Skip to main content

Generating Good Span n Sequences Using Orthogonal Functions in Nonlinear Feedback Shift Registers

  • Chapter
  • First Online:

Abstract

A binary span n sequence generated by an n-stage nonlinear feedback shift register (NLFSR) is in a one-to-one correspondence with a de Bruijn sequence and has the following randomness properties: period 2n − 1, balance, and ideal n-tuple distribution. A span n sequence may have a high linear span. However, how to find a nonlinear feedback function that generates such a sequence constitutes a long-standing challenging problem for about 5 decades since Golomb’s pioneering book, Shift Register Sequences, published in the middle of the 1960s. In hopes of finding good span n sequences with large linear span, in this chapter we study the generation of span n sequences using orthogonal functions in polynomial representation as nonlinear feedback in a nonlinear feedback shift register. Our empirical study shows that the success probability of obtaining a span n sequence in this technique is better than that of obtaining a span n sequence in a random span n sequence generation method. Moreover, we analyze the linear span of new span n sequences, and the linear span of a new sequence lies between 2n − 2 − 3n (near optimal) and 2n − 2 (optimal). Two conjectures on the linear span of new sequences are presented and are valid for n ≤ 20.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. F.S. Annexstein, Generating de Bruijn sequences: an efficient implementation. IEEE Trans. Inf. Theory 46(2), 198–200 (1997)

    Google Scholar 

  2. E.R. Berlekamp, Algebraic Coding Theory, Ch. 7 (McGraw-Hill, New York, 1968)

    Google Scholar 

  3. A.H. Chan, R.A. Games, E.L. Key, On the complexities of de Bruijn sequences. J. Combin. Theory Ser. A 33(3) 233–246 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. A.H. Chan, R.A. Games, J.J. Rushanan, On quadratic m-sequences, in IEEE International Symposium on Information Theory, vol. 364 (1994)

    Google Scholar 

  5. A.C. Chang, S.W. Golomb, G. Gong, P.V. Kumar, On the linear span of ideal autocorrelation sequences arising from the Segre hyperoval, in Sequences and their Applications—Proceedings of SETA’98, Discrete Mathematics and Theoretical Computer Science (Springer, London, 1999)

    Google Scholar 

  6. T. Chang, B. Park, Y.H. Kim, I. Song, An efficient implementation of the D-homomorphism for generation of de Bruijn sequences. IEEE Trans. Inf. Theory 45(4), 1280–1283 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. C. De Canniére, O. Dunkelman, M. Knez̀ević, KATAN and KTANTAN—a family of small and efficient hardware-oriented block ciphers. in Proceedings of the 11th International Workshop on Cryptographic Hardware and Embedded Systems, LNCS, vol. 5747 (Springer, Heidelberg, 2009). pp. 272–288

    Google Scholar 

  8. J. Dillon, H. Dobbertin, New cyclic difference sets with singer parameters. Finite Fields Appl. 10(3), 342–389 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Dobbertin, Kasami power functions, permutation polynomials and cyclic difference sets, in Proceedings of the NATO-A.S.I. Workshop Difference Sets, Sequences and their Correlation Properties, (Kluwer, Bad Windsheim/Dordrecht, 1999), pp. 133–158

    Google Scholar 

  10. E. Dubrova, A list of maximum period NLFSRs. Report 2012/166, Cryptology ePrint Archive (2012), http://eprint.iacr.org/2012/166.pdf

  11. eSTREAM: The ECRYPT stream cipher project. http://www.ecrypt.eu.org/stream/

  12. T. Etzion, A. Lempel, Construction of de Bruijn sequences of minimal complexity. IEEE Trans. Inf. Theory 30(5), 705–709 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Evan, H.D.L. Hollman, C. Krattenthaler, Q. Xiang, Gauss sums, Jacobi sums and p-ranks of cyclic difference sets. J. Combin. Theory Ser. A, 87(1), 74–119 (1999)

    Article  MathSciNet  Google Scholar 

  14. H. Fredricksen, A class of nonlinear de Bruijn cycles. J. Combin. Theory Ser. A 19(2), 192–199 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Fredricksen, A survey of full length nonlinear shift register cycle algorithms. SIAM Rev. 24(2), 195–221 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Fredricksen, I. Kessler, Lexicographic compositions and de Bruijn sequences. J. Combin. Theory Ser. A 22, 17–30 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Fredricksen, J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Math. 23(3), 207–210 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. R.A. Games, A generalized recursive construction for de Bruijn sequences. IEEE Trans. Inf. Theory 29(6), 843–850 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. B.M. Gammel, R. Göttfert, O. Kniffler, Achterbahn-128/80 (2006), http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf

  20. S.W. Golomb, Shift Register Sequences (Aegean Park Press, Laguna Hills, 1981)

    Google Scholar 

  21. S.W. Golomb, On the classification of balanced binary sequences of period 2n − 1. IEEE Trans. Inf. Theory, 26(6), 730–732 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. S.W. Golomb, G. Gong, Signal Design for Good Correlation: for Wireless Communication, Cryptography, and Radar (Cambridge University Press, New York, 2004)

    Google Scholar 

  23. G. Gong, Randomness and representation of span n sequences, in Proceedings of the 2007 International Conference on Sequences, Subsequences, and Consequences, SSC’07 (Springer, Heidelberg, 2007), pp. 192–203

    Google Scholar 

  24. E.R. Hauge, T. Helleseth, De Bruijn sequences, irreducible codes and cyclotomy. Discrete Math. 159(1–3), 143–154 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. C.J.A. Jansen, W.G. Franx, D.E. Boekee, An efficient algorithm for the generation of de Bruijn cycles. IEEE Trans. Inf. Theory 37(5), 1475–1478 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Lempel, On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers. IEEE Trans. Comput. C-19(12), 1204–1209 (1970)

    Article  MathSciNet  Google Scholar 

  27. K. Mandal, Design and analysis of cryptographic pseudorandom number/sequence generators with applications in RFID. Ph.D. Thesis, University of Waterloo, 2013

    Google Scholar 

  28. K. Mandal, G. Gong, in Cryptographically Strong de Bruijn Sequences with Large Periods, ed. by L.R. Knudsen, H. Wu SAC 2012. LNCS, vol. 7707 (Springer, Heidelberg, 2012), pp. 104–118

    Google Scholar 

  29. K. Mandal, G. Gong, Cryptographic D-morphic analysis and fast implementations of composited De Bruijn sequences. Technical Report CACR 2012–27, University of Waterloo (2012)

    Google Scholar 

  30. K. Mandal, X. Fan, G. Gong, in Warbler: A Lightweight Pseudorandom Number Generator for EPC Class 1 Gen 2 RFID Tags, ed. by N.W. Lo, Y. Li. Cryptology and Information Security Series—The 2012 Workshop on RFID and IoT Security (RFIDsec’12 Asia), vol. 8 (IOS Press, Amsterdam, 2012), pp. 73–84

    Google Scholar 

  31. J.L. Massey, Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15(1), 122–127 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  32. G.L. Mayhew, Weight class distributions of de Bruijn sequences. Discrete Math. 126, 425–429 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. G.L. Mayhew, Clues to the hidden nature of de Bruijn sequences. Comput. Math. Appl., 39(11), 57–65 (2000)

    Article  MATH  Google Scholar 

  34. G.L. Mayhew, S.W. Golomb, Linear Spans of modified de Bruijn sequences. IEEE Trans. Inf. Theory 36(5), 1166–1167 (1990)

    Article  MATH  Google Scholar 

  35. G.L. Mayhew, S.W. Golomb, Characterizations of generators for modified de Bruijn sequences. Adv. Appl. Math. 13, 454–461 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Mykkeltveit, M.-K. Siu, P. Tong, On the cycle structure of some nonlinear shift register sequences. Inf. Control 43(2), 202–215 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  37. J.L.-F. Ng, Binary nonlinear feedback shift register sequence generator using the trace function, Master’s Thesis, University of Waterloo, 2005

    Google Scholar 

  38. J.S. No, S.W. Golomb, G. Gong, H.K. Lee, P. Gaal, New binary pseudorandom sequences of period 2n − 1 with ideal autocorrelation. IEEE Trans. Inf. Theory 44(2), 814–817 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  39. T. Rachwalik, J. Szmidt, R. Wicik, J. Zablocki, Generation of nonlinear feedback shift registers with special-purpose hardware. Cryptology ePrint Archive, Report 2012/314 (2012), http://eprint.iacr.org/

  40. J.-H. Yang, Z.-D. Dai, Construction of m-ary de Bruijn sequences (extended abstract), in Advances in Cryptology—AUSCRYPT’92, LNCS (Springer, Heidelberg, 1993), pp. 357–363

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalikinkar Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mandal, K., Gong, G. (2014). Generating Good Span n Sequences Using Orthogonal Functions in Nonlinear Feedback Shift Registers. In: Koç, Ç. (eds) Open Problems in Mathematics and Computational Science. Springer, Cham. https://doi.org/10.1007/978-3-319-10683-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10683-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10682-3

  • Online ISBN: 978-3-319-10683-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics