.5 0.3 0.1

O
u
t
li
e
r

r
a
t
io

0.00 4.11 4.11 4.13 4.15 4.17
0.20 6.85 6.78 6.96 7.12 7.74
0.40 9.74 9.98 9.79 10.41 11.04
0.60 12.49 12.63 12.49 12.56 13.45
0.80 15.18 15.32 15.28 15.16 15.92

Data ratio

LC 1.0 0.7 0.5 0.3 0.1

O
u
t
li
e
r

r
a
t
io

0.00 4.88 4.89 4.91 4.96 5.05
0.20 6.32 6.58 6.76 7.57 7.59
0.40 7.97 8.22 7.93 8.32 9.03
0.60 9.64 9.74 9.46 9.59 9.53
0.80 11.33 11.16 11.05 11.05 10.61

Data ratio

PP 1.0 0.7 0.5 0.3 0.1

O
u
t
li
e
r

r
a
t
io

0.00 0.00 0.09 0.20 0.46 2.14
0.20 17.32 15.59 17.28 14.00 12.30
0.40 26.12 26.38 24.80 24.35 22.90
0.60 33.32 34.90 32.71 32.13 28.22
0.80 39.86 41.70 40.75 38.94 34.09

with a logarithmic error metric. For local basis decomposition we chose radial
basis functions (RBF) as proposed in [33,31] with a logarithmic error metric.
We distributed 758 RBF centers for each color channel as proposed in [31] on a
radially re-parametrized BRDF domain which is more suitable for RBF interpo-
lation [33]. For a tabular representation we used the Pull-Push (PP) method [10]
as proposed in [20,17] for the scattered data interpolation. Finally, we initialized
our method with the LC solution and performed 10 iterations. In the outlier free
case we set the parameter γ = 0, otherwise to 3 (for an outlier ratio of 0.2) or to
6 (for larger outlier ratios). For LC and our algorithm we removed the current
material from the underlying database before the methods were executed. All
steps of our algorithm (including the estimation of the correction basis) were
therefore executed without any remaining traces of the current material.

As demonstrated in [8], surface reflectance properties are clearer and better
comparable when objects are viewed under real-world illuminations. For each
estimated solution we thus synthesized a sphere of this material under a natural
illumination given by a HDR environment map (Grace Cathedral, courtesy of
Paul Debevec, see supplementary material). We compared each rendered sphere
with the ground truth sphere in the perceptually uniform CIELAB [5] space.

The mean CIELAB [5] error values for all experiments are given in Table 1.
The evaluation confirms the observations sketched in the previously given exam-
ple: Compared to the local RBF method the global LC method is more robust if
the sparse input contains many outliers. However, the local RBF method has an
overall larger flexibility and thereby allows to better approximate the data (for
small outlier ratios). The tabular PP method performs well in the outlier free
case, however its quality decreases drastically even for very small outlier ratios,
since outliers are also interpolated within the table.

The experiments indicate that our method performs significantly better than
all other evaluated method types: In the outlier free case the proposed method
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Table 2. Mean CIELAB [5] error for different error metric. In contrast to LC or RBF
our method performs robust for different choices of error metrics.

Our LC RBF
εlin εroot εlog εlin εroot εlog εlin εroot εlog
0.44 0.31 0.28 13.39 5.05 4.88 24.14 3.32 4.11

has a precision comparable to the tabular PP method. As less input data is
available we can even outperform this purely tabular representation. We expect
this is because our method implicitly uses physically meaningful BRDF domain
knowledge by its underlying measured material and correction database. If com-
pared to the LC and RBF method our approach has a significantly lower error
value in all experiments (an order of magnitude lower perceptual error for out-
lier ratios up to 40%). Additionally, our method is almost invariant to increasing
sparsity and behaves robust for increased outlier ratios.

We also evaluated how the individual methods based on basis decomposition
performed for different error metrics. The choice of the error metric can have
a significant impact on the estimation quality. As also pointed out in [21] it is
difficult in practice to make a single choice that consistently performs well for all
materials. To quantify which effect this choice can have, we compared the results
of all methods using different error metrics. For this we chose the following three
metrics that were proposed by researchers before: linear εlin(x) = x, square
root εroot(x) =

√
x and logarithmic εlog(x) = ln(1 + x). These metrics were

then used for LC, RBF and in the initialization stage of our algorithm. We
only considered the case of full data and zero outlier ratio (which allows a more
consistent comparison without any randomness in the generated input). The
results of this experiment are shown in Table 2. It can be seen that our algorithm
performs robust with respect to different error metrics, whereas the outcome of
the other basis decomposition methods is highly dependent on this choice. This
indicates that any meaningful metric can be used along with our algorithm
which alleviates the choice of an appropriate one. This choice then only affects
the iteration sequence but the overall method converges to the same solution.

Input Raw data PP LC RBF Our

0.58 0.28 0.19

Fig. 5. Exemplary fitting result for 1 of the 16 newly measured materials. Left: Raw
measured isotropic BRDF data (a 2D projection of the 3D BRDF table for visual-
ization). Red corresponds to unmeasured areas. Right: Synthesized spheres using the
computed estimates under point light illumination (numerical values indicate the fit-
ting error). In contrast to our method the different state-of-the-art algorithms compute
either physically implausible results (PP, RBF) or non-accurate solutions (LC)
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Regarding the runtime our algorithm operates highly efficient, requiring only
a few seconds per iteration on our hardware (3 GHz CPU, 24 GB RAM).

We additionally evaluated our method based on 16 newly measured materials
(see Figure 5). This is important because real measured material samples can
show different characteristics than our synthetically generated experiments. We
found that our method allows to represent the measured data significantly better
(in the numerical sense and in terms of physical plausibility). Summarized, for
these newly measured materials our algorithm achieves a lower mean perceptual
error (error of 0.19) compared to LC (error of 0.50) and RBF (error of 0.38).
Please see the supplementary material for a detailed report.

4 Conclusion

We introduced a novel, non-parametric method that can be used for accurate and
robust reflectance data fitting. It is based on the novel concept of BRDF correc-
tion functions that are iteratively applied to improve an initial BRDF estimate.
Moreover, we introduced a new basis that allows to efficiently represent these
correction functions. During execution the resulting algorithm explicitly iden-
tifies and excludes outliers in the input data. This is challenging (in particular
for non-parametric methods) and was not handled by any previously proposed
method that we are aware of.

We evaluated and compared our method using a large number of experiments
and showed that it performs very robust with respect to sparse and outlier
afflicted input – in contrast to other evaluated methods. We further showed that
our method is invariant to different error metrics. This alleviates the choice of
an appropriate error metric for a given input which was challenging until now.

The main limitation of our method is its current exclusive applicability to
isotropic materials. The only reason for this is that there is currently no large
enough database ofmeasured anisotropicmaterials available.We have successfully
tested our method in the isotropic (3D) case and we see no particular conceptual
limitationwhy it should not be adaptable for the general anisotropic (4D) case once
such data is available. It may be possible to synthesize such a database by using
a variety of physically based anisotropic BRDF models with varying parameters.
However, we have not verified this yet and it is subject to future work.
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