Skip to main content

A Scalable Approach to the Assessment of Storm Impact in Distributed Automation Power Grids

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8657))

Abstract

We present models and metrics for the survivability assessment of distribution power grid networks accounting for the impact of multiple failures due to large storms. The analytical models used to compute the proposed metrics are built on top of three design principles: state space factorization, state aggregation, and initial state conditioning. Using these principles, we build scalable models that are amenable to analytical treatment and efficient numerical solution. Our models capture the impact of using reclosers and tie switches to enable faster service restoration after large storms.We have evaluated the presented models using data from a real power distribution grid impacted by a large storm: Hurricane Sandy. Our empirical results demonstrate that our models are able to efficiently evaluate the impact of storm hardening investment alternatives on customer affecting metrics such as the expected energy not supplied until complete system recovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avritzer, A., Suresh, S., Menasché, D.S., Leão, R.M.M., de Souza e Silva, E., Diniz, M.C., Trivedi, K., Happe, L., Koziolek, A.: Survivability models for the assessment of smart grid distribution automation network designs. In: Proceedings of the International Conference on Performance Engineering, pp. 241–252. ACM (2013)

    Google Scholar 

  2. Avritzer, A., Suresh, S., Menasché, D.S., Leão, R.M.M., de Souza e Silva, E., Diniz, M.C., Trivedi, K., Happe, L., Koziolek, A.: Survivability models for the assessment of smart grid distribution automation network designs. Concurrency and Computation Practice and Experience (2014)

    Google Scholar 

  3. Bloomfield, R., Buzna, L., Popov, P., Salako, K., Wright, D.: Stochastic modelling of the effects of interdependencies between critical infrastructure. In: Rome, E., Bloomfield, R. (eds.) CRITIS 2009. LNCS, vol. 6027, pp. 201–212. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: Modest: A compositional modeling formalism for hard and softly timed systems. IEEE Trans. Softw. Eng. 32(10), 812–830 (2006)

    Article  Google Scholar 

  5. Bu, S., Yu, F.R., Liu, P.X.: Stochastic unit commitment in smart grid communications. In: 2011 IEEE Conference on Computer Communications Workshop, pp. 307–312. IEEE (2011)

    Google Scholar 

  6. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification and evaluation of real-time systems. Int. Journal of SW Tools for Technology Transfer 12(5), 391–403 (2010)

    Article  Google Scholar 

  7. Carnevali, L., Grassi, L., Vicario, E.: State-Density Functions over DBM Domains in the Analysis of Non-Markovian Models. IEEE Trans. on Software Engineering 35(2), 178–194 (2009)

    Article  Google Scholar 

  8. Carnevali, L., Ridi, L., Vicario, E.: A framework for simulation and symbolic state space analysis of non-Markovian models. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 409–422. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Carnevali, L., Ridi, L., Vicario, E.: Sirio: A framework for simulation and symbolic state space analysis of non-Markovian models. In: QEST 2011, pp. 153–154 (2011)

    Google Scholar 

  10. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic verification of competitive stochastic systems. Formal Methods in System Design 43(1), 61–92 (2013)

    Article  MATH  Google Scholar 

  11. Consolidated Edison of New York, Inc. Report on the preparation and system restoration performance (January 2013)

    Google Scholar 

  12. Consolidated Edison of New York, Inc. Storm Hardening and Resiliency Collaborative Report (December 2013)

    Google Scholar 

  13. Blake, E.S., et al.: Tropical Cyclone Report - Hurricane Sandy (AL182012). Nat’l Hurricane Center (February 2013)

    Google Scholar 

  14. Fischer, W., Meier-Hellstern, K.: The Markov-modulated Poisson process (mmpp) cookbook. Performance Evaluation 18(2), 149–171 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.-P.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Methods in System Design 43(2), 191–232 (2013)

    Article  MATH  Google Scholar 

  16. Hartmanns, A., Hermanns, H.: Modelling and decentralised runtime control of self-stabilising power micro grids. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 420–439. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Hartmanns, A., Hermanns, H., Berrang, P.: A comparative analysis of decentralized power grid stabilization strategies. In: Winter Simulation Conference, p. 158 (2012)

    Google Scholar 

  18. Heegaard, P.E., Trivedi, K.S.: Network survivability modeling. Computer Networks 53(8), 1215–1234 (2009)

    Article  MATH  Google Scholar 

  19. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian models using stochastic state classes. Performance Evaluation 69(7), 315–335 (2012)

    Article  Google Scholar 

  20. Keshav, S., Rosenberg, C.: How internet concepts and technologies can help green and smarten the electrical grid. ACM SIGCOMM Computer Communication Review (2011)

    Google Scholar 

  21. Koziolek, A., Happe, L., Avritzer, A., Suresh, S.: A common analysis framework for smart distribution networks applied to survivability analysis of distribution automation. In: 2012 International Workshop on Software Engineering for the Smart Grid (SE4SG), pp. 23–29 (June 2012)

    Google Scholar 

  22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Lanus, M., Yin, L., Trivedi, K.S.: Hierarchical composition and aggregation of state-based availability and performability models. IEEE Transactions on Reliability 52(1), 44–52 (2003)

    Article  Google Scholar 

  24. Menasché, D., Leão, R.M.M., de Souza e Silva, E., Avritzer, A., Suresh, S., Trivedi, K., Marie, R.A., Happe, L., Koziolek, A.: Survivability analysis of power distribution in smart grids with active and reactive power modeling. In: GreenMetrics Workshop (2012)

    Google Scholar 

  25. Merlin, P., Farber, D.J.: Recoverability of communication protocols. IEEE Trans. on Comm. 24(9), 1036–1043 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  26. NYC Department of Environmental Protection, Fred Gliesing, CF. Challenges to westchester’s forests

    Google Scholar 

  27. Office of Long-Term Planning and Sustainability, City of New York. Utilization of Underground and Overhead Power Lines in the City of New York. City of New York (December 2013)

    Google Scholar 

  28. Rabiner, L., Juang, B.-H.: An introduction to hidden markov models. IEEE ASSP Magazine 3(1), 4–16 (1986)

    Article  Google Scholar 

  29. Rudion, K., Orths, A., Styczynski, Z.A., Strunz, K.: Design of benchmark of medium voltage distribution network for investigation of dg integration. In: Power Engineering Society General Meeting. IEEE (2006)

    Google Scholar 

  30. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: Formal definitions and concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS, vol. 2090, pp. 315–343. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  31. Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE Trans. on Software Engineering 35(5), 703–719 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Avritzer, A. et al. (2014). A Scalable Approach to the Assessment of Storm Impact in Distributed Automation Power Grids. In: Norman, G., Sanders, W. (eds) Quantitative Evaluation of Systems. QEST 2014. Lecture Notes in Computer Science, vol 8657. Springer, Cham. https://doi.org/10.1007/978-3-319-10696-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10696-0_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10695-3

  • Online ISBN: 978-3-319-10696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics