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Abstract. We describe a system that tracks pairs of fruit flies and auto-
matically detects and classifies their actions. We compare experimentally
the value of a frame-level feature representation with the more elaborate
notion of ‘bout features’ that capture the structure within actions. Sim-
ilarly, we compare a simple sliding window classifier architecture with a
more sophisticated structured output architecture, and find that window
based detectors outperform the much slower structured counterparts,
and approach human performance. In addition we test our top perform-
ing detector on the CRIM13 mouse dataset, finding that it matches the
performance of the best published method. Our Fly-vs-Fly dataset con-
tains 22 hours of video showing pairs of fruit flies engaging in 10 social
interactions in three different contexts; it is fully annotated by experts,
and published with articulated pose trajectory features.

1 Introduction

Machine understanding of human behavior is potentially the most useful and
transformative application of computer vision. It will allow machines to be better
aware of their environment, enable rich and natural human-machine interaction,
and it will unleash new applications in a number of industries including automo-
tive, entertainment, surveillance and assisted living. Development of automated
vision systems that can understand human behavior requires progress in object
detection, pose estimation, tracking, action classification and detection, and ac-
tivity analysis. Progress on the latter (actions and activities) is hampered by
two difficulties. First, tracking and pose estimation is very difficult in humans
due to variation in clothing, the amount of occlusion in natural environments
and in social conditions, and the sheer complexity and number of human body
motions. Second, it is difficult (both technically and legally) to film large num-
bers of humans acting spontaneously while they perform interesting activities.
As a result, human action datasets are small and unrepresentative, especially
when social behavior is concerned (see Table 1).

A good strategy for computer vision researchers to make progress on behavior
analysis is to shift their attention to the simpler world of laboratory animals [1].
We collaborate with behavioral neurobiologists who are interested in measuring
and analyzing behavior across genotypes, in order to understand the link between
genes, brains and behavior. One of their most popular model organism is the
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fruit fly, Drosophila melanogaster; it is easy to care for, has a fast life cycle, and
exhibits a wide range of behaviors despite having merely 105 neurons. Through
this collaboration we have put together a large annotated dataset of fruit flies
interacting spontaneously in controlled environments. This dataset allows us to
study natural actions and develop insight into how to represent, segment and
classify them. If our effort is successful, we can both advance the state of the art
in human action analysis and provide biologists with tools for automatic labeling
of actions, enabling them to do experiments at a scale which would otherwise be
extremely expensive or impossible.

In this paper we describe an end-to-end approach for detecting the actions of
fruit flies from video. The main contributions of our study are:

1. We consider two different action detection architectures: sliding window de-
tectors and structured output detectors. By comparing five variants of the two
architectures on our dataset, we find that sliding window detectors outperform
the structured output detectors, in spite of being orders of magnitude faster.

2. We describe bout features that extract statistical patterns from frame-level
features over an interval of time, and emphasize the similarities of bouts within
an action class. Our experiments show that actions cannot be well detected using
frame-level features alone, and that bout features improve performance by 28%.

3. We discuss pitfalls of measures commonly used for benchmarking action de-
tection in continuous video and demonstrate which measures are most suitable,
suggesting a protocol for comparing the performance of different algorithms.

4. We introduce Caltech Fly-vs-Fly Interactions (Fly-vs-Fly for short), a dataset
containing 22 hours of fruit flies interacting spontaneously and sporadically. It
comes with complete labeling of 10 actions, annotated by neurobiologists, and
a second layer of annotations that can be used as a reference point for action
detection performance. Along with the videos and annotations we publish a
number of time-varying trajectory features, computed from the tracked pose
(position, orientation, wing angles, etc.) of the flies. The dataset is available at
www.vision.caltech.edu/Video_Datasets/Fly-vs-Fly.

2 Related Work

Datasets – A large number of human action datasets have been published.
KTH [2] and Weizmann [3] are early contributions that have been extensively
used, but they are very small and consist of pre-segmented clips of acted actions.
Hollywood 2 [4], Olympic Sports [5], HMDB51 [6], and UCF-101 [7], contain pre-
segmented clips of natural actions, making them suitable for action classification,
but not for detection and segmentation of actions, while UT-interactions [8] con-
tains continuous social interactions that are acted. VIRAT [9] contains hours of
continuous video of humans behaving naturally and intermittently, lending itself
well to action detection research; however, the pose of the subjects cannot yet
be robustly tracked and the human motion that can be explored is limited; fur-
thermore, VIRAT does not contain social actions. HumanEva [10], HDM05 [11],
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TUM Kitchen [12], CMU MMAC [13], and CAD-60/120 [14,15] are continuous
and come with fully tracked skeletons which makes them useful for analyzing
a range of human motions; however, these datasets are small, and their actions
are acted. Table 1 compares details of the mentioned datasets.

The publicly available datasets of animal behavior video are Honeybee Dance
[16], UCSD mice [17], Home-cage behaviors [18], and CRIM13 [1]. The latter two
are suitable for action detection, containing long videos of spontaneous mouse
actions, but both are parameterized with only the tracked centroid of the subject
and spatial-temporal features. A large and well annotated dataset containing
unsegmented, spontaneous, social actions, that includes tracking of articulated
body motion has not yet been published. Our dataset aims to fill that place.

Table 1. Synoptic table of action datasets shown in chronological order, grouped
by human vs. animal. Properties desired for detecting realistic social actions from
articulated pose are highlighted in green.

Dataset Year #Citations Duration #Actions+ Natural Social Continuous Articulated 
pose

KTH    2004 1634 3 hours* 6 x x x x

Weizmann 2005 986 5 minutes* 10 x x x x

HumanEva 2006 583 22 minutes 6 x x ✓ ✓
HDM05 2007 107 3 hours 70 x x ✓ ✓
TUM Kitchen 2009 98 1 hour* 13 x x ✓ ✓
CMU MMAC 2009 97 6 hours* 16** x x ✓ ✓
Hollywood 2(1) 2009 436(1327) 20 hours 12 ✓ ✓ x x

Olympic Sports 2010 196 2 hours* 16 ✓ x x x

UT Interactions 2010 41 20 minutes 6 x ✓ ✓ x

HMDB51 2011 137 2 hours 51 ✓ ✓ x x

VIRAT 2011 91 29 hours 23 ✓ x ✓ x

UCF-101(50,11) 2012 40(57,477) 27 hours 101 ✓ ✓ x x

CAD-60/120 2011/13 175/34 2 hours* 22** x x ✓ ✓
UCSD mice 2005 1458 2 hours 5 ✓ x x x

Honeybee 2008 61 3 minutes 3 ✓ x ✓ x

Home-cage 2010 60 13 hours 8 ✓ x ✓ x

CRIM13 2012 15 37 hours 12 ✓ ✓ ✓ x

Fly-vs-Fly 2014 - 22 hours 10 ✓ ✓ ✓ ✓
*estimated upper limit, **sub-activities (actions/verbs), +excluding the null category

Action Detection – A common approach to action detection is frame-by-frame
classification, where each frame is classified based on features extracted from the
frame itself, or from a time window around it: Dankert et al. detected actions
of fruit flies using manually set thresholds on frame-level features, along with
nearest neighbor comparison [19]; Burgos et al. used boosting and auto-context
on sliding windows for detecting actions between mice [1]; and Kabra et al. also
use window based boosting for detecting actions of fruit flies in their interactive
behavior annotation tool, JAABA [20]. More sophisticated approaches globally
optimize over possible temporal segmentations, outputting structured sequences
of actions: Jhuang et al. used an SVMHMM, described in [21], for detecting
actions of single housed mice [18]; Hoai et al. used a multi-class SVM with
structured inference for segmenting the dance of the honeybee [22]; and Shi et
al. used a discriminative semi-Markov model for segmenting human actions [23].
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We implemented three variants of the above approaches, specifically compar-
ing a sliding window SVM detector against two structured output SVM detec-
tors, expecting the latter to improve frame-wise consistency and better capture
structured actions. For reference, we compare our results with the methods de-
scribed in [20] and [1] and with the performance of trained novice annotators.

3 Fly-vs-Fly

In collaboration with biologists we have collected a new dataset, Fly-vs-Fly,
which contains a total of 22 hours (1.5m frames recorded at 200Hz and 2.2m
frames at 30Hz) of 47 pairs of fruit flies interacting. The videos are organized
into three subsets, each of which was collected for a different study:

Boy meets boy is designed to study the sequence of actions between two male
flies, whose behaviors range from courtship to aggression. The flies are placed in
a 4x5 cm2 chamber with a food patch in its center and walls coated with Fluon,
constraining the flies to walking on the floor [24]. It contains six 20 minute videos
recorded at 200Hz with 12 pix/mm (24 pixels covering the 2mm fly body length).

Aggression contains videos of two hyper aggressive males [25] and is used to
quantify the effect of genetic manipulation on their behavior. The flies are placed
in a circular 16mm diameter chamber with uniform food surface [26]. It consists
of ten 30 minute videos recorded at 30Hz with 8 pix/mm.

Courtship videos contain a female and a male, which in some cases are wild
type and in the rest are so-called hyper courters [25]. This set of videos was used
to study how genetic manipulation affects male courtship behavior. It consists
of 31 videos recorded with the same chamber and video settings as Aggression.

The filming setups for these experiments are shown in Supplementary Figure 2.

3.1 Annotations

The entire dataset was annotated by, or under the supervision of, biologists, with
10 action classes that have been identified for the study of fruit fly interactions
[27,28,19]: wing threat, charge, lunge, hold, and tussle (aggressive), wing exten-
sion, circle, copulation attempt, and copulation (courtship), and touch (neutral).
Each action is described and visualized in Supplementary Figure 1.

Annotating a video involves finding all time intervals that contain an action of
interest, also referred to as action bouts, and requires recording the start frame,
end frame, and class label of each detected bout. The dataset is annotated such
that actions can overlap, for instance tussling usually includes lunging, wing
threat sometimes includes a charge, and wing extension and circling tend to
overlap. Each action class takes up less than 2% of the total frames in a video,
apart from touch (7%) and copulation (57%), and some classes have substan-
tial intraclass variation, both in terms of duration and appearance. Figure 1
summarizes the dataset.
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Fig. 1. Action statistics: Left: Number of bouts for each action. Center: Fraction of
time a fly spends in each action, where the gray area represents the grab-bag category
other. Right: Distribution of bout durations for each action class.

3.2 Feature Representation

For action classification, data representation is half the challenge. An ideal clas-
sifier is invariant of any intra-action variation, but to train such a classifier a
complex model or large amounts of training data may be needed. Alternatively,
this invariance can be encoded into the features. Following prior art [19,29,20]
we have implemented a tool that tracks individual flies and segments them into
body, wing, and leg pixels, which are parameterized further by fitting an oriented
ellipse to the body component and line segments to the wing components.

Individual features
1)  velocity
2)  angular velocity 
3)  min wing angle
4)  max wing angle
5)  mean wing length
6)  body axes ratio
7)  fg body ratio
8)  image contrast

Relative features
9)  distance between
10) leg distance
11) angle between
12) facing angle

3)

4)

11)

12)

Fig. 2. Illustration of
features derived from
the tracked fly skeletons,
which are invariant of
absolute position and
orientation of the fly and
relate the pose of the fly
to that of the other fly.

From the tracking output we derive a set of features that are designed to be
invariant of the absolute position and orientation of a fly, and relate its pose to
that of the other fly. The features (illustrated in Figure 2) can be split into two
categories: individual features which include the fly’s velocity, angular velocity,
min and max wing angles, mean wing length, body axis ratio, foreground-body
ratio, and image contrast in a window around the fly; and relative features
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Fig. 3. Frame-wise feature distribution for the actions of the Boy meets boy sub-
dataset, and the grab-bag action other shown in gray.

which relate one fly to the other with distance between their body centers, leg
distance (shortest distance from its legs to the foreground of the other fly), angle
between, and facing angle. Analysis of the feature distributions showed that the
velocities, wing angles, and foreground-body ratio are better represented by their
log values, becoming more normal distributed. Figure 3 shows the distribution
of each feature, for all actions in the Boy meets boy sub-dataset, giving an idea
of which features are important for which action. In addition, we take the first
two time derivatives of each feature, resulting in a feature space of 36 per-frame
features. The features are computed from the reference frame of each fly, yielding
two asymmetrical feature vectors, and the actions we consider are always involve
one fly ‘performing’ the action. Hence, an hour of video effectively results in 2
hours of labeled data.

Our software for tracking flies and annotating their actions is available, along
with documentation, at www.vision.caltech.edu/Tools/FlyTracker.

4 Action Detection

In this paper we focus on detection by exhaustive classification, in particular
we compare two different architectures: Sliding window detection which refers
to classifying fixed size windows that move frame-by-frame over a video se-
quence, and structured output detection which refers to detection by optimizing
over all possible segmentations of a sequence into actions. Both schemes involve
a training algorithm that learns an action classifier from n labeled sequences,
{(xi, yi)}i∈{1,...,n}, and an inference algorithm that takes a new sequence x and
predicts y := {yj} = {(sj, ej , cj)}, where yj is the jth bout in the segmentation
of x, sj and ej mark the start and end of the bout and cj is its class label. We
treat the problem of detecting different actions as disjoint detection problems,
mainly because the data that we are interested in has many overlapping actions.

www.vision.caltech.edu/Tools/FlyTracker
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Before describing the detection architectures in detail we define bout features
that aggregate per-frame features over an interval of frames, and are used in our
implementation of both detection schemes.

4.1 Bout Features

We define a number of bout-level features that are designed to extract statis-
tical patterns from an interval and emphasize the similarities of bouts within
an action class, independent on bout duration. The following bout features,
ψk(x, tstart, tend), are functions of sequence x and interval [tstart tend]:

Temporal region features capture statistics of frame-level features over subin-
tervals, and emphasize patterns within an action composed of r subactions. They
can be expressed as: {op(x(tstart + (i− 1)δt : tstart + i δt− 1))}i∈{1,...,r}, where
δt = (tend − tstart + 1)/(r − 1), r ≥ 1, and op ∈ {min, max, mean, std}.

x: time
min, max, mean, std

Harmonic features are meant to capture harmonic actions and can be ex-
pressed as:

∑r
i=1(−1)i mean(x(tstart + (i − 1)δt : tstart + i δt − 1)), where

δt = (tend − tstart + 1)/(r − 1) and r ≥ 1.

x: time
+ - +

mean mean mean

Boundary features emphasize the change in features at the start and end of
a bout, and help with locating boundaries. For a fixed δt, they can be expressed
as: mean(x(tstart/end : tstart/end + δt)) - mean(x(tstart/end − δt : tstart/end)).

x: time

+-

mean mean mean mean

+-

Bout change features capture the difference in features between the beginning
and end of a bout, expressed as: x(tend)− x(tstart).
Global difference features compare the mean of a bout to global statistics of
data, expressed as: mean(x(tstart : tend))−op(x), where op ∈ {min, max, mean}.
Histogram features represent the normalized distribution of each feature within
the bout, expressed as: hist(x(tstart : tend), bins), where bins are extracted from
the training data, such that an equal number of frames falls into each bin.

In our experiments we use three temporal region splits, r ∈ {1, 2, 3}, and set the
number of histogram bins to be 23, resulting in a total of K = 48 bout functions.
With K bout functions applied to each of the N per-frame features, the feature
representation for a bout ends up being a D = KN dimensional vector, ψ.

4.2 Sliding Window Framework

Our sliding window implementation has 4 main components: a training algorithm
that learns a classifier from labeled sequences, a classifier module, an inference
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algorithm that predicts labels for unseen sequences, and a post processing module
that promotes continuity in the prediction labels.

Training: The training algorithm converts each sequence of input labels, {yi} =
{(sj , ej, cj)i}, to indicator vectors, {zi}, that specify whether a frame belongs to
an action or not. It extracts normalized bout features over fixed sized windows
surrounding each frame of all sequences, obtaining high dimensional data points
whose labels are the same as those of the frames around which the windows
were placed. With this data it trains a classifier using a bootstrapping scheme
that overcomes memory limitations that may be associated with large data,
and allows us to indirectly optimize with respect to performance measures that
involve the number of predicted positives. At each iteration it learns a classifier
from a subset of the data, using a learning algorithm suitable for the classifier
type, applies it to all of the data and adds misclassified samples to the training
set - repeating until the desired performance measure stops increasing.

Inference: The inference algorithm extracts bout features from a window around
each frame in x, normalized with statistics from the training data, and classifies
each window using the classifier obtained from the training step. The resulting
sequence of scores is thresholded to obtain an action indicator vector, ẑ, whose
connected components make up the predicted label sequence, ŷ, assigning each
bout the label, start frame, and end frame of its component.

Post Processing: Classifying a sequence frame-by-frame often results in noisy
labels, that is, within a bout of an action a few frames may be just below a
threshold and therefore split the bout into multiple bouts. To account for this
we fit an HMM to the scores to achieve smoother transitions: we convert scores to
posterior probabilities, P (x(t)|z(t) = 1) := 1/(1+exp(−score(t))), P (x(t)|z(t) =
0) := 1−P ((t)|z(t) = 1), compute prior probabilities, P (z(1) = c), and transition
matrix, P (z(t+ 1) = ci|z(t) = cj), from the training data, and run the Viterbi
algorithm [30] to find the most probable frame-wise sequence of actions.

Classifier: The classifier module consists of a binary classifier and its associated
learning algorithm. For comparison with our structured SVM implementation,
we choose to use a linear SVM classifier, learnt using the LIBLINEAR imple-
mentation described in [31]. The classifier can be substituted by any other binary
classifier, such as boosting, regression, neural net, or a generative model.

This approach can be converted to a frame-based detector, by simply substitut-
ing the bout features around a frame with its per-frame features.

4.3 Structured Output Framework

Structured output detectors differ from sliding windows in that they optimize
over all possible segmentations of a sequence into action intervals, finding the
best start and end frame of all bouts, allowing for varying sized intervals.

Structured SVM. We extend the structured SVM [32] to train a model
that can be utilized for segmenting sequences into actions, by defining a score
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function, f(x, y), which assigns high scores to good segmentations, and a loss
function, L(y, ŷ), which penalizes poor segmentations.

Training: The goal is to learn the weights w of a score function from a given
training set, such that for each training example the score of the true segmenta-
tion yi is higher than the score of any other segmentation y by at least L(yi, y).
If these constraints cannot be satisfied, a hinge loss is suffered. To learn these
weights we use the primal structured SVM objective:

w∗ ← argmin
w
‖w‖2 + C

1

n

n∑

i=1

(

max
y

[f(xi, y) + L(yi, y)]− f(xi, yi)
)

,

which we minimize using a cutting plane algorithm [32] that iteratively finds the
most violated constraint: ŷ = argmaxy [f(xi, y) + L(yi, y)]. Searching over all
possible segmentations is intractable, but since our score- and loss functions are
linear in the bouts of y, dynamic programming [33] can solve for the optimal y.

Score Function: We define a score function f(x, y), which measures how well y
segments x into actions and can be represented as the sum of a bout score, unary
cost, transition cost, and duration cost, over all bouts in the segmentation:

f(x, y) =
∑

(sj ,ej ,cj)∈y

[wcj · ψ(x, sj , ej)− τ(cj)− λ(cj−1, (cj))− γ(cj , sj, ej)].

Weights wcj are used to calculate the score for a bout of class cj , τ(cj) is the
cost of detecting a bout of class cj , λ(cj−1, cj) is the cost of moving from action
cj−1 to cj , and γ(cj, sj , ej) is the cost of spending ej−sj+1 frames in action cj .
These terms are inspired by a hidden semi Markov model, comparable to [23].

Loss function: The loss function penalizes discrepancies between ground truth
segmentation y and a predicted segmentation ŷ, and should be constructed such
that a small loss indicates satisfactory results. We define it as:

L(y, ŷ) =
∑

(s,e,c)∈y

�cfn
e− s+ 1

( ⋂

ŷ,ĉ�=c

(s, e)

)

+
∑

(ŝ,ê,ĉ)∈ŷ

�cfp
ê− ŝ+ 1

( ⋂

y,c �=ĉ

(ŝ, ê)

)

,

where
⋂

ŷ,ĉ�=c(b, e) is the number of frames in ŷ intersecting with [b e] with

different action class ĉ �= c, �cfn is the cost for missing a bout of class c, and �ĉfp
is the cost for incorrectly detecting a bout of class ĉ. This loss function softly
penalizes predictions where the start or end of the bout is slightly incorrect. On
the other hand, since the loss is normalized by the bout duration, it effectively
counts the number of incorrectly predicted bouts and, unlike a per-frame loss,
long actions are not deemed to be more important than short ones.

Inference: Given a score function, f(x, y), and an input x, the optimal seg-
mentation can be found by solving ŷ = argmaxy f(x, y). Again, similarly to the
learning phase, searching over all possible segmentations is intractable but we
can solve for y using dynamic programming.
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Semi-structured SVM. This approach is a hybrid of the sliding window SVM
and the structured SVM; its inference algorithm optimizes over possible segmen-
tations of a sequence, using dynamic programming, but the classifiers are trained
using a linear SVM on fixed bouts from the training set, similar to [22].

Training: We extract bout features from the positive bouts, {(sji , eji)}i, for
each sequence xi in the training set, and from randomly sampled negative bouts.
We consider a bout as negative if its intersection with a positive bout is less
than half of their union, so that large intervals containing positive bouts and
small intervals that are parts of a positive bout are still considered as negatives.
Inference involves considering all possible intervals of any duration as potential
action bouts, however training on all such possible intervals would be intractable.
Instead, we generate a limited number of randomly sampled negatives and use
a bootstrapping training process that gradually adds useful negative samples.
At each iteration we train a classifier on the current training data, run inference
with the learnt classifier, and add falsely detected positives to the set of negative
training samples - repeating until no new false positives are detected.

Inference: Here the goal is the same as in the structured SVM approach, to
find the optimal segmentation of a new input sequence x, ŷ = argmaxy f(x, y),
but with a simpler score function: f(x, y) =

∑
(sj ,ej ,cj)∈y wcj ·ψ(x, sj , ej). Again,

we solve this using dynamic programming. We speed up the inference by setting
upper limits on the duration of an action, which we obtain from the training set.

5 Experiments and Analysis

5.1 Measures

The performance measure used to compare algorithms should favor desirable
predictions; in the case of action detection for behavior analysis it is important
that there are few false hits and misses compared to the number of true action
instances, which becomes difficult the more sparsely actions occur in the data. We
have generated a synthetic ground truth sequence with 5 sporadic action classes,
and two different prediction sequences, to demonstrate the difference between
three common measures: a confusion matrix, ROC curves, and precision-recall
curves. This comparison shows that precision-recall most effectively emphasizes
the large performance discrepancy between the two predictions (see Figure 4).

Precision-recall curves, used for measuring detection performance for a sin-
gle class, plot precision against recall, favoring minimum number of false posi-
tives and false negatives with respect to the number of positives. ROC curves
are similar but instead of precision they plot the false positive rate, which places
little emphasis on false positives when negatives take up vast majority of the
frames. A confusion matrix, used in multi-class classification, is a square ma-
trix whose entry (i, j) represents the fraction of ground truth instances of class i
that are predicted as class j, and is commonly summarized by its diagonal mean.
However, its diagonal effectively measures the recall of each class and fails to em-
phasize false positive instances which get absorbed into the grab-bag class other.
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Fig. 4. Confusion matrices and ROC are unreliable diagnostics for assessing exper-
imental results. Each row shows the result of a different synthetic experiment. The
confusion matrices (first column) and the ROC (third column) suggest that both ex-
periments yield the same result and hide the large difference in the number of false
detections. This fact is revealed by the “precision” confusion matrix (second column)
and by the precision-recall curve (fourth column). The last column also shows how
bout-wise and frame-wise measurements can differ.

To account for this, one must also look at the ‘dual’ confusion matrix, where
entry (i, j) represents the fraction of predicted instances of class i that belong to
class j according to ground truth, in which case the diagonal effectively measures
the precision of each class. We conclude that “precision” and “recall” confusion
matrices are good measures for multi-class detection problems, where classes are
mutually exclusive, but for experiments such as ours, where classes overlap and
false positives are expensive, precision-recall curves are the best performance
measurement tools.

For behavior analysis, correctly counting the number of action instances is
equally important as correctly measuring the duration spent in an action, hence
we must also measure the bout-wise performance. To do that we use an
overlap criteria, that deems a ground truth bout (sg, eg, b) and predicted bout

(sp, ep, b) to match only if,
min(eg ,ep)−max(sg,sp)
max(eg ,ep)−min(sg ,sp)

> threshold. If multiple bouts

fit that criteria, we match the one with the highest ratio. Figure 4 shows that
there can be large discrepancies between frame-wise and bout-wise performance.
This is the case when predicted bouts are more fragmented than ground truth
bouts, or when bouts are consistently predicted to be shorter than, or offset
from, the ground truth (see more detail in Supplementary Figure 3).

In order to rank different methods we combine precision and recall into a
single value using the F-score, defined as Fβ = (1+β2) · precision·recall

β2·precision+recall , which
for β = 1 represents the harmonic mean that favors balanced precision-recall
combinations. To further combine bout-wise and frame-wise performance we
define the F*-score as the harmonic mean of F1-frame and F1-bout.
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Fig. 5. Method comparison on the Fly-vs-Fly dataset. Left : Histogram of method ranks
over all actions, based on their F*-score, ordered by mean rank. Center : Comparison
of F1-scores of each method, averaged over all actions. Right : F*-score of each method
as a function of inference time.

5.2 Method Comparison

Here we explore how a window based SVM compares to structured, and semi-
structured SVMs, which we find very interesting as they all make use of linear
classifiers and the same bout features, but differ in their training and inference
procedures. In addition, we compare them with a frame based SVM to get a
sense for how much bout features contribute to performance, and to JAABAs
back-end [20], another window based detector, for comparison with methods
currently deployed in action detection systems.

Each method’s free parameters were optimized using a subset of the training
data for validation, and we found that HMM post processing improved the mean
F*-score of the window- and frame based SVMs by 11% and 3% respectively.
For comparison with JAABA we trained detectors by substituting their boosting
classifier implementation into the learning and inference modules of our window
based framework. JAABA as presented in [20] does not include post processing,
but here we apply a box filter suggested on their project website [34] for a fair
bout-wise performance comparison, improving its mean F*-score by 6%.

To measure the performance of our action detectors, we computed bout- and
frame-wise precision, recall and F1-scores, and the F*-score which can be used
to rank the different methods. These measures, broken down for each behav-
ior in Supplementary Figures 6-8, show considerable variation in method rank
depending on the action. Here we summarize the results in a detector rank his-
togram (Figure 5), which shows the number of times each detector achieved each
rank and orders methods according to their mean rank. For a finer resolution
view of how the methods line up we show the mean F1-scores, averaged over
all actions, and the mean F*-score as a function of time it takes to run the
detector on 1 million frames. This view mostly preserves the rank observed in
the rank histogram, but it also shows that most methods cluster around 70%
performance, apart from humans at 84% and frame based SVM at 48%. In addi-
tion, it shows that the window based methods perform slightly better than the
structured output counterparts, in spite of being orders of magnitude faster.
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Right : top weighted fea-
tures determined by the
trained SVM detectors.

These summary measures abstract away information about performance pat-
terns between actions that may give insights into the different types of actions.
To explore that, we cluster actions based on their F*-score for each method, by
applying principal component analysis to the F*-matrix, and fitting k-means to
the dimension-reduced matrix, splitting actions into 4 groups. Figure 6 shows
that this clustering groups together lunge, charge, and copulation attempt, which
all share the characteristic of being short and concise but poorly captured by the
frame based detector, and, as one might expect, it groups actions (wing threat
and wing extension) from different sub-datasets together. From the learnt de-
tectors of the three different SVM approaches we found that the window based
detector made most use of the bout statistics and histogram features, while struc-
tured ones used boundary dependent features to a similar extent, and that the
top per-frame features used by all methods are those listed in Figure 6, showing
that each feature is the highest contributing feature to at least one action.

5.3 Performance on CRIM13

Finally, to give a better idea of where these methods place within state of the
art, we test the top ranked detector on the most recently published animal
dataset, CRIM13, and compare our results with those presented in [1]. Actions
in CRIM13 are non-overlapping, and the detection problem is treated as multi-
class. To make a similar comparison we covert our binary action detectors to a
single multi-class detector by fitting them to an HMM with 13 states. By shifting
output scores of individual binary classifiers, before converting them to posterior
probabilities, we can trade off the performance of different classes. We obtain
the optimal shift-parameters by greedily maximizing w.r.t. the diagonal mean
of the “recall” confusion matrix, to match the measure used in [1], and since
we are interested in high precision-recall combination, we also optimize w.r.t.
the mean F1-score of the “recall” and “precision” matrix diagonals. Figure 7
shows the confusion matrices produced for each of our optimization criteria, and
Figure 8 shows our results compared with those presented in [1]. We ran our
algorithm only on tracking features (TF) provided with the CRIM13 dataset,
obtaining performance just above the top results reported in [1], which includes
spatial-temporal features (STF), and 3.2% higher than their performance on
tracking features alone. Optimizing w.r.t. F1-score results in approximately 6%
F1-performance gain over the “recall” optimization.
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Fig. 7. Confusion matrices for Window SVM + HMM on the CRIM13 test dataset.
Left : performance optimized w.r.t. the diagonal mean of confusion matrix. Right : per-
formance optimized w.r.t. “recall” and “precision” confusion matrices.

Method mean recall mean F1

 Boosting (TF) + Autocontext  [1] 58.30% -

 Boosting (TF + STF) + Autocontext  [1] 61.20% -

 Window SVM+HMM (recall shift) 61.66% 40.76%

 Window SVM+HMM (F1 shift) 45.42% 47.22%

Fig. 8. Comparison of the
window based SVM to the
methods used in [1], show-
ing performance on the
CRIM13 test dataset.

6 Conclusions

We collected a large dataset of fruit fly videos that, with its natural and sporadic
interactions and rich set of articulated pose features, fills a gap in existing datasets.
We developed a framework for comparing action detection performance, showing
that precision and recall are the best suited measures for evaluating detection
algorithms, and that results should be reported both in terms of bout- and frame-
wise performance. Using these measures, we showed that bout features highly
improve performance upon frame-level features.We compared slidingwindow clas-
sifiers to the more sophisticated structured output detectors, and found that win-
dow based classifiers outperformed their structured counterparts, despite having
much lower time complexity. This was surprising to us as the structured output
methods allow for elastic sized windows which should better capture structure
within bouts. A caveat is that the more complex actions in our dataset have low
duration variation, therefore fixed sizedwindow classifiers with good bout features
may suffice.Our results also show (Supplementary Figures 6-8) that the structured
outputmethods suffer from over-segmenting long bouts of actions that do not have
much structure, which leads to a lower bout-wise performance.We believe this may
be overcomeby incorporatinghigher orderMarkov terms in the score function, and
will explore that in future work. In our experiments, the top performing algorithm,
a window based SVM + HMM, reached a 76% F*-score on Fly-vs-Fly, compared
to 84% achieved by humans, and matches the performance of the best published
method on CRIM13.
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mentation mocap database hdm05 (2007)

12. Tenorth, M., Bandouch, J., Beetz, M.: The tum kitchen data set of everyday ma-
nipulation activities for motion tracking and action recognition. In: 2009 IEEE 12th
International Conference on Computer Vision Workshops (ICCV Workshops), pp.
1089–1096. IEEE (2009)

13. De la Torre, F., Hodgins, J., Montano, J., Valcarcel, S., Forcada, R., Macey, J.:
Guide to the carnegie mellon university multimodal activity (cmu-mmac) database.
Tech. rep., Citeseer (2009)

14. Sung, J., Ponce, C., Selman, B., Saxena, A.: Unstructured human activity detec-
tion from rgbd images. In: 2012 IEEE International Conference on Robotics and
Automation (ICRA), pp. 842–849. IEEE (2012)

15. Koppula, H.S., Gupta, R., Saxena, A.: Learning human activities and object affor-
dances from rgb-d videos. arXiv preprint arXiv:1210.1207 (2012)

16. Oh, S.M., Rehg, J.M., Balch, T., Dellaert, F.: Learning and inferring motion pat-
terns using parametric segmental switching linear dynamic systems. International
Journal of Computer Vision 77(1-3), 103–124 (2008)

17. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse
spatio-temporal features. In: VS-PETS (October 2005)



Detecting Social Actions of Fruit Flies 787

18. Jhuang, H., Garrote, E., Yu, X., Khilnani, V., Poggio, T., Steele, A.D., Serre,
T.: Automated home-cage behavioural phenotyping of mice. Nature Communica-
tions 1, 68 (2010)

19. Dankert, H., Wang, L., Hoopfer, E.D., Anderson, D.J., Perona, P.: Automated
monitoring and analysis of social behavior in drosophila. Nature Methods 6(4),
297–303 (2009)

20. Kabra, M., Robie, A.A., Rivera-Alba, M., Branson, S., Branson, K.: Jaaba: in-
teractive machine learning for automatic annotation of animal behavior. Nature
Methods (2012)

21. Altun, Y., Tsochantaridis, I., Hofmann, T., et al.: Hidden markov support vector
machines. In: ICML, vol. 3, pp. 3–10 (2003)

22. Hoai, M., Lan, Z.Z., De la Torre, F.: Joint segmentation and classification of hu-
man actions in video. In: 2011 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3265–3272. IEEE (2011)

23. Shi, Q., Cheng, L., Wang, L., Smola, A.: Human action segmentation and recogni-
tion using discriminative semi-markov models. International Journal of Computer
Vision 93(1), 22–32 (2011)

24. Hoyer, S.C., Eckart, A., Herrel, A., Zars, T., Fischer, S.A., Hardie, S.L., Heisenberg,
M.: Octopamine in male aggression of drosophila. Current Biology 18(3), 159–167
(2008)

25. Hoopfer, E.D., Anderson, D.J.: Unpublished work
26. Asahina, K., Watanabe, K., Duistermars, B.J., Hoopfer, E., González, C.R.,
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