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Abstract. Markov Population Model is a commonly used framework to
describe stochastic systems. Their exact analysis is unfeasible in most
cases because of the state space explosion. Approximations are usually
sought, often with the goal of reducing the number of variables. Among
them, the mean field limit and the quasi-equilibrium approximations
stand out. We view them as techniques that are rooted in independent
basic principles. At the basis of the mean field limit is the law of large
numbers. The principle of the quasi-equilibrium reduction is the sepa-
ration of temporal scales. It is common practice to apply both limits to
an MPM yielding a fully reduced model. Although the two limits should
be viewed as completely independent options, they are applied almost
invariably in a fixed sequence: MF limit first, QE-reduction second. We
present a framework that makes explicit the distinction of the two reduc-
tions, and allows an arbitrary order of their application. By inverting the
sequence, we show that the double limit does not commute in general:
the mean field limit of a time-scale reduced model is not the same as
the time-scale reduced limit of a mean field model. An example is pro-
vided to demonstrate this phenomenon. Sufficient conditions for the two
operations to be freely exchangeable are also provided.

1 Introduction

Many complex systems whose dynamics is the result of the interaction of popula-
tions of indistinguishable agents can be described by Markov Population Models
(MPM, [8,16]). This is the case, for instance, for biological systems and com-
puter systems like queuing networks. Quantitative formal methods offer a pow-
erful framework to describe and analyse them, using tools from verification and
model checking. However, formal analysis of the Continuous Time Markov Chain
(CTMC) that underlies an MPM is extremely challenging due to its usually large
state space. Approximation techniques are therefore extremely useful, as they
can lead to considerable simplifications of the analysis phase.

In this paper, we discuss two such methods. The first one is the fluid or
mean-field approximation [8,11,1]. It has received considerable attention in the
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quantitative formal methods community in the past years with applications also
to passage time computations [15] and stochastic model checking [5,9]. This
method is based on a version of the law of large numbers for stochastic processes,
known as Kurtz’ theorem [11] which guarantees that, for large populations, an
MPM is close to a (deterministic) ordinary differential equation (called fluid or
mean-field ODE), converging to the latter in the limit of infinite population.
This approximation holds for the transient behaviour under mild conditions on
rate functions and model transitions, and can be extended to the steady state
behaviour under additional assumptions on the limit ODEs [3,2].

Multiple time scale reduction, on the other hand, is based on a common in-
trinsic property of multi-dimensional dynamical systems to equilibrate unevenly.
Several dimensions can be removed from a model if certain degrees of freedom
equilibrate much faster than the rest. This is achieved by identifying the fast
components and approximating them with the conditional equilibrium distribu-
tion. A rigorous definition involves singular perturbation [27]: A model that is a
singular perturbation of another model is a multi-scale model. But this definition
is too restrictive for real life situations (models with numerical rate constants of
the same order may be multi-scale). Several methodologies and criteria to de-
tect multiple time scales have been developed over the years: quasi-equilibrium
and quasi-stationary state [17], computational singular perturbation[18], intrin-
sic low dimensional manifold [21] etc. Most of them have originated in chemistry
[17,21,18] (ODE models) and [23,22,10,28] (stochastic models) and quite often
the impression is that ODE and stochastic reductions are based on different as-
sumptions. In the present article we propose a framework that eliminates this
prejudice for a special, but important class of so-called quasi-equilibrium reduc-
tions [6]. Our contributions can be summarised as follows:

– we provide a consistent and constructive definition of the quasi-equilibrium
reduction for MPMs. In particular, we treat uniformly mean field equations
and stochastic processes by constructing reductions at a level of the MPM
formalism [16]. For the stochastic case, we also formally prove the conver-
gence of the full model to the reduced one when fast and slow time scales
diverge.

– by examining the relationship between the QE reduction of the MF limit of
a population process and the MF limit of the QE-reduced stochastic system
we give sufficient conditions for the mean-field limit of the reduced stochastic
system to exist and to be equal to the reduced mean field model. We also
show that this is not true in general, and discuss scenarios where, application
of the two limits in different order results in non-equivalent approximations.

The paper is organised as follows: In Section 2, we introduce Markov Popula-
tion Models, while in Section 3 we review the mean-field approximation. Section
4, instead, is devoted to the presentation of the Quasi-Equilibrium reduction,
both for differential equations and for MPMs. Section 5 contains our results
about the relationship between mean-field and quasi-equilibrium, while in Sec-
tion 6 we draw the final conclusions.



2 Markov Population Models

A Markov Population Model [16,8] is a simple formalism to describe models
of populations of interacting agents based on Continuous-Time Markov Chains
(CTMC). The formalism is inspired by chemical reaction networks [14], and is
formally characterised by a tuple X = (X,M, T ,X0) where

1. X = (X1, . . . , Xn)ᵀ is a (column) vector of variables describing the n species
of the model.

2. M is the domain of X. Usually Xi counts the number of elements in a
population of a species, therefore we assume Xi ∈ N and M⊆ Nn.

3. T = {τ1, . . . , τr} is the set of r transitions, of the form τ = (ν,W ), where:

(a) ν = (ν1, . . . , νn)ᵀ ∈ M is a (column) update vector. This vector deter-
mines the stoichiometry of a transition, i.e. its elements equal the net
change of the corresponding variable due to the transition.

(b) W : M 7→ R≥0 is the rate function. We impose that all rate functions
satisfy W (X) ≥ 0 and W (X) = 0 if X + ν /∈M.

4. X0 ∈M is the initial state: the process starts in X0 with probability one.

An MPM describes a Markovian stochastic process X(t) with r competing
Poissonian (memoryless) transitions X −→ X + νj , with rates Wj(X). Its ana-
lytic formulation is a ‘master equation’ for the probability mass P (X; t):

∂tP (X; t) =

r∑
i=1

{Wi(X− νi)P (X− νi; t)−Wi(X)P (X; t)} . (1)

2.1 A self-repressing gene network

We introduce now a simple ‘running’ example to illustrate the main concepts
of the paper. Specifically, we consider the simplest gene network, composed of
a single gene repressing its own expression. Despite its simplicity, this system
is ubiquitously present in the genome [20]. We model it by a PCTMC X =
(X,M, T ,X0) with three variables, X = (X1, X2, X3), counting the amounts of,
respectively, the repressed gene (X1); the active, protein-producing gene (X2);
and the protein (X3). The transcription-translation is lumped in one single step.
The state space isM = {0, . . . , N}×{0, . . . , N}×N, where N is the number of
copies of the gene in the system (cf. also the discussion at the end of Section 3).
The dynamics of the model is given by four transitions:

– τ1 = (produce,ν1 = ( 0, 0, 1)ᵀ,W1(X) = εkpX2) – protein production;

– τ2 = (degrade ,ν2 = ( 0, 0,−1)ᵀ,W2(X) = εkdX3) – protein degradation;

– τ3 = (repress ,ν3 = (−1, 1, 0)ᵀ,W3(X) = kbX2X3/N) – repression, caused
by the protein binding to a gene;

– τ4 = (unbind ,ν4 = (1,−1, 0)ᵀ,W4(X) = kuX1) – the unbinding event.



Two remarks are in order: first, we do not remove a protein from the system when
it bounds to the repressor. This is a minor tweak that simplifies the following
discussion. Secondly, as typical for bimolecular reactions [14], we rescale the
binding rate by the volume N , which for simplicity we assume here to equal the
total amount of genes. In this way, the (copy number) concentration of the gene
is between zero and one.

3 The mean field limit of a MPM

Consider a MPM for a fixed system size N . The system size is usually inter-
preted as either the total population (typical of ecology and queueing networks’
applications), or volume (chemical reaction networks). We can easily define a
normalised MPM, by dividing variables by N , XN = X/N , and expressing
rates and updates with respect to these new variables. We call MN the nor-
malised state space, and further assume that the normalised state space satisfies⋃
N∈NMN ⊆ E for some open set E ⊆ Rn. We call WN

j : E 7→ R≥0 the nor-

malised rate functions for system size N , and assume WN
j (x) is defined for each

x ∈ E (as usually the case).

Assumption 1. We require that:

(a) For each j = 1, . . . , r, uniformly for x ∈ E it holds that

wj(x) = lim
N→∞

WN
j (x)/N. (2)

(b) Smoothness of functions wj(x), at least locally Lipschitz continuous.
(c) The normalised initial conditions converge: XN

0 → x0 ∈ E.

Under this assumption, the sequence of MPM XN (t) converges (in probabil-
ity, for any finite time horizon) to the solution x(t) = x(t,x0) of the initial value
problem

dx

dt
(t) = F (x(t)) , x(0) = x0 , F (x) =

r∑
i=1

νiwi(x), (3)

where F (x) is the (mean field) drift of the MPM. More formally, the following
theorem holds [11]:

Theorem 1. Under conditions a, b, and c above, for any T <∞ and ε > 0,

lim
N→∞

P

{
sup
t≤T

∥∥XN (t)− x(t)
∥∥ > ε

}
= 0.

We stress that Theorem 1 holds for any finite time window but it does not
address the important question of steady state behaviour (T = ∞). Here the
phenomenology is much wilder, and few things are known with certainty. How-
ever, if the mean field ODE (3) has a unique, globally attracting steady state
x(∞), i.e. for each x0 ∈ E, limt→∞ x(t,x0) = x(∞), then we have [3,2,8]:



Theorem 2. Under the conditions of Theorem 1, if XN (t) is ergodic and x(t,x0)
has a unique globally attracting steady state, then

lim
N→∞

XN (∞) = δx(∞) in probability,

where δx(∞) is the point-wise mass probability at x(∞).

Running Example. The mean field equations for the simple gene model are

dx2
dt

(t) = −dx1
dt

(t) = kbx2x3 − kux1 ,
dx3
dt

(t) = εkpx2 − εkdx3 .

Theorem 1 asserts that a solution of these ODEs is exactly equivalent to the
corresponding MPM in the limit N = ∞. The important question is whether
this ODE is an acceptable approximation when N < ∞, as is always the case
in practice. Intuitively, if there are many (paralogue) copies of the gene, so that
transcription can happen concurrently, this ODE may be expected to be an ex-
cellent approximation to the MPM with a finite, but large N . If the number
of gene copies remains small and constant with respect to N , we can still con-
struct a hybrid limit, see [4]. For a discussion about the accuracy of mean field
approximation, see [8].

4 Quasi-Equilibrium reduction

In this section we provide formal definitions of the Quasi-Equilibrium framework
with two objectives in mind. Firstly, we aim at generalizing the ‘canonical’ setting
where the fast and slow components of a model are decoupled by premise. We
assume that they could be entangled, paying the price of a little extra formality.
The second goal is to present a formal guideline of reducibility in the form of a
list of easily verifiable conditions. This is achieved in Assumption 2 of section 4.3.
However, we start by recalling two key ingredients of the reduction, coordinate
transforms and stoichiometric invariants applied to MPMs.

4.1 Image of a MPM under a change of coordinates

A linear operator L acting on a finite dimensional vector spaceM is equivalent to
matrix multiplication. We would like describe the L-action on an MPM. Define
LA(x) = Aᵀ ·x, where A is a real n×m matrix, and x ∈M. If, in addition, y =
LA(x) is invertible (A is a square, invertible matrix) then the inverse, denoted
by x = L−1A (y), is unique and L−1A = LA−1 .

Fix such an invertible L and consider an MPM X = (X,M, T ,X0). The
L-image of X is defined as XL := L ◦ X = (Y,N , T ,Y0), where

– Y = L(X), Y0 = L(X0), and N = L(M);
– Each transition τ = (ν,W ) of X becomes the transition τ ′ = (µ,W ′), where
µ = L(ν) and W ′(y) = W (L−1(y)).

It is obvious that, as L preserves all the update rules X −→ X + νj , XL is
equivalent to X , in a sense that XL represents the same stochastic process as X ,
viewed in transformed coordinates Y = L(X).



4.2 Image of a MPM under a stoichiometry reduction

The n × r stoichiometry matrix S of a MPM X is a matrix composed from all
the state change vectors ν, arranged as columns:

SX =
(
ν1, . . . ,νr

)
. (4)

Two important characteristics of S are, the rank rank (S), and the co-dimension

codim (S) := n− rank (S) ≥ max{0, n− r} . (5)

A MPM X is called (stoichiometry) reducible iff mX := codim (SX ) > 0.
By definition, there exist mX linearly independent vectors c1, . . . , cmX such
that Lci

(νj) = 0 for all i, j. This implies, for each Yi = Lci
(X), a transition

Yi −→ Yi + Lci
(νj) = Yi. Therefore, the vector Y = (Y1, . . . , YmX ) is conserved

by dynamics. Its components are called p-invariants. They maintain constant
values throughout dynamics therefore they can be made into parameters, rather
than remaining independent variables. To achieve this, fix additional n − mX
vectors k1, . . . ,kn−mX , requiring that {ci} and {kj} should spanM. We arrange
those vectors in two matrices C =

(
c1, . . . , cmX

)
and K =

(
k1, . . . ,kn−mX

)
. The

matrix
(
C,K

)
is then invertible by definition. The (stoichiometry) reduced image

of X is defined as XC,K := (Z,K, T , {Z0,Y0}) where

– Z = LK(X), K = LK(M), Y0 = LC(X0), and Z = LK(X0);
– Each transition τ = (ν,W ) of X becomes the transition τ = (σ,WY0

),
where σ = LK(ν) and WY0

(Z) = W
(
L−1(C,K)(Y0,Z)

)
.

Running example. Going back to the example of section 2.1, we have

S =
(
ν1,ν2,ν3,ν4

)
=

0 0 −1 1
0 0 1 −1
1 −1 0 0

 .

We may recognise that c = (1, 1, 0)ᵀ is a p-invariant of the system. Letting
k1 = (0, 1, 0)ᵀ, k2 = (0, 0, 1)ᵀ, we obtain the following reduced PCTMC model:

– Z = (Z1, Z2) = (X2, X3), Y0 = N , K = {0, . . . , N} ×N;
– State changes σi are obtained from the corresponding νis by crossing out

the first element. Rates W̃ are equal to W s expressed in the new variables
Z. The rate of the ‘unbind’ transition becomes W̃4(Z1, Z2) = ku(N − Z1).

4.3 Fast-slow rate and variable decomposition of a PCTMC

We are now in position to describe the quasi-equilibrium reduction.

Assumption 2. Consider an MPM X = (X,M, T ,X0) such that



(a) There exist two parameters T slow > T fast > 0 and an integer s, 1 < s < r,
such that the ordering of all rate functions

W1(X) ≤ · · · ≤Ws(X)︸ ︷︷ ︸
slow transitions

≤ N

T slow
<

N

T fast
≤Ws+1(X), . . . ,Wr(X)︸ ︷︷ ︸

fast transitions

(6)

is valid for all X in a sufficiently large subspace ofM, containing the initial
condition X0. This condition is equivalent to requiring that rate functions

behave with respect to dimensionless parameter ε = T fast

T slow as follows

Wi(X; ε) ∼
ε→0

εW0,i(X) +O(ε2) , i = 1, . . . , s (7)

Wi(X; ε) ∼
ε→0

W0,i(X) +O(ε) , i = s+ 1, . . . , r (8)

where W0,i(X) are functions that do not depend on ε.
The set of transitions T is thus partitioned into slow transitions T slow =
{τ1, . . . , τs}, and fast transitions T fast = {τs+1, . . . , τr}.

(b) X restricted to T fast is stoichiometry reducible according to section 4.2, i.e.

m := codim (νs+1, . . . ,νr) > 0 . (9)

If both these conditions are satisfied, we may separate slow and fast com-
ponents of X, such separation being the basis of the subsequent dimensional
reduction. Matrices C and K can be identified such that, following section 4.1,
(C,K) is invertible and LC(νi) = 0, but only for i = s+ 1, . . . , r. Define

Y = (Y1, . . . , Ym) = LC(X)︸ ︷︷ ︸
slow variables

Z = (Z1, . . . , Zn−m) = LK(X)︸ ︷︷ ︸
fast variables

(10)

Note that Y, owing to its definition in terms of fast transitions rather than all
transitions, is not a p-invariant. This means that some transitions of the slow
variable will occur, given by the updated vectors µ, defined as follows

LC

(
ν1, . . . ,νs,νs+1, . . . ,νr

)
=
(
µ1, . . . ,µs,0, . . . ,0

)
.

The fast subspace update vectors are similarly defined: σi = LK(νi).

Running example. We assume that ε� 1 is a small dimensionless parameter.
This assumption implies the partition T slow = {τ1, τ2} and T fast = {τ3, τ4}.
If all other parameters are O(1), then there is a large gap between T fast and
T slow, guaranteed by the smallness of ε, which we leave as the scale separation
parameter. The procedure of stoichiometry reduction, applied to T fast, provides

m = codim

(
1 −1
0 0

)
= 2− 1 = 1 .

Since m > 0, this model is QE-reducible and indeed, c = (0, 1)ᵀ is a p-invariant
of T fast. Complementing the basis with k = (1, 0) we conclude that the slow



variable, Y = Lc(X) = X3 is the protein, and the fast variable, Z = Lk(X) = X2

is the active gene. The ε-rescaled rates W0,i, expressed in the slow-fast variables,
are

W0,1 = kpZ, W0,2 = kdY, W0,3 = kbY Z/N, W0,4 = ku(N − Z). (11)

4.4 Quasi-Equilibrium reduction of the mean-field model

As a demonstration of utility of our formalism, we will obtain the canonical equa-
tions of the singular perturbation theory [27] from the standard quasi-equilibrium
approximation of ODEs.

Recall from Section 3 the definition of limit rate functions (2) and that of
the limit drift vector F (x) =

∑r
i=1 νiwi(x; ε), where we made explicit the de-

pendence on a small parameter ε. If the MPM satisfies Assumption 2, then the
asymptotic ε→ 0 dependence of the rate functions is wi(x; ε) ∼ εw0,i(x)+O(ε2)
for i = 1, . . . , s, and wi(x; ε) ∼ w0,i(x) +O(ε) for j = s+ 1, . . . , r and 1 < s < r.
Define the slow variables y = LC(x), the fast variables z = LK(x), and the slow
time τ = εt. It is then straightforward to demonstrate that the mean field limit
equations are equivalent to

dy

dτ
= G(y, z) +O(ε), ε

dz

dτ
= H(y, z) +O(ε) (12)

where

G =

s∑
i=1

LC(νi)w0,i(L
−1
(C,K)

(
y, z)

)
, H =

r∑
j=s+1

LK(νj)w0,j(L
−1
(C,K)

(
y, z)

)
. (13)

Since ε multiplies the highest order derivative in (12) (right), the perturbation
in ε is singular [27]. The construction of a reduced model from equations (12) is
governed by further assumptions provided by the Tikhonov theorem [27, Theo-
rem 8.1].

Assumption 3. Consider the initial value problem (12) for τ ≥ 0, with y(0) =
y0, z(0) = z0. We further require:

(a) the drifts G(y, z) and H(y, z) are sufficiently smooth functions of their ar-
guments.

(b) a unique solution yε(τ), zε(τ) of the initial value problem (12) exists;
(c) a unique solution y(τ), z(t) of the reduced initial value problem exists; the

reduced problem being defined by

dy/dτ = G(y, z), y(0) = y0, 0 = H(y, z),

(d) equation 0 = H(y, z) is solved by z = φ(y) where φ is continuous, and it is
an isolated root;

(e) z = φ(y) is an asymptotically stable solution of dz/dt = H(y, z) uniformly
in y(τ), considered as a (fixed) parameter;



(f) z(0) is contained in an interior subset of the domain of attraction of z = φ(y)
for y = y(0).

The previous conditions guarantee that the solution of the reduced problem
(defined in (c) above) is actually the ε → 0 limit of the original system, as
proved in the following:

Theorem 3 (Tikhonov (1958)). Under conditions (a)–(f) above, ∀T <∞

lim
ε→0

yε(τ) = y(τ), lim
ε→0

zε(τ) = z(τ), 0 < τ ≤ T (14)

Running example. In our example, the slow variable y is the protein con-
centration, the fast variable z is the active gene concentration. They satisfy
(12) in the slow time variable τ = εt, with G(y, z) = kpz − kdy and H(y, z) =
kbyz− ku(1− z). Solving H(y, z) = 0 for z, we get φ(y) = ku

ku+kby
, hence finding

the classic ODE for lumped gene transcription:

dȳ

dτ
=

kpku
ku + kbȳ

− kdȳ

4.5 The Quasi-equilibrium reduction of an MPM

Let the Assumption 2 hold for (1) (the rate functions and the variable are de-
composable into fast and slow subsets). Substiting the decomposition, described
in section 4.3, into (1), yields

∂tP (Y,Z; t) =

r∑
i=1

{
Wi(Y − µi,Z− σi)P (Y − µi,Z− σi; t)

−Wi(Y,Z)P (Y,Z; t)
}
, P (Y,Z; 0) = P0(Y,Z). (15)

In addition to requiring that a corresponding MPM satisfies Assumption 2, we
further require

Assumption 4. (Ergodicity)

(a) The full process X(t) = (Y,Z)(t) is ergodic;
(b) The stochastic process ZY(t) describing the fast subsystem is ergodic for

each fixed Y.

Under these further requirements, the master equation of the reduced system is

∂τP (Y; τ) =

s∑
i=1

{
W̃∞0,i(Y − µi)P (Y − µi; τ)− W̃∞0,i(Y)P (Y; τ)

}
(16)

W̃∞0,i = EZY(∞)(W0,i(Y,Z)) =
∑
Z

W0,i(Y,Z)PY(Z), i = 1, . . . , s (17)



and ZY(∞) is the unique steady state measure of the fast process ZY(t) (due
to 4.b), with PY(Z) being the steady state probability of the master equation

∂tPY(Z; t) =

r∑
j=s+1

{
W0,j(Y,Z−σj)PY(Z−σj ; t)−W0,j(Y,Z)PY(Z; t)

}
(18)

The slow process Ỹ(τ) defined by the master equation (16) is indeed the limit
of the full process for ε→ 0 (see the appendix for the proof):

Theorem 4 (Quasi-equilibrium reduction). Under assumptions 4.(a)–(b),

lim
ε→0

∑
Z

P (Y,Z; τ/ε) = P (Y; τ) (19)

for all T > 0 and 0 ≤ τ ≤ T . ut

We can now lift Theorem 4 to the MPM level. Consider an MPM X = (X,M, T ,X0),
that is QE reducible (see section 4.3). The quasi-equilibrium image of X is de-
fined as X qe = (Y,N , T slow, {Y0,Z0}), where

– Y = LC(X), N = LC(M), Y0 = LC(X0), and Z0 = LK(X0);
– Each slow transition τ = (a,ν,W ) ∈ T slow of X becomes the transition

τ = (a,µ, W̃∞0 ), where µ = LC(ν) and W̃∞0 (Y) is defined by (17).

It is also straightforward to define a family of MPMs for the fast subsystem,
parametrized by the slow variable Y, described by the master equation (18).

Running example. The most important new information are the expressions
for the averaged slow rates, given by the definition (17). We find

W̃0,1(Y ) =
∑
Z

kpZPY (Z) = kp〈Z〉ZY (∞) , W̃0,2(Y ) = kpY. (20)

These rates, together with the state change vectors µ1 = 1, µ2 = −1, complete
the definition of a reduced MPM, which is easaly seen to describe a birth-death
process. The rates of this process are given by (20). In this simple case, the
fast process, conditional on Y , is also a birth-death process, hence owing to the
linearity of (11), we get 〈Z〉ZY (∞) = Nku

ku+kbY/N
, which gives an explicit expression

for the rates of Y . We emphasize that in general this is not true, as the stationary
distribution of ZY may not be known explicitly, so that one has still to rely on
numerical methods, like simulation [28].

5 Comparing mean field and quasi-equilibrium

Consider an MPM X , and, as in Section 3, let XN (t) be the normalised model
with respect to system size N . In this paper we have introduced two possi-
ble model simplification strategies: the mean field approximation and the QE-
reduction. To fix notation in the rest of this section, we will refer to the former
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Fig. 1. Left: commutation diagram. The curved paths illustrate two distinct limiting
procedures to arrive from an MPM to a fully reduced model. Right: the toggle switch
counter example to Theorem 5. The blue curve is the solution of the reduced mean
field ODE, while the solid black curve is the average of the reduced stochastic process,
which is bistable (cf. the empirical distribution on the right).

by the operator M, and to the latter by the operator Q. Hence, M(XN (t)) = x(t)

is the mean field limit of XN (t), and Q(XN (t)) = ỸN (τ) is the QE reduction
of XN (t), whereas Q(x(t)) = ỹ(τ) = Q(M(XN (t))) the QE reduction of x(t).

The issue we wish to address in this section is how these two procedures are
related. In particular, it is natural to ask if the two operators M and Q commute,
as shown in Fig. 1. The diagram illustrates the following two possibilities. We
could either construct the QE reduction upon the mean field limit of a MPM
XN (t) and obtain a deterministic process ỹ(τ), or we could first apply the QE

reduction to XN (t), and then attempt to construct the mean field limit of ỸN (t).
Two questions arise naturally

1. Does M(Q(XN (t))), i.e. the mean field limit of ỸN (τ) exist?
2. If so, is it the same as ỹ(τ) = Q(M(XN (t))), i.e. does the diagram in Figure

1 commutes?

We show that the answer is ‘yes to both questions’ only if some additional re-
quirements for the fast substystem are fulfilled. We will demonstrate that the
answer to question 2 is ‘no in general’, and that even question 1 may have
a negative answer. The problem is intimately connected with the extension of
Theorem 1 to the steady state, hence with Theorem 2. In fact, when we con-
struct the QE reduction Q(XN (t)) of XN (t), we need to average the slow rates
with respect to the steady state distribution ZNY(∞) of the fast subsystem ZNY.
Assumptions 4.(a) and 4.(b) enforce ergodicity, hence existence and uniqueness
of such a steady state distribution ZNY(∞) for each N and Y. However, to con-
struct the mean field limit of Q(XN (t)), we also need to know how such sequence
behaves as N goes to infinity. Essentially, we need to know if it has a limit, and
what such limit is. Unfortunately, this is one of the most delicate points of mean-
field approximation theory: Little is known about the limiting behaviour of the
steady state, except from Theorem 2. Hence, we can provide a positive answer to
questions 1 and 2 only if we place ourselves in the conditions of such a theorem.
This leads to the following



Assumption 5. The solution z = φ(y) of 0 = H(y, z) is unique, i.e. the mean
field limit of the fast subsystem z̄(t) = z̄(t,y) has a unique, globally attracting
equilibrium φ(y) for each value of the slow variables y.

Under this assumption, we can apply Theorem 2 and conclude that, for each
Y, it holds that ZNY(∞)→ δφ(Y) in probability. At this stage, however, we need
a further technical assumption (see also Remark 1):

Assumption 6. ZNY(∞) converges to δφ(Y) uniformly in Y, i.e. ∀ε > 0,

lim
N→∞

P

{
sup

Y∈NN

‖ZNY(∞)− φ(Y)‖ > ε

}
= 0.

Under these two additional assumptions, it is easy to show that

W̃∞0,i(y)

N
−→
N→∞

w0,i(y) (21)

uniformly in y. This readily implies that the drift of the QE-reduced process

ỸN (t), F̃N (y) :=
∑
νi
W̃∞0,i(y)

N converges uniformly to the drift G(y,φ(y)), defin-
ing the vector field of the QE-reduced mean field limit, as in equation (12), which
is sufficiently regular by hypothesis 3.(a). Hence, the conditions of Theorem 1

are satisfied by the sequence of processes ỸN (t), and we can conclude that

Theorem 5. Under Assumptions 5 and 6 above, with T <∞ fixed and for each
t ≤ T , M(Q(XN (t))) exists and M(Q(XN (t))) = Q(M(XN (t))) . ut

Remark 1. Assumption 2 requires that the convergence of the sequence of steady
state measures of the fast subsystem to their limit point-wise distribution is
uniform in the slow state Y. We conjecture this is in fact true without any
further requirement on the MPM. A heuristic argument goes as follows: by the
functional central limit [11], we know that the fast subsystem will behave like a
Gaussian process for N large enough. In particular, the steady state distribution
of ZNY(∞) will be approximatively Gaussian with mean φ(Y) and Covariance
matrix CN (Y) = 1√

N
C(Y), where C(Y) does not depend on N and it is the

steady state solution of the covariance linear noise equations [12]. As such, it will
depend continuously on Y. Using similar arguments as in the proofs of Kurtz
theorem, we can guarantee that the eigenvalues of C(Y) are uniformly bounded
by a constant Λ <∞, which implies that we can find a uniform bound in Y on
the spread of the steady state distribution, going to zero as the population size
N diverges. A formal proof of Assumption 6 seems to be strictly related to the
availability of explicit bounds for the convergence in probability of ZNY(∞) to
δφ(Y), which is still an open issue, see also [7].

Running example. The mean field equation for the fast variable z in the self-
repressing gene example is linear, so that it is easy to see that it has a unique
globally attracting equilibrium for each y. Furthermore, for any N and y, it holds



that W̃∞0,1(y)/N = w0,1(y) (cf. the expression of W̃∞0,1(y) computed at the end
of last section), hence Assumption 6 is trivial in this case. Therefore Theorem 5
applies: mean field and time scale reduction commute.

5.1 On the necessity of Assumption 5

Assumption 5, on the other hand, is quite crucial for Theorem 5 to hold. With-
out it, we cannot say much about the limit behaviour of the sequence of steady
state measures of the fast subsystem, a part from the fact that each limit point
will be supported in the Birkhoff center of the limit mean field dynamical sys-
tem [8,3]. If this system has only stable and unstable equilibria as invariant sets
(e.g. it satisfies the conditions of [19]), then each limit point of the sequence of
steady state measure will be supported in those equilibria, but this is as much as
we can say. In particular, we cannot guarantee the existence of a limit for such
a sequence, hence the reduced stochastic model may not be amenable of mean
field approximation. However, we can argue that, in case the limit of ZNY(∞) is
defined, then M and Q will not generally commute. The reason for this is to be
found in the large deviations theory for (population) CTMC [25, Ch. 6], which
guarantees that each trajectory of the stochastic system will remain close to all
stable equilibrium of the mean field limit a non-negligible fraction of time. Hence,
the limit steady state measure, if any, must be a mixture of pointwise masses
concentrated on (stable) equilibria3. On the other hand, the fast subsystem z̄
of the mean-field limit will converge to a single stable equilibrium (assuming
no bifurcation event happens in the fast subsystem as ȳ(t) varies, i.e. that As-
sumption 3.(e) is in force). This implies that the limit for N → ∞ of the rates
W̃∞0,i(y)

N will not converge to w0,i(y), which is evaluated on the single equilibrium
z = φ(y), but rather to a weighted average of the rate function wi evaluated on
all (stable) equilibria.

To render this discussion more concrete, we illustrate this phenomenon by
means of a genetic network model of a toggle switch [13]. We have three protein
species, whose number is given by variables X = (X1, X2, X3), living in a vol-
ume N , with density xj = Xj/N (possibly exceeding unit value). The MPM is
specified by the following six transitions:

Production of X1 : ν1 = ( 1, 0, 0)ᵀ, W1(X) = α1N
β1+1/

(
Nβ1 +Xβ1

2

)
;

Degradation of X1 : ν2 = (−1, 0, 0)ᵀ, W2(X) = X1;

Production of X2 : ν3 = (0, 1, 0)ᵀ, W3(X) = α2N
β2+1/

(
Nβ2 +Xβ2

1

)
;

Degradation of X2 : ν4 = (0,−1, 0)ᵀ, W4(X) = X2;
Production of X3 : ν5 = (0, 0, 1)ᵀ, W5(X) = εX1;
Degradation of X3 : ν6 = (0, 0,−1)ᵀ, W6(X) = εX3;

The proteins ‘1’ and ‘2’ mutually repress each other, and thus properly constitute
the toggle switch. Molecule ‘3’ instead, is a slow product of the protein ‘1’, and

3 The role of unstable equilibria is unclear. It is plausible that they will be visited only
for a vanishing fraction of time, but we know no proof of this fact.



does not influence the toggle switch. This example is cooked up so that if ε� 1
then the variable x3 and transitions τ5 and τ6 are trivially the slow ones. It
should still be possible to see the breakdown of the assumptions 5 & 6 in the
long time expectation value of the molecule ‘3’. First we consider the mean field
limit

dx1
dt

=
α1

1 + xβ1

2

− x1 ,
dx2
dt

=
α2

1 + xβ2

1

− x2 ,
dx3
dt

= ε(x1 − x3).

For a symmetric toggle model with parameters α1 = α2 = 10, β1 = β2 = 1.4,
the two stable equilibria are (x1, x2) = (a, b), (b, a) where a = 0.764, b = 5.931.
The limiting behavior of x3 is x3 −→

τ→∞
x1, where x1 is either a or b, depending

on whose basin of attraction covers the initial condition of the trajectory. We
took the initial conditions that are below the diagonal x1 = x2. Such initial
conditions are attracted to the equilibrium x1 = b. The mean field time series
x3 vs t is displayed in figure 1, where the mean field trajectory saturates at b
(blue curve).

Next we consider the stochastic dynamics. A representative stochastic time
series of X3/N vs t is shown in figure 1. Its variations are wider than a Gaus-
sian approximation of the probability would imply. Sufficient insights can be
gained by looking at the expectations of the form 〈X〉 (t) =

∑
X XP (X; t). The

expectation of molecule ‘3’ satisfies an exact differential equation

d 〈X3〉 /dt = ε 〈X1〉 − ε 〈X3〉

Making a QE approximation to this equation is equivalent to replacing 〈X1〉 with
the equilibrium expectation X

∞
1 of the fast (‘1+2’) subsystem, and 〈X3〉 (t)

– with X̃3(τ), each of which should be expressed in terms of their respective
reduced probabilities. Since X3 is decoupled from X1 in the full model, X1(t) =
〈X1〉 (t). Moreover, if ε� 1, we can also take X

∞
1 ≈ 〈X1〉 (t), resulting in

dX̃3(τ)/dτ = X
∞
1 − X̃3(τ).

Within this approximation, the solution tends to X̃3(τ) −→
τ→∞

X
∞
1 . Then, com-

parison of x3(t), obtained from the mean field limit, and x̃3(τ) = X̃3(τ)/N ,
obtained from the stochastic model, provides a good measure of differences be-
tween the two approximations. The mean field trajectory, discussed in the previ-
ous paragraph, should be compared with the expectation X̃3(τ), shown as a solid
gray line in figure 1. There is a significant difference between the two, suggesting
the non-equivalence of reduced models in this particular case. Applying large
deviations arguments [25, Ch. 6], one may expect P (X3) (shown as a density
in figure 1) to look like, as N → ∞, a mixture of point masses, concentrated
equilibria. Conjecturing that the mass is distributed only on stable equilibria
and owing to the symmetry between X1 and X2, such weights will be equal to
1
2 , so x̃3(∞) = (a+ b)/2. A simulation supports this conjecture, as the curve for

X̃3(τ) is roughly in the middle between the two peaks of the probability density
shown in 1.



6 Discussion

In this paper, we discussed in a homogeneous way two approximation techniques
for Markov Population Models: the mean-field limit and the quasi-equilibrium
reduction in the presence of multiple time-scales. Both approaches are based on
a notion of limit: for large population in the former case, and for a diverging
separation of time scales in the latter. Our first contribution of this paper is to
formalise in a clear way the quasi-equilibrium reduction for MPM, proving also
the convergence of the original model to the reduced one in the stochastic setting.
The second original ingredient of this work is the investigation of the relationship
between QE and mean-field. In particular, we identified sufficient conditions
under which the two limits commute. We also argued that the commutation
should not hold in general. The situation here is intimately connected with the
nature of mean field convergence for steady state distributions.

The take-home message is that care must be exercised when time scale sep-
aration techniques are combined with mean field limits. The behaviour of the
system that we obtain by first taking the mean field limit and then the QE-
reduction, the most common way in literature, may not reflect at all the actual
behaviour of the original stochastic model. Hence, one has to additionally show
that the fast subsystem is well behaved (i.e., it satisfies assumption 5).

We note here that most of the assumptions we introduced hold in almost all
practical cases, and are generally easy to verify. The most challenging ones are
the separation of time scales (Assumption 2), and those related to the steady
state behaviour of ODE models, i.e. Assumptions 5 and 3.(e).

This line of research can be extended in few directions. First of all, the
literature on time scale separation for MPM is not as well developed as the
literature for ODE models [6]. Many ideas developed in this context can possibly
be exported to MPM, especially techniques that automatically identify multiple
time scales [18]. Finally, we are investigating how QE reduction propagates to
moment closure-based approximations of variance and of higher order moments
of the stochastic population process.
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A Proofs

A.1 Proof of Theorem 4

For simplicity, we prove the theorem under the assumption that the state space
the full MPM is finite.

The slow variable probability, defined by marginalising the joint probability,
P ε(Y; τ) =

∑
Z P

ε(Y,Z; τ), satisfies an equation, obtained by marginalising the
master equation. Using the identity

∑
ZWiP

ε(X,Y) = P ε(Y)
∑

ZWiP
ε
Y for

the rates from the slow transition subset we estimate (1/ε)Wi(Y,Z)P εY(Z; t) =

W0,i(Y,Z)P
∞
Y (Z) + W0,i(Y,Z)(P εY(Z; t) − P∞Y (Z)) + O(ε), while the fast rate

subset terms are cancel out by the equal positive and negative contributions to
the master equation. Finally, we get

∂τP (Y; τ) =
∑
Z

ε−1∂tP (Y,Z; τ/ε)

=

s∑
i=1

{
W̃∞i (Y − µi)P ε(Y − µi; τ)− W̃∞i (Y)P ε(Y; τ) (22)

+D̃ε
i (Y − µi; τ)− D̃ε

i (Y; τ)
}

where the rates W̃∞i are defined by (17), and

D̃ε
i (Y; τ) =

∑
Z

W0,i(Y,Z)
(
P εY(Z; τ/ε)− P∞Y (Z)

)
+O(ε) (23)

For the fast variable conditional probability P εY(Z; t), differenting the identity
P (Y,Z; t) = P (Y; t)PY(Z; t), we get

P (Y; t)∂tPY(Z; t) = ∂tP (Y,Z; t)− PY(Z; t)
∑
Z′

∂tP (Y,Z′; t) (24)

which we wish to divide by P (Y; t). A possible obstacle of P (Y; t) = 0 occurring
for some Y is excluded except, possibly, at t = 0, by the ergodicity assumption
[24]. Thus, dividing by P (Y; t) is warranted, and we find

∂tPY(Z; t) =

r∑
j=s+1

{
Wj(Y,Z− σj)PY(Z− σj ; t)−Wj(Y,Z)PY(Z; t)

}
+

s∑
i=1

ε
{
δ(Y;µi)Γi(Y − µi,Z− σi; Y,Z; t)

−Γi(Y,Z; Y,Z; t)
}

(25)



where Γ and δ are defined by

Γi(Y
′,Z′; Y,Z; t) = PY′(Z

′; t)W0,i(Y
′,Z′)

−PY(Z; t)
∑
Z′′

W0,i(Y
′,Z′′)PY′(Z

′′; t) +O(ε) (26)

δ(Y,µi; t) =
P (Y − µi; t)
P (Y; t)

i = 1, . . . , s (27)

By ergodicity assumption of the complete and reduced systems, both P εY(Z; t)
and P 0

Y(Z; t) admit a unique steady state. Then by implicit function theorem,

P
∞
Y (Z)− P ε(Y; τ/ε) = O(ε).

Then, the perturbation D̃i in (22) is also of the order ε. This term converges
to zero (uniformly in Y, due to the finiteness of the state space), hence the vector
field defining the reduced master equation for Y converges to the one of equation
(16), which by smoothness of the functions involved, proves the theorem.
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