Unveiling WARIS code, a parallel and
multi-purpose FDM framework

Rail de la Cruz', Mauricio Hanzich!,
Arnau Folch!, Guillaume Houzeaux! and José Maria Cela'

CASE Department, Barcelona Supercomputing Center, Spain,
{delacruz, mauricio.hanzich, arnau.folch, guillaume.houzeaux,
josem.cela}@bsc.es

Abstract. WARIS is an in-house multi-purpose framework focused on solving sci-
entific problems using Finite Difference Methods as numerical scheme. Its frame-
work was designed from scratch to solve in a parallel and efficient way Earth Sci-
ence and Computational Fluid Dynamic problems on a wide variety of architectures.
WARIS uses structured meshes to discretize the problem domains, as these are bet-
ter suited for optimization in accelerator-based architectures. To succeed in such
challenge, WARIS framework was initially designed to be modular in order to ease
development cycles, portability, reusability and future extensions of the framework.
In order to assess its performance, a code that solves the vectorial Advection-
Diffusion-Sedimentation equation has been ported to the WARIS framework. This
problem appears in many geophysical applications, including atmospheric trans-
port of passive substances. As an application example, we focus on atmospheric
dispersion of volcanic ash, a case in which operational code performance is critical
given the threat posed by this substance on aircraft engines. Preliminary results
are very promising, performance has been improved by 8.2x with respect to the
baseline code using a realistic case. This opens new perspectives for operational
setups, including efficient ensemble forecast.

1 Introduction

Many relevant problems arising in geoscience and Computational Fluid Dy-
namics (CFD) can be solved numerically using Finite Difference Methods
(FDM) on structured computational meshes. Examples include, seismic wave
propagation, numerical weather prediction or atmospheric transport. FDM
numerical schemes on structured meshes allow peak performances of ~ 20 —
30%, about 3 times larger than analogous FE (Finite Element) methods.
WARIS is a brand-new multi-purpose framework aimed at solving ef-
ficiently in a parallel way this kind of scientific computing problems. The
design requirements were to obtain a portable framework (i.e. able to run
on any hardware platform) suited for accelerated-based architectures, with
reusable software components, easily extendible, and able to solve the phys-
ical problems on structured meshes explicitly, implicitly or semi-implicitly.
The next sections are organized as follows: Section 2 describes the proce-
dure followed during the development stages of WARIS, and introduces the

2 Rauil de la Cruz et al.

current state-of-the-art regarding FDM optimizations as well. Section 3 elab-
orates on the final design chosen for the WARIS framework, detailing also its
internals. Finally, Section 4 and 5 expose a case of study and the conclusions
respectively.

2 Software Engineering

Software engineering plays an important role when achieving a good soft-
ware design. The desirable aspects of a software package are reliability, ef-
ficiency, and robustness; bestowing accurate results, high performance and
solid components respectively. Meeting all those requirements lead to a suc-
cessful project. In order to succeed in such a challenge, an application de-
velopment life-cycle methodology must be applied [10]. Besides, life-cycle
methodology is particularly important when HPC software comes into play.
This importance is due to several inherent needs of the HPC software.

Firstly, given that the numerical software is clearly expensive to develop
due to the involved research process, it is intended to reuse code as much as
possible. A modular and flexible design of the software framework may help
in this approach owing to many important reasons. Software must be flexible
and modular whether same code is wanted to be used for different scientific
problems and likewise, be adapted to a novel hardware architecture or a dif-
ferent programming model. In this regard, the HPC is far more dynamic in
terms of adaptability requirements than the rest of the computational areas,
and therefore these reasons have a greater influence. Secondly, the HPC in-
volves large numerical simulations which may require hundreds or thousands
of computational nodes during days or weeks. Unsuccessful executions (ab-
normal end) might arise from time to time, leading to unfruitful runs and
a waste of time and resources. Hence, the cost of these executions is utterly
high in terms of power consumption and resource usage.

Finally, a modular and robust infrastructure is crucial, but performing
the numerical simulations in an efficient way is also a key point. Additionally,
considering that each simulation run can last several days or weeks, even a
mild optimization in performance of only 5 to 10% may lead to days of savings
in core-hours of computational resources. In order to do so, unlike ordinary
development life-cycle, an additional stage for the optimization process of
the modules is also included. This stage is repeatedly performed in order to
successively optimize the performance of each module.

2.1 Boosting Numerical Codes

Irregular codes (stencil computations and sparse algebra) are usually limited
by memory access (memory bound). Therefore, the ratio of floating-point
operations to memory access is low compared with regular codes (FFT and
dense linear algebra), which are mainly compute bound. In explicit FDM

Unveiling WARIS code, a parallel and multi-purpose FDM framework 3

schemes, the basic structure of stencil computation is that the central point
accumulates the contribution of neighbor points in every axis of the Cartesian
system. The number of neighbor points in every axis relates to the accuracy
level of the stencil, where more neighbor points lead to higher accuracy. The
stencil computation is then repeated for every point in the computational
domain, thus solving the spatial differential operator.

Two inherent problems can be identified from the structure of the stencil
computation. Firstly, the non-contiguous memory access pattern. In order to
compute the central point of the stencil, a set of neighbors has to be accessed.
Some of these neighbor points are distant in the memory hierarchy, requiring
many cycles in latencies to be accessed [5]. Secondly, the low computational-
intensity and reuse ratios. After gathering the set of data points, just one
central point is computed and only the accessed data points in the sweep
direction might be reused for the computation of the next central point [4].

The state-of-the-art in performance optimizations for stencil computation
is very prolific. The contributions can be divided into three dissimilar groups:
space blocking, time blocking and pipeline optimizations. Space blocking al-
gorithms promote data reuse by traversing data in a specific order. Space
blocking is especially useful when the dataset structure does not fit into the
memory hierarchy [12,5]. Time blocking algorithms [8] perform loop unrolling
over time-step sweeps to exploit the grid points as much as possible, and thus
increase data reuse. Finally, low level optimizations at the CPU pipeline in-
clude several well-known techniques. These techniques may be categorized
into loop transformations [9], data access [2] and streaming optimizations
(SMP, SIMD and MIMD).

3 System Architecture

As the number of physical problems that should be supported could be in
the order of tenths, the primary system (named Physical Simulator Kernel,
PSK) should be flexible enough to accommodate new problems reusing as
much code as possible.The PSK framework is divided in two main sets of
components. On one hand, there is a framework responsible for those tasks
that are common to any physical simulation being solved, such as domain
decomposition, communications and I/O operations. On the other hand there
is a set of specializations that are used to configure the framework in order to
have a complete solution for a given physical problem. Those specializations
depend on aspects such as: the physical problem, the hardware platform
(e.g. general purpose, GPU, FPGA, Xeon Phi) and the programming model
being used for development. As the PSK main goal is to generalize the way
a physical simulation is built, some aspects have to be fixed and restricted,
in order to bound the framework functionality and limits.

4 Rauil de la Cruz et al.

3.1 Hardware Architecture Model

The first aspect to be considered is the computational architecture model
that will be supported by the PSK. Figure 1 shows the concepts in such
model and their relation. The main building block of the architecture model
is the Computational Node (CN), which is built using both the host and
device elements that communicate through a Common Address Space (CAS)
memory. Examples of such devices include GPUs [15] and brand-new Intel’s
Xeon Phi [11]. Following this model the PSK framework is executed in the
host while the device processes the specifics of the physical problem being
simulated.

Computational Computational
Node Node

MPI
Host Memory Host Memory
Device leesl Device (e

Fig. 1. Hardware architecture model supported by the PSK

In order to run a physical simulation the PSK will construct a defined
structure of MPI processes and threads across the CNs to be used for such
simulation. Figure 2.Left shows the structure for a simulator using 2 CNs:
CNO and CN1. As the memory address space of CNO and CN1 are disjoint, the
PSK system must provide Domain Decomposition (DD) between both CNs
(known as extra-node DD), in order to coordinate the simulation process.
Moreover, there are some cases (e.g. multi- and many-core architectures), for
which the PSK have to provide DD also inside a CN (known as intra-node
DD). Notice, that each green and blue nodes into Figure 2.Left represents
threads and I/O devices respectively, whereas the brown and red boxes are
the MPI processes running on each CN and the intra-node domains in a CN.

3.2 Software Architecture Model

Once the hardware architecture model is defined, this subsection will depict
the software architecture model. That is, which is the PSK framework archi-
tecture and what is to be done in order to use it and extend or specialize it for
a specific physical problem. The specialization process is done by implement-
ing an interface defined by the PSK. Each of the functions to be implemented
are known as a specialized functions. Among this functions there are: initial-
ization and finalization routines for managing data structures that belongs
to the physical problem at hands, proper functions for the processing at each
iteration of the simulation process, or some functions for scattering and gath-
ering data among different domains if they are needed. Figure 2.Right shows

Unveiling WARIS code, a parallel and multi-purpose FDM framework

the PSK framework structure. The dashed boxes represent the functions to
be provided by the user in order to specialize the framework for a specific

physical problem.

MPI process 0 (Running in CNO)

Domain 0-1

rPSK Framework

Config —>t Initialize |

i Finalize :

Y

T

Scatter

Gather

\

More
Steps?

Shared
memory

1/0 Device 1/0 Device

MPI process 1 (Running in CN1)

P3 Func. 1

Domain 1-1

Shared
memory

@operie> \ J

1/0 Device

Fig. 2. Left: domain decomposition model. Right: PSK software model.

Regarding the PSK main structure (i.e. inside the main loop), it is divided
in three different phases (known as Pre- Main- and Post-Processing), which
are separated by some stages such as communications or I/O. The aim of such
structure is to provide an environment capable of overlapping computation
with communication and I/0O. In order to do so, the functions provided by
the user for phase I (P1) must process all the physical problem involved
in the exchange stage for the current iteration step. Then, an asynchronous
communication of these areas is started while the computation (in phase 2
- P2) processes the remaining domain for the current iteration. Likewise, an
I/0 operation may be started asynchronously at the end of phase 2, enabling
as well overlapping with main computation. Finally, an optional phase & (P3)
is also considered for such cases where some processing is needed after the
communication, but prior to the next iteration.

4 Application Example

Atmospheric transport models [14] deal with transport of substances in the
atmosphere, including natural, biogenic, and anthropogenic origin. The physics

6 Rauil de la Cruz et al.

of these models describes the transport and removal mechanisms acting upon
the substance and predicts its concentration depending on meteorological
variables and a source term. These models build on the Advection—Diffusion—
Sedimentation (ADS) equation, derived in continuum mechanics from the
general principle of mass conservation of particles within a fluid.

As an application example, the FALL3D model has been ported to WARIS
framework. FALL3D [3] is a multi-scale parallel Eulerian transport model
coupled with several mesoscale and global meteorological models, including
most re-analyses datasets. Although FALL3D can be applied to simulate
transport of any substance, the model is particularly tailored to simulate vol-
canic ash dispersal and has a worldwide community of users and applications,
including operational forecast, modeling of past events or hazard assessment.

4.1 Volcanic Ash Dispersal

Volcanic ash generated during explosive volcanic eruptions can be transported
by the prevailing winds thousands of kilometers downwind posing a serious
threat to civil aviation. FALL3D models run worldwide operationally to pro-
vide advice to the civil aviation authorities, which need to react promptly in
order to prevent in-flight aircraft encounters with clouds. Here, we investi-
gate to which extent WARIS-Transport can accelerate model forecasts and
could be used for ensemble forecasting [1]. We focus on a paradigmatic case
occurred during April-May 2010, when ash clouds from the Eyjafjallajokull
volcano in Iceland disrupted the European airspace for almost one week, re-
sulting in thousands of flight cancellations and millionaire economic loss [6].

The following results include several performance techniques carried out in
the WARIS-Transport module. These techniques are: SIMDization, blocking
and pipeline optimizations of the explicit kernels. Furthermore, the parallel
I/O operations have been dramatically improved by implementing an active
buffering strategy [7] with two-phase collective I/O calls [13]. As an example,
Figure 3 shows how a wise choice of the blocking parameter is crucial to reduce
the execution time of the explicit kernel. In this particular case (256 x 2048 x 64
domain size), the kernel execution time has been reduced by 24.1%.

All the tests have been conducted in MareNostrum supercomputer (Intel
SandyBridge-EP E5-2670) with different number of processors. The Eyjafjal-
lajokull case involves an input dataset of 9 GBytes of meteorological data,
corresponding to 8 days of eruption, and 370 MBytes of concentration and
dispersal simulated output data for the coarse-grain mesh (41x241x141).
The FALL3D code taken as a reference requires 1h and 58 minutes to com-
plete this simulation on 16 processors with MPI. On the other hand, the
WARIS-Transport module only took 14.4 minutes to process it. These times
make our implementation 8.2x faster than Fall3D code. Additionally, strong
scaling results were obtained for WARIS-Transport using a fine-grain mesh
(41x480x280) of the Eyjafjallajokull case. Scalability results obtained for

Unveiling WARIS code, a parallel and multi-purpose FDM framework 7

Blocking parameter —e— r\ R R

x
A\ A M r\

N

Time (in seconds)

P

P
o
e}
N

P> S>> Deoed > > > D>
I o o A

e o o P S S S S &
NV TGP N PGPS NV TP s

Fig. 3. Blocking impact on the kernel execution time. The green rectangle shows
the performance of the naive implementation, whereas the blue circle depicts the
best blocking parameter. WARIS automatically selects the best parameter.

Table 1. WARIS-Transport module times (in seconds) with fine-grain mesh of
Eyjafjallajokull volcano case. Note that I/O times are overlapped with computation
thanks to a double-buffering system and a dedicated I/O thread.

Num. Explicit Kernel = Others Meteo data Output Total Speed-up
Proc. P1 stage P2 stage P3 stage I/O Postprocess Preprocess 1/0 Time

1 0.0 28932.83 4718.99 302.75 11108.91 250.06 133.50 45010.8 1.0
2 202.21 12004.14 1854.76 142.79 5408.69 86.14 181.25 19555.9 2.3
4 208.52 6076.23 942.60 106.75 2781.53 39.11 140.52 10047.9 4.4
8 233.89 3170.07 528.48 71.08 1573.25 18.44 81.86 5524.1 8.1
16 291.52 2099.81 391.37 70.15 917.97 10.93 29.09 3711.6 12.1
32 287.49 967.23 192.83 84.29 546.03 4.66 11.81 1998.2 22.5

different number of processors (up to 32) are broken down in Table 1. Re-
sults are categorized in four groups, explicit kernel (P1 and P2 stages), other
computations (P3 stage), meteorological input and ash dispersal output. P1
(boundary elements), P2 (internal elements) and P3 stages refer to the kernel
functions in the PSK framework structure. Finally, postprocess and prepro-
cess columns consider the data arrangement computation required after read-
ing meteorological data and before writing ash dispersal results respectively.

5 Conclusions

WARIS framework has shown appealing capabilities by providing successful
support for scientific problems using FDM. In the foreseeable future, as the
amount of computational resources will increase, more sophisticated physics
may be simulated. Furthermore, it provides support for a wide-range of hard-
ware platforms. Therefore, as the computational race keeps the hardware
changing everyday, support for specific platforms that will give the best per-
formance results will be supplied for the different simulated physics.

Rauil de la Cruz et al.

References

1.

10.

11.

12.

13.

14.

15.

C. BoNADONNA, A. ForLcH, S. LOUGHLIN, AND H. PUEMPEL, Future devel-
opments in modelling and monitoring of volcanic ash clouds: outcomes from
the first IAVCE-WMO workshop on ash dispersal forecast and civil aviation,
Bulletin of Volcanology 74 (2012), 1-10.

D. CaLLAHAN, K. KENNEDY, AND A. PORTERFIELD, Software prefetching,
ASPLOS-IV: Proceedings of the fourth international conference on architec-
tural support for programming languages and operating systems, ACM, New
York, NY, USA, 1991, pp. 40-52.

A. ForcH, A. CosTA, AND G. MACEDONIO, Fall3d: A computational model for
transport and deposition of volcanic ash, Comput. Geosci. 35:6 (2009), 1334—
1342.

M. FRIGO AND V. STRUMPEN, Cache oblivious stencil computations, 19th ACM
International Conference on Supercomputing, June 2005, pp. 361-366.

S. KamiL, P. HusBANDS, L. OLIKER, J. SHALF, AND K. YELICK, Impact of
modern memory subsystems on cache optimizations for stencil computations,
MSP ’05: Proceedings of the 2005 workshop on Memory System Performance,
ACM Press, New York, NY, USA, 2005, pp. 36-43.

. B. LANGMANN, A. FOoLCH, M. HENSCH, AND V. MATTHIAS, Volcanic ash over

europe during the eruption of Eyjafjallajokull on iceland, April-May 2010, At-
mos. Environ. 48 (2012), 1-8.

X. Ma, M. WINSLETT, J. LEE, AND S. YU, Improving MPI-I10 output perfor-
mance with active buffering plus threads, , IPDPS ’03, IEEE Computer Society,
Washington, DC, USA, 2003, pp. 68.2—.

J. McCALPIN AND D. WONNACOTT, Time skewing: A value-based approach
to optimizing for memory locality, Tech. Report DCS-TR~379, Department of
Computer Science, Rutgers University, 1999.

K. S. McKINLEY, S. CARR, AND C.-W. TSENG, Improving data locality with
loop transformations, ACM Trans. Program. Lang. Syst. 18 (1996), 424-453.

W. L. OBERKAMPF AND C. J. Roy, Verification and validation in scientific
computing, 1st ed., Cambridge University Press, New York, NY, USA, 2010.

J. REINDERS, An overview of programming for Intel® Xeon® processors and
Intel® Xeon Phi coprocessors, 2012.

G. RIvERA AND C. W. TSENG, Tiling optimizations for 3D scientific compu-
tations, Proc. ACM/IEEE Supercomputing Conference (SC 2000), IEEE Com-
puter Society, Washington, DC, USA, November 2000, p. 32.

J. M. DEL ROSARIO, R. BORDAWEKAR, AND A. CHOUDHARY, Improved parallel
I/0 via a two-phase run-time access strategy, SIGARCH Comput. Archit. News
21:5 (1993), 31-38.

A. RUSSELL AND R. DENNIS, Narsto critical review of photochemical models
and modelling, Atmospheric environment 34 (2000), 2261-2282.

J. SANDERS AND E. KANDROT, CUDA by example: an introduction to general-
purpose gpu programming, Addison-Wesley Professional, 2010.

