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1 Introduction

In this paper, we further develop the new mean-field methodology introduced in
[16] for a class of massively-parallel generalised semi-Markov processes (GSMPs)
[20, 14, 15]. We focus on population models where individuals can enable both
Markovian and generally-timed transitions, which are crucial for the accurate
modelling of many real-world computer and networking protocols. We encode
such models in a low-level formalism, the population generalised semi-Markov
process (PGSMP).

The motivation for the mean-field approach is the same as in the continuous-
time Markov chain (CTMC) case — unsurprisingly, GSMP models with many
components also become computationally intractable to explicit state techniques
[7, 9] rapidly as a result of the familiar state-space explosion problem. Our ap-
proach is based on the derivation of delay differential equations (DDEs) from
PGSMP models and generalises the traditional mean-field approach as applied
to CTMC models based on ordinary differential equations (ODEs) [1, 13, 4, 17].

The class of models to which our approach applies is very broad — the only
significant restriction we make is that at most one generally-timed transition
may be enabled by each individual in any given local state. However, globally,
there is no restriction on the concurrent enabling of generally-timed transitions
by different individuals.

As in the CTMC case, the size of the system of DDEs is equal to the num-
ber of physical local states that components in the model can be in. Therefore
this approach represents a significant improvement with respect to both ac-
curacy and efficiency when compared with the traditional CTMC mean-field



approach where generally-timed transitions are approximated using phase-type
distributions. The mean-field approach based on DDEs presented here captures
generally-timed distributions directly without the need for additional physical
states or for approximation of the generally-timed distribution itself.

This paper focuses on the non-racing case, that is, under the assumption that
generally-timed transitions do not compete locally with exponential transitions
(hence the term delay-only PGSMPs). The main contribution is to show how
systems of coupled DDEs can be derived directly from PGSMP models with
generally-timed transitions, and to give a full proof of transient mean-field con-
vergence. The paper is quite proof-heavy; for a worked example, see Section 4,
and for more examples, we refer to [16] and [5].

1.1 Related work

Related work can be found in the biology and chemistry literature. Systems of
DDEs have been derived to approximate stochastic models of reaction networks
where deterministic delays are possible after reactions occur [3, 6, 21]. However,
these models differ from those considered here in a number of critical ways; most
importantly, the presentation in this paper lacks the severe rigidity of models
encountered in biology and chemistry, making it suitable for a much larger class
of population models.

Closest related work is due to [16] and [5] which both deal with deterministic
delay-only PGSMPs in different ways; our presentation is closest in spirit to [16],
but the upgrade from deterministic delays to generally-timed delays calls for a
careful and involved analysis.

The approach in [5] highlights the connection to ODE approximations of
DDEs [19] which is directly analogous to the Erlang approximation of the delay
in the PGSMP. The approach in the present paper, however, avoids any Erlang
approximations whatsoever, proving the mean-field limit directly via probability
concentration theorems.

2 Population generalised semi-Markov processes

2.1 Definition of PGSMPs

A PGSMP model consists of many interacting components each inhabiting one
of a finite set of local states S. The global state space, say X , of a PGSMP model
then consists of elements x = (xs)s∈S where each xs ∈ Z+ tracks the number of
components currently in the local state s.

Exponential transitions are specified by a finite set of Markovian transitions
C. Each c ∈ C specifies a finite change multiset Lc, which consists of tuples
(s, s′) ∈ S × S each of which specifies that as part of a c-transition, a distinct,
uniformly randomly selected component currently in local state s moves to local
state s′. Write also lc = (lcs)s∈S where each lcs := |{(s′, s) ∈ Lc}|−|{(s, s′) ∈ Lc}|,
which represents the total change in components that are in local state s when a



c-transition occurs. The aggregate rate of c-transitions is given by a rate function
rc : X → R+. We assume that the rate function is defined such that it is zero
whenever a transition is not possible due to there not being enough distinct
components in the required local states.

Generally-timed transitions are specified by event clocks in a similar fashion
to standard GSMPs [14]. Specifically, we assume a finite set of event clocks E .
Each event clock e ∈ E is specified by its set of active states Ae ⊆ S, its event
transition probability function pe : S ×S → [0, 1] and the clock time distribution
given by a cumulative distribution function (CDF) Fe used to the set the clock.

When a component enters a state s in Ae for the first time, the clock is
initialized according to the CDF Fe. After the clock time has elapsed, it moves
immediately to a new local state by sampling from the discrete probability dis-
tribution pe(s, ·). The clock is disabled when the component leaves s and is reset
by resampling from the distribution if it later returns to the set of active states.

As mentioned above, the key restriction we make for all PGSMP models
considered in this paper is that at most one event clock may be active in any
local state. That is, for each s ∈ S, |{e ∈ E : s ∈ Ae}| ≤ 1. We will see that
this restriction is necessary for the mean-field analyses presented in the sequel.
This restriction also means that, with probability one, it is not possible for
two transitions (Markovian or generally-timed) to occur simultaneously within
a single component. Finally, we write x0 for the initial state of the model.

2.2 Delay-only PGSMPs

We will focus on a class of PGSMPs with the structural restriction that, within
a given component, generally-timed transitions may not be enabled concurrently
with Markovian ones. We refer to such models as delay only since the general
transitions in the constituent components then serve only to introduce generally-
distributed delays between periods of otherwise Markovian behaviour.

Formally, the class of delay-only PGSMPs is specified by two restrictions: for
all e ∈ E ; if s ∈ Ae then there can be no c ∈ C with (s, s′) ∈ Lc; and for each
s ∈ Ae, there must exist some s′ ∈ S such that s′ /∈ Ae′ for any e′ ∈ E and
pe(s, s

′) = 1. The first restriction guarantees that no Markovian transitions are
enabled concurrently with general transitions, as above. The second restriction
guarantees, firstly, that after any general transition completes, the component
jumps into a unique state.5 Secondly, it also ensures that the completion of a
general transition cannot immediately enable another.

2.3 Construction of delay-only PGSMPs in terms of Poisson
processes

In this section we give a construction of the population processes of a delay-only

PGSMP in terms of Poisson processes. Write x(t) ∈ Z+|S| for the underlying

5 This is a technical but not, in fact, a modelling restriction, as the state space may be
reconfigured so the general transition is followed by a Markovian transition sampling
from any discrete probability distribution pe.



population process of a delay-only PGSMP, where xs(t) ∈ Z+ tracks the number
of components currently in the local state s.

Now let {Pc : c ∈ C} be a set of mutually-independent rate-1 Poisson pro-
cesses and, for each e ∈ E , let {T e

i }∞i=1 be mutually independent sequences of
identically-distributed random variables distributed according to Fe, all also mu-
tually independent of the Poisson processes. Then we may write:

xs(t) =x0s +
∑
c∈C

lcsPc

(∫ t

0

rc(x(u)) du

)

+
∑
e∈E

∑
c∈C

( ∑
s′∈Ae

pe(s
′, s)lcs′ − 1{s∈Ae}l

c
s

)

×
∫ t

z=0

1{
T e
Pc(

∫ z
0 rc(x(u)) du)

≤t−z
} dPc

(∫ z

0

rc(x(u)) du

)
(1)

This is similar to the direct definition of [16]; the extra variables T e
k are

necessary due to the more complicated nature of the process.

3 Mean-field approximation of delay-only PGSMPs

For each local state s ∈ S, we write vs(t) for the mean-field approximation
to the number of components in state s at time t ∈ R+ and we also let
v(t) = (vs(t))s∈S . The mean-field approximations satisfy the following system
of integral equations:

vs(t) = v0s +
∑
c∈C

lcs

∫ t

0

rc(v(u)) du

+
∑
e∈E

∑
c∈C

( ∑
s′∈Ae

pe(s
′, s)lcs′ − 1{s∈Ae}l

c
s

)
×
∫ t

0

Fe(t− u)rc(v(u)) du (2)

3.1 Transient mean-field convergence

In this section of the paper, we prove transient mean-field convergence for delay-
only PGSMPs. We begin by constructing a sequence of delay-only PGSMP
models indexed by N ∈ Z+ with increasing total component population size.

Their underlying stochastic processes are denoted {xN (t) ∈ R+|S|}N∈Z+ , where
xN (t) = (xNs (t))s∈S and xNs (t) ∈ Z+ tracks the number of components currently
in the local state s for the Nth model.

We assume that the set of local states S; the set of transitions C and the
change multisets Lc; the sets of event clocks E , the sets of active states Ae, the
transition probability functions pe and the delay CDFs Fe are all fixed for all
elements of the sequence. The rate functions rNc are allowed to vary with N and
the initial conditions for the Nth model in the sequence are given by Nx0 for



some x0 ∈ Z+|S|. Write XN ⊆ Z+|S| for the reachable state space of the Nth
model. Note that following Section 2.3, we may write, in terms of a single set of
Poisson processes {Pc : c ∈ C} and delay variables {T e

i : e ∈ E}∞i=1:

xNs (t) = xNs (0) +
∑
c∈C

lcsPc

(∫ t

0

rNc (xN (u)) du

)

+
∑
e∈E

∑
c∈C

( ∑
s′∈Ae

pe(s
′, s)lcs′ − 1{s∈Ae}l

c
s

)

×
∫ t

0

1{
T e
Pc(

∫ z
0 rNc (xN (u)) du)

≤t−z
} dPc

(∫ z

0

rNc (xN (u)) du

)
(3)

Similarly to the case of density-dependent Markov chains [12, 18], we assume
that we may define rc(x) := (1/N)rNc (Nx) for all x ∈ R+|S| independently
of N . Furthermore, we assume that rc satisfies a local Lipschitz condition on
R+|S| and that for all c ∈ C, rNc (x) ≤ R‖x‖ for all x ∈ XN where R ∈ R+ is
independent of N . Define the rescaled processes x̄N (t) := (1/N)xN (t) that thus
satisfy rc(x̄

N (t)) = rNc (xN (t)).
We assume that initially, the system is concentrated on the non-active states

C \ ∪e∈EAe, in which case no initialization is necessary for the non-Markovian
clocks. (For a discussion of the issue of initialization in the deterministic delay
case, see [5]). We also assume

‖v0 − x̄N (0)‖ → 0.

Note that in most applications, it is perfectly natural to set a deterministic initial
condition, but we may also allow x̄N (0) to be random; in this case, assume

P(‖v0 − x̄N (0)‖ > ε)→ 0.

Theorem 1. Under the assumptions and setup given above, we have, for any
T > 0 and ε > 0:

lim
N→∞

P

{
sup

t∈[0,T ]

‖x̄N (t)− v(t)‖ > ε

}
= 0

Remark. Actually, assuming the initial condition converges almost surely, we
have almost sure convergence in the theorem, which is stronger than convergence
in probability, but, since the probabilistic coupling presented in (3) is a technical
issue with no underlying deeper connection, there is not much of a difference.

Proof. Define the auxiliary process

yNs (t) := v0s +
∑
c∈C

lcs

∫ t

0

rc(x̄
N (u)) du

+
∑
e∈E

∑
c∈C

( ∑
s′∈Ae

pe(s
′, s)lcs′ − 1{s∈Ae}l

c
s

)
×
∫ t

0

Fe(t− u)rc(x̄
N (u)) du



Then

|x̄Ns (t)− vs(t)| ≤ |x̄Ns (t)− yNs (t)|+ |yNs (t)− vs(t)|.

Denote

DN
s (T ) = sup

t∈[0,T ]

|x̄Ns (t)− yNs (t)|

We estimate yN (t)− v(t) by

|yNs (t)− vs(t)| ≤
∑
c∈C
|lcs|
∫ t

0

|rNc (xN (u))− rc(v(u))|du

+
∑
e∈E

∑
c∈C

∣∣∣∣ ∑
s′∈Ae

pe(s
′, s)lcs′ − 1{s∈Ae}l

c
s

∣∣∣∣× ∫ t

0

Fe(t− u)|rc(x̄N (u))− rc(v(u))|du

≤ ZR
∫ t

0

‖xN (u)− v(u)‖du

where

Z :=
∑
c∈C
|lck,s|+

∑
e∈Ek

∑
c∈C

∣∣∣∣ ∑
s′∈Ae

pe(s
′, s)lck,s′ − 1{s∈Ae}l

c
k,s

∣∣∣∣
and ‖.‖ is the maximum norm on R|S|. We aim to show that DN

s (T ) → 0 in
probability for each s ∈ S; once we have that, we have

‖x̄N (t)− v(t)‖ ≤ max
s∈S

DN
s (t) + ZR

∫ t

0

‖x̄N (u)− v(u)‖du (4)

and an application of Grönwall’s lemma ([12], page 498) readily yields

‖x̄N (t)− v(t)‖ ≤ max
s∈S

DN
s (T ) exp(ZRT ),

proving the theorem.
It now remains to show that for each s ∈ S, DN

s (T ) → 0 in probability as
N →∞. To see this note that:

DN
s (T ) ≤ |v0s − x̄Ns (0)|+

∑
c∈C

|lcs|
N

sup
t∈[0,T ]

∣∣∣∣Pc

(∫ t

0

rc(x̄
N (u)) du

)
−
∫ t

0

rc(x̄(u)) du

∣∣∣∣
+
∑
c∈C

∑
e∈E

Yc,e
N

sup
t∈[0,T ]

∣∣∣∣∣
∫ t

0

1{
T e
JN
c (u)

≤t−u
} dJN

c (u)−
∫ t

0

Fe(t− u)rNc (x̄(u)) du

∣∣∣∣∣
where Yc,e :=

∣∣∑
s′∈Ae

pe(s
′, s)lcs′ − 1{s∈Ae}l

c
s

∣∣, using the shorthand JN
c (u) :=

Pc

(∫ u

0
rNc (xN (z)) dz

)
.

The first term converges per our assumptions; we argue that the second and
third terms on the right-hand side converge almost surely. The second term is
handled in the following lemma.



Lemma 1. For any c ∈ C

1

N
sup

t∈[0,T ]

∣∣∣∣Pc

(∫ t

0

rNc (xN (u))du

)
−
∫ t

0

rNc (xN (u))du

∣∣∣∣→ 0

almost surely as N →∞.

Proof. By the Lipschitz-condition, 0 ≤
∫ t

0
rNc (xN (u))du ≤ RTN and thus

1

N
sup

t∈[0,T ]

∣∣∣∣Pc

(∫ t

0

rNc (xN (u)) du

)
−
∫ t

0

rNc (xN (u)) du

∣∣∣∣ ≤
≤ 1

N
sup

s∈[0,RT ]

|Pc(Ns)−Ns| ,

which goes to 0 almost surely by the functional strong law of large numbers
(FSLLN) for the Poisson process ([22], Section 3.2).

To handle the third term we note that:∣∣∣∣∣
∫ t

0

1{
T e
JN
c (u)

≤t−u
} dJN

c (u)−
∫ t

0

Fe(t− u)rNc (xN (u)) du

∣∣∣∣∣ ≤∣∣∣∣∣
∫ t

0

1{
T e
JN
c (u)

≤t−u
} dJN

c (u)−
∫ t

0

Fe(t− u) dJN
c (u)

∣∣∣∣∣
+

∣∣∣∣∫ t

0

Fe(t− u) dJN
c (u)−

∫ t

0

Fe(t− u)rNc (xN (u)) du

∣∣∣∣
(Yc,e’s are constants not depending on N and t, and as such, there is no

need to carry them around.) The two terms on the right hand side require tools
different enough to separate them into Lemmas 2 and 3. The proof of Lemma
2 is essentially a consequence of the FSLLN for the Poisson process, while the
heart of the proof of Lemma 3 is a probability concentration (or large deviation)
theorem (Azuma’s inequality).

We have some more preparations first. We already have that

sup
t∈[0,T ]

1

N

∣∣∣∣Pc

(∫ t

0

rNc (xN (u))du

)
−
∫ t

0

rNc (xN (u))du

∣∣∣∣→ 0

almost surely as N →∞. As a direct consequence of this, we also have

sup
s,t∈[0,T ]

1

N

∣∣∣∣Pc

(∫ t

s

rNc (xN (u))du

)
−
∫ t

s

rNc (xN (u))du

∣∣∣∣→ 0

almost surely since

sup
s,t∈[0,T ]

∣∣∣∣∫ t

s

·
∣∣∣∣ = sup

s,t∈[0,T ]

∣∣∣∣∫ t

0

· −
∫ s

0

·
∣∣∣∣ ≤ 2 sup

t∈[0,T ]

∣∣∣∣∫ t

0

·
∣∣∣∣



Also as a preparation, we have

sup
t∈[0,T ]

1

N

∫ t

0

rNc (xN (u))du ≤ sup
t∈[0,T ]

1

N

∫ t

0

R‖xN (u)‖du ≤ 1

N
sup

t∈[0,T ]

NRt = RT

independent of N , again using ‖xN‖ ≤ N and rNc (x) ≤ R‖x‖ ∀x ∈ XN . Lemma

1 then also implies 1
N

∫ t

0
dJN

c (u) ≤ RT + εN , where εN → 0 almost surely as
N →∞.

Lemma 2.

sup
t∈[0,T ]

1

N

∣∣∣∣∫ t

0

Fe(t− u)dJN
c (u)−

∫ t

0

Fe(t− u)rNc (xN (u))du

∣∣∣∣→ 0

almost surely as N →∞.

Proof. Let ε > 0 be fixed. Write

Fe(t− u) = ge,t,ε(u) + he,t,ε(u),

where g = ge,t,ε is a piecewise constant function with 0 ≤ g(u) ≤ 1 and ‖h‖∞ ≤
ε. Their exact definition is as follows. Take the ε, 2ε, . . . quantiles of Fe(t − u)
(recall Fe(t− u) is a nonincreasing function between 0 and 1); that is, let uk =
inf{u : F (t−u) ≤ kε}. Some of these uk’s may be equal if F has discontinuities.
The number of distinct quantiles is certainly no more than dε−1e, independent
of N and t.

Let g be the piecewise constant function

g(u) = Fe(t− uk) if u ∈ (uk−1, uk],

so g(u) ≤ Fe(t−u). The choice of uk’s guarantees that h(u) = Fe(t−u)−g(u) ≤ ε.
Then we can write

1

N

∣∣∣∣∫ t

0

Fe(t− u)dJN
c (u)−

∫ t

0

Fe(t− u)rNc (xN (u))du

∣∣∣∣ ≤
1

N

∣∣∣∣∫ t

0

g(u)dJN
c (u)−

∫ t

0

g(u)rNc (xN (u))du

∣∣∣∣+
1

N

∣∣∣∣∫ t

0

h(u)dJN
c (u)−

∫ t

0

h(u)rNc (xN (u))du

∣∣∣∣



Since g is piecewise constant,

1

N

∣∣∣∣∫ t

0

gdJN
c (u)−

∫ t

0

g(u)rNc (xN (u))du

∣∣∣∣ =

1

N

∣∣∣∣∣∣
dε−1e∑
k=1

g(uk)

(
JN
c (uk)− JN

c (uk−1)−
∫ uk

uk−1

rNc (xN (u))du

)∣∣∣∣∣∣ ≤
1

N

dε−1e∑
k=1

∣∣∣∣∣g(uk)

(
JN
c (uk)− JN

c (uk−1)−
∫ uk

uk−1

rNc (xN (u))du

)∣∣∣∣∣ ≤
1

N

dε−1e∑
k=1

∣∣∣∣∣JN
c (uk)− JN

c (uk−1)−
∫ uk

uk−1

rNc (xN (u))du

∣∣∣∣∣ ≤
dε−1e∑
k=1

sup
s,t∈[0,T ]

1

N

∣∣∣∣Pc

(∫ t

s

rNc (xN (u))du

)
−
∫ t

s

rNc (xN (u))

∣∣∣∣ =

dε−1e · sup
s,t∈[0,T ]

1

N

∣∣∣∣Pc

(∫ t

s

rNc (xN (u))du

)
−
∫ t

s

rNc (xN (u))du

∣∣∣∣→ 0

almost surely as N →∞ since ε is independent of N .
Since ‖h‖∞ ≤ ε, we have

1

N

∣∣∣∣∫ t

0

h(u)dJN
c (u)−

∫ t

0

h(u)rNc (xN (u))du

∣∣∣∣ ≤
1

N

∣∣∣∣∫ t

0

h(u)dJN
c (u)

∣∣∣∣+
1

N

∣∣∣∣∫ t

0

h(u)rNc (xN (u))du

∣∣∣∣ ≤
ε

N

∣∣∣∣∫ t

0

dJN
c (u)

∣∣∣∣+
ε

N

∣∣∣∣∫ t

0

rNc (xN (u))du

∣∣∣∣ ≤ ε(2RT + εN ),

independent of t (with εN → 0 almost surely as N →∞).
Letting ε→ 0 proves

sup
t∈[0,T ]

∣∣∣∣∫ t

0

Fe(t− u)dJN
c (u)−

∫ t

0

Fe(t− u)rNc (xN (u))du

∣∣∣∣→ 0

almost surely as N →∞.

Lemma 3.

sup
t∈[0,T ]

1

N

∣∣∣∣∣
∫ t

0

1{
T e
JN
c (u)

≤t−u
}dJN

c (u)−
∫ t

0

Fe(t− u)dJN
c (u)

∣∣∣∣∣→ 0

almost surely as N →∞.



Proof. Let ε be fixed. Also fix t for now. We want to prove

P

(∣∣∣∣∣
∫ t

0

1{
T e
JN
c (u)

≤t−u
}dJN

c (u)−
∫ t

0

Fe(t− u)dJN
c (u)

∣∣∣∣∣ > ε

)

is exponentially small in N via Azuma’s inequality [8, 2]. Once we have that,
we can apply Borel–Cantelli lemma (see e.g. [10] Chapter 2.3) to conclude that
for any fixed ε, the above event happens only finitely many times, which is
equivalent to almost sure convergence to 0. To apply Azuma, we need to write the
above integral as a martingale with bounded increments. The measure dJN

c (u)
is concentrated on points u where Pc has an arrival at

∫ u

0
rNc (xN (z)dz. Let we

denote these points by u1, u2, . . . . The integral only has contributions from these
points; it is natural to write (using a slightly different notation)

Sl :=
(
1{T e

1≤t−u1} − Fe(t− u1)
)

+ · · ·+
(
1{T e

l ≤t−ul} − Fe(t− ul)
)

MN := Pc

(∫ t

0

rNc (xN (z))dz

)
so that ∫ t

0

1{
T e
JN
c (u)

≤t−u
}dJN

c (u)−
∫ t

0

Fe(t− u)dJN
c (u) = SMN

.

We first resolve the difficulty that MN is in fact random.

P

(
1

N

∣∣∣∣∣
∫ t

0

1{
T e
JN
c (u)≤t−u

}dJN
c (u)−

∫ t

0

Fe(t− u)dJN
c (u)

∣∣∣∣∣ > ε

)
=

P

(∣∣∣∣SMN

N

∣∣∣∣ > ε

)
=

∞∑
l=0

P

(∣∣∣∣Sl

N

∣∣∣∣ > ε, MN = l

)
≤

2RTN∑
l=0

P

(∣∣∣∣Sl

N

∣∣∣∣ > ε

)
+

∞∑
2RTN+1

P(MN = l) =

2RTN∑
l=0

P

(∣∣∣∣Sl

N

∣∣∣∣ > ε

)
+ P(MN > 2RTN).

The sum was cut at 2RTN because MN is stochastically dominated by a Poisson
distribution with parameter RTN , so P(MN > 2RTN) is exponentially small
due to Cramér’s large deviation theorem (see e.g. Theorem II.4.1 in [11]):

P(MN > 2RTN) ≤ e−RTN(2 ln 2−1).

(The Cramér rate function of the Poisson-distribution with parameter λ is I(x) =
x ln(x/λ)− x+ λ.)

To apply Azuma to each of the terms P
(∣∣Sl

N

∣∣ > ε
)
, we also need to check

that Sl is indeed a martingale with bounded increments. To set it up properly



as a martingale, note that {ul} is an increasing sequence of stopping times, so
the filtration {Fl} is well-defined; Fl contains all the information known up to
time ul, including the values of all of the non-Markovian clocks that started by
the time ul.

Sl has bounded increments, since

|1{T e
l ≤t−ul} − Fe(t− ul)| ≤ 1.

The last step to apply Azuma is that we need to check that Sl is a martingale
with respect to Fl. It is clearly adapted, and

E(1{T e
l+1≤t−ul+1}|Fl) = E(E(1{T e

l+1≤t−ul+1}|Fl, ul+1)|Fl) =

E(P(T e
l+1 ≤ t− ul+1)|Fl, ul+1)|Fl) = E(Fe(t− ul+1)|Fl)

shows that it is a martingale as well. (In the last step, we used the fact that ul+1

is measurable with respect to σ{Fl∪{ul+1}} while T e
l+1 is independent from it.)

We have everything assembled to apply Azuma’s inequality:

2RTN∑
l=0

P

(∣∣∣∣Sl −E(Sl)

N

∣∣∣∣ > ε

)
≤

2RTN∑
l=0

2e−
2ε2N2

l ≤

≤2RTN · 2e− 2ε2N2

2RTN = 4RTNe−
ε2N
RT .

In the last inequality, we estimated each term in the sum by the largest one,
which is for l = 2RN .

The estimate obtained is

P

(
1

N

∣∣∣∣∣
∫ t

0

1{
T e
JN
c (u)≤t−u

}dJN
c (u)−

∫ t

0

Fe(t− u)dJN
c (u)

∣∣∣∣∣ > ε

)
≤

4RTNe−
ε2N
RT + e−RTN(2 ln 2−1).

Remember that t was fixed; we need to upgrade this estimate into an estimate
that is valid for supt∈[0,T ](.) before applying Borel–Cantelli lemma. We do this by
partitioning the interval [0, T ] intoN subintervals uniformly, and then controlling
what happens at the partition points and between the partition points separately.
For the former, we apply the previous estimate. Let

ti :=
iT

N
, i = 0, 1, . . . N,

then

P

(
max

0≤i≤N

1

N

∣∣∣∣∣
∫ ti

0

1{
T e
JN
c (u)≤t−u

}dJN
c (u)−

∫ ti

0

Fe(t− u)dJN
c (u)

∣∣∣∣∣ > ε

)
≤

(N + 1)
(

4RTNe−
ε2N
RT + e−RTN(2 ln 2−1)

)
,



which is still summable.
Now we turn our attention to the intervals [ti, ti+1]. Since∫ t

0

1{
T e
JN
c (u)≤t−u

}dJN
c (u) and

∫ t

0

Fe(t− u)dJN
c (u)

are both increasing in t, we only have to check that neither of them increases by
more than εN over an interval [ti, ti+1].

Let i be fixed. We handle the two integrals separately. First, for∫ t

0

Fe(t− u)dJN
c (u),

we have∫ ti+1

0

Fe(ti+1 − u)dJN
c (u)−

∫ ti

0

Fe(ti − u)dJN
c (u) =∫ ti

0

Fe(ti+1 − u)− Fe(ti − u)dJN
c (u) +

∫ ti+1

ti

Fe(ti+1 − u)dJN
c (u) ≤∫ ti

0

Fe(ti+1 − u)− Fe(ti − u)dJN
c (u) +

∫ ti+1

ti

1dJN
c (u).

The second term is equal to JN
c (ti+1)−JN

c (ti), e.g. the number of arrivals of Pc in
the interval [ti, ti+1]. By the Lipschitz-condition, this is stochastically dominated
from above by Z ∼ Poisson(RT ) given that the length of the interval is T/N ,
and thus

P

(
1

N

∫ ti+1

ti

Fe(ti+1 − u)dJN
c (u) > ε

)
≤ P

(
Z

N
> ε

)
= P

(
Z

ε
> N

)
.

Note that the right hand side is summable in N , its sum being equal to the
expectation of

⌈
Z
ε

⌉
.

To estimate the other term, note that

u ∈ [tl−1, tl] =⇒Fe(ti+1 − u)− Fe(ti − u) ≤ Fe(ti+1 − tl−1)− Fe(ti − tl) =

Fe(ti+1 − tl−1)− Fe(ti+1 − tl) + Fe(ti+1 − tl)− Fe(ti − tl),

which gives ∫ ti

0

Fe(ti+1 − u)− Fe(ti − u)dJN
c (u) =

i∑
l=1

∫ tl

tl−1

Fe(ti+1 − u)− Fe(ti − u)dJN
c (u) ≤

i∑
l=1

∫ tl

tl−1

Fe(ti+1 − tl−1)− Fe(ti − tl)dJN
c (u) =

i∑
l=1

(Fe(ti+1 − tl−1)− Fe(ti − tl))(JN
c (tl)− JN

c (tl−1)).



We use two things here: the fact that (JN
c (tl)−JN

c (tl−1)) is stochastically dom-
inated by Poisson(RT ) and the fact that the sum

i∑
l=1

(Fe(ti+1 − tl−1)− Fe(ti − tl)) =

i∑
l=1

Fe(ti−l+2)− Fe(ti−l) =

Fe(ti+1) + Fe(ti)− Fe(1)− Fe(0) ≤ 2

is telescopic. This means that the whole sum can be stochastically dominated by
Poisson(2RT ) (note that the number of clocks starting at each interval is not in-
dependent, but because of the Lipschitz-condition, we may still use independent
Poisson variables when stochastically dominating the sum). Using the notation
Z ∼ Poisson(RT ) again, we get that

∞∑
N=1

P

(
2Z

N
> ε

)
=

∞∑
N=1

P

(
2Z

ε
> N

)
≤ 2RT

ε
+ 1.

(In fact, P
(
2Z
ε > N

)
goes to 0 superexponentially in N .)

The last term to estimate is the increment of∫ t

0

1{
T e
JN
c (u)≤t−u

}dJN
c (u).

between ti and ti+1, e.g. the number of clocks expiring between ti and ti+1.
Partition the clocks according to which interval [tl−1, tl] they started in.

The number of clocks starting in [tl−1, tl] is stochastically dominated by Z ∼
Poisson(RT ) by the Lipschitz-condition, and for each such clock, the proba-
bility that it goes off in [ti, ti+1] is less than or equal to Fe(ti+1) − Fe(tl−1).
This implies that the number of the clocks starting in [tl−1, tl] and going off in
[ti, ti+1] is stochastically dominated by Wi,l ∼ Poisson(RT (Fe(ti+1)−Fe(tl−1))).
The total number of clocks going off in [ti, ti+1] is stochastically dominated by

Poisson(RT
∑i

l=1(Fe(ti+1) − Fe(tl−1))), where the familiar telescopic sum ap-
pears in the parameter. (Once again, the Lipschitz-condition was used implicitly.)
So the total number of clocks going off in [ti, ti+1] is stochastically dominated
by Poisson(2RT ), which means we arrive at the also familiar P

(
2Z
ε > N

)
value,

which we already examined and proved to be summable in N .
Putting it altogether, we get that

P

(
sup

t∈[0,T ]

1

N

∣∣∣∣∣
∫ t

0

1{
T e
JN
c (u)

≤t−u
}dJN

c (u)−
∫ t

0

Fe(t− u)dJN
c (u)

∣∣∣∣∣ > ε

)
≤ CN,ε

where
∞∑

N=1

CN,ε <∞,

so the Borel–Cantelli lemma gives almost sure convergence as N →∞.



With Lemmas 1-3 finished, the proof of Theorem 1 is complete.

Theorem 1 proves mean-field convergence in the transient case. The question
of stationary regime is quite different; for some remarks on the stationary regime,
we refer to Section V of [16].

4 Example

In this section, we derive the system of DDEs as defined in the previous section
for a simple example model of a peer-to-peer software update process. For a more
detailed discussion of a peer-to-peer update example, we refer to [16], where es-
sentially the same model was introduced, albeit with deterministic delays instead
of general ones.

We consider two general types of nodes in this model which we term old and
updated. Old nodes are those running an old software version and new nodes are
those which have been updated to a new version. Nodes alternate between being
on and off ; when an old node turns on, it searches for an update in peer-to-peer
fashion, with the probability of successfully finding an update being proportional
to the number of nodes already updated. If it does not find an update, it gives
up after a timeout. After that, it stays on for some time and then eventually
turns off. New nodes do not search for updates, just alternate between on and
off. We assume that the off time of a node is random and Pareto-distributed.
So, nodes have five possible local states: updated nodes can be on and off, which
we denote by a and b, respectively. Old nodes can be on (c), off (e) or in a state
representing an old node which is on but has given up seeking updates (d). In
the notation of Section 2.1, the set of local states is thus S := {a, b, c, d, e}. The
local behaviour of a node is depicted in Figure 1.

In this example, we consider all transitions to be Markovian except for the
transitions bringing nodes from their off state into their on state, which have
density function f(s). Formally, there are two event clocks t0 and t1 with At0 :=
{e}, dt0 := η, pt0(e, c) = 1, At1 := {b}. dt1 := η and pt1(b, a) := 1.

The DDEs corresponding to this model are:

v̇a(t) = − ρva(t) + βvc(t)va(t) + ρ

∫ t

0

va(t− s)f(s) ds

v̇b(t) = − ρ
∫ t

0

va(t− s)f(s) ds+ ρva(t)

v̇c(t) = − ρvc(t)− βvc(t)va(t)− κvc(t)

+ ρ

∫ t

0

(vd(t− s) + vc(t− s))f(s) ds

v̇d(t) = − ρvd(t) + κvc(t)

v̇e(t) = − ρ
∫ t

0

(vd(t− s) + vc(t− s))f(s) ds+ ρvd(t) + ρvc(t)
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Fig. 1. Representation of the behaviour of a single node in the delay-only software
update model.
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Fig. 2. Delay-only software update model rescaled DDE approximation (solid lines)
compared with rescaled actual means for N = 20, 50 and 200 (dashed lines). Initial
component proportions are (0.1, 0, 0.9, 0, 0) and parameters are β = 2.0, ρ = 0.1,
κ = 0.67 with f(s) a Pareto density with scale parameter 1.5 and shape parameter 0.9.

This system of DDEs can be integrated numerically by adapting existing
ODE solvers or specialised DDE routines such as the dde23 routine in MATLAB R©.
The solution of these DDEs for one set of parameters is shown in Figure 2 com-
pared with the corresponding rescaled component-count expectations as com-
puted by many stochastic simulation replications. We observe that the means
do appear to converge to the mean-field solutions in line with Theorem 1.
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