Skip to main content

Viterbi Algorithm for Noise Line Following Robots

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 313))

Abstract

Image processing and tracking of noise line is considered in this paper. Such line could be obtained for selected application where the line is not direct, but obtained from the image content. The estimation of line allows control of line following robot. Local 2D filter based on standard deviation estimator is applied for the preprocessing of the image. The Viterbi algorithm is applied for the line tracking using assumed Markov model of line. Monte Carlo approach is used for the estimation of the tracking system performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrand, B., Baerveldt, A.: A vision-based row-following system for agricultural field machinery. Mechatronics 15(2), 251–269 (2005)

    Article  Google Scholar 

  2. Bertsekas, D.: Dynamic Programming and Optimal Control, vol. I. Athena Scientific (1995)

    Google Scholar 

  3. Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House (1999)

    Google Scholar 

  4. Frejlichowski, D., Forczmański, P.: General shape analysis applied to stamps retrieval from scanned documents. In: Dicheva, D., Dochev, D. (eds.) AIMSA 2010. LNCS, vol. 6304, pp. 251–260. Springer, Heidelberg (2010)

    Google Scholar 

  5. Horan, B., Najdovski, Z., Black, T., Nahavandi, S., Crothers, P.: Oztug mobile robot for manufacturing transportation. In: IEEE International Conference on Systems, Man and Cybernetics (SMC 2011), pp. 3554–3560 (2011)

    Google Scholar 

  6. Huang, D., Xue, A., Guo, Y.: A particle filter track–before–detect algorithm for multi–radar system. Elektronika ir Elektrotechnika 19(5), 3–8 (2013)

    Article  Google Scholar 

  7. Lech, P., Okarma, K.: Optimization of the fast image binarization method based on the monte carlo approach. Electronics and Electrical Engineering 20(4), 63–66 (2014)

    Google Scholar 

  8. Marchewka, A.: Crack detection on asphalt surface image using local minimum analysis. Advances in Intelligent and Soft Computing 84, 353–359 (2010)

    Article  Google Scholar 

  9. Mazurek, P.: Optimization of bayesian track-before-detect algorithms for GPGPUs implementations. Electrical Review R 86(7), 187–189 (2010)

    Google Scholar 

  10. Mazurek, P.: Track-before-detect algorithm for noise objects. Measurement Automation and Monitoring 56(10), 1183–1185 (2010)

    Google Scholar 

  11. Mazurek, P.: Hierarchical track-before-detect algorithm for tracking of amplitude modulated signals. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 3. AISC, vol. 102, pp. 511–518. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Mazurek, P.: Code reordering using local random extraction and insertion (LREI) operator for GPGPU-based track-before-detect systems. Soft Computing 18(6), 1095–1106 (2013)

    Article  Google Scholar 

  13. Mazurek, P.: Track–before–detect filter banks for noise object tracking. International Journal of Electronics and Telecommunications 59(4), 325–330 (2013)

    Article  Google Scholar 

  14. Mazurek, P.: Preprocessing using maximal autocovariance for spatio-temporal track-before-detect algorithm. In: Choras, R.S. (ed.) Image Processing and Communications Challenges 5. AISC, vol. 233, pp. 45–54. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Okarma, K., Lech, P.: A fast image analysis for the line tracking robots. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 329–336. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Ollis, M.: Perception Algorithms for a Harvesting Robot. CMU-RI-TR-97-43, Carnegie Mellon University (1997)

    Google Scholar 

  17. Pietraszek, J., Szczotok, A., Kocyłowska, E.: Factorial approach to assessment of gpu computational efficiency in surogate models. Advanced Materials Research 874, 157–162 (2014)

    Article  Google Scholar 

  18. Stone, L., Barlow, C., Corwin, T.: Bayesian Multiple Target Tracking. Artech House (1999)

    Google Scholar 

  19. Taubel, G., Yang, J.S.: A lane departure warning system based on the integration of the optical flow and Hough transform methods. In: 2013 10th IEEE International Conference on Control and Automation (ICCA), Hangzhou, China, June 12-14, pp. 1352–1357 (2013)

    Google Scholar 

  20. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13(2), 260–269 (1967)

    Article  MATH  Google Scholar 

  21. Zhang, J., Chambers, A., Maeta, S., Bergerman, M., Singh, S.: 3d perception for accurate row following: Methodology and results. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, November 3-7, pp. 5306–5313 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Mazurek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mazurek, P. (2015). Viterbi Algorithm for Noise Line Following Robots. In: Choraś, R. (eds) Image Processing & Communications Challenges 6. Advances in Intelligent Systems and Computing, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-319-10662-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10662-5_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10661-8

  • Online ISBN: 978-3-319-10662-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics