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Abstract. Real-world applications of optimisation techniques place more
importance on finding approaches that result in acceptable quality solu-
tions in a short time-frame and can provide robust solutions, capable of
being modified in response to changes in the environment than seeking
elusive global optima. We demonstrate that a hyper-heuristic approach
NELLI* that takes inspiration from artifical immune systems is capa-
ble of life-long learning in an environment where problems are presented
in a continuous stream and change over time. Experiments using 1370
bin-packing problems show excellent performance on unseen problems
and that the system maintains memory, enabling it to exploit previously
learnt heuristics to solve new problems with similar characteristics to
ones solved in the past.
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1 Introduction

Hyper-heuristics cover a general class of search methods that attempt to auto-
mate the process of selecting, combining, generating or adapting simple heuris-
tics in order to solve large classes of problems. Although some compromise in
solution quality is likely when comparing the quality of any single solution to a
specifically tuned optimisation algorithm, the motivation is that this is compen-
sated for by guaranteeing acceptable performance across very large problem sets,
using cheap heuristics that are often simple to understand and can incorporate
human knowledge.

Online hyper-heuristic methods [4] typically learn a sequence of low-level
heuristics that can be applied to perturb an existing solution and learn during
the solving phase. In contrast, offline methods attempt to find mapping between
problem state and heuristic in order to determine how to solve a problem, re-
quiring an initial offline training period using a representative set of problems
(e.g. [18]). Both approaches potentially suffer from weakenesses. In the former,
the hyper-heuristic learns from scratch each time a new instance of a problem is
solved. In the latter, if the characteristics of the problem set change overtime,
the hyper-heuristic needs to be periodically retuned. This potentially leads to in-
efficient algorithms that both fail to exploit previously learned knowledge in the
search for a solution and cannot adapt to changing characteristics of problems.



Recently, Sim et al [13] proposed that the hyper-heuristic field could learn
from new research in the machine-learning field in moving beyond learning al-
gorithms to more seriously consider the nature of systems that are capable of
learning over a life-time, stating that such systems must be capable of retaining
knowledge (i.e. incorporate a memory) and of selectively applying that knowl-
edge to new tasks. They described an approach inspired by Artificial Immune
Systems (AIS) dubbed NELLI in which novel heuristics were continuously gener-
ated and a self-organising process determined whether they should be integrated
into a self-sustaining network of problems and heuristics that could be used to
solve a stream of problems continuously presented to the network. Results in [13]
demonstrated that the system maintained memory, and was adaptable and effi-
cient at solving problems when a dynamic stream of instances was presented. A
modification to one of the key elements of the system — generating novel heuris-
tics — was described in [15] (NELLI*) but was only demonstrated on static sets
of problems in which the nature of the instances did not vary over time. Here, we
demonstrate that using the new representation, not only is the system capable
of life-long-learning but also that significant improvement is found over previous
results when tested on a large corpus of bin-packing problems that vary in their
characteristics and are presented in a continuous stream over time.

2 Background

In the hyper-heuristic domain, there are many examples of systems that either
generate novel heuristics or select from a set of pre-defined heuristics to solve a
problem and are shown to be capable of good performance across large problem
sets, see [1] for a recent and comprehensive overview. However there is relatively
little work that combines both generation and selection (recent examples include
[7,9,17]). Additionally, although there is a wealth of work within the optimisation
field addressing dynamic optimisation in which the fitness function applied to a
single problem instance changes over time (e.g. [19]), we are not aware of other
work that tackles problems in which the fitness function remains static but the
characteristics of the instances presented varies over time.

In contrast, in the AIS literature, there are examples of systems that exhibit
lifelong learning in response to changing environments, in particular in robotics.
Typically, ‘antibodies’ specifying possible actions are connected in a plastic net-
work that varies both in its topology and its constitution over time and de-
termines an appropriate action to execute. This is typified by Whitbrook [20]
who describes scenarios exhibiting both memory and adaptation in a robotics
application — work which provided inspiration for NELLI*.

3 NELLI* algorithm

Described in detail in [13] and visualised in Figure 1, the first version of NELLI
comprised of three main parts: a stream of problem instances, a continuously
generated stream of novel heuristics and a network that sustains co-stimulating
components (heuristics and problem instances). NELLI is designed to run con-
tinuously; problem instances and heuristics can be added in any quantity at any



point. An AIS is responsible for governing the dynamic processes that enable
heuristics and problem instances to be incorporated (stimulated) or rejected
(suppressed) by the network. The orignal version ([13]) exploited a representa-
tion borrowed from Single Node Genetic Programming (SNGP) [6] in which a
heuristic was represented by a tree randomly constructed from a set of termi-
nal nodes that encapsulated information about the problem state (e.g. in the
bin-packing domain, the free space in the bin and item size) and simple func-
tion nodes. All heuristics were randomly generated in this manner. In [15] two
improvements were made. Firstly, the tree representation was replaced by a lin-
ear sequence of heuristic-components, each of which explicitly results in some
items to be placed into the solution; secondly, rather than randomly generate
all heuristics, a proportion pm were generated by applying one of five mutation
operators to an existing heuristic randomly chosen from the sustained network.
By varying the value of pm, it is possible to alter the balance between exploration
(random generation of heuristics) and exploitation (focus the search around ex-
isting heuristics). The exploitation process is achieved through five operators:
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Fig. 1: A conceptual view of the system: Problems and heuristics are continuously
injected into the AIS. The dynamics and meta-dynamics of the system result in
a self-sustaining network of heuristics and problems. Heuristics and problems
that receive no stimulation are removed.

– Select a random heuristic and swap the position of two random nodes.
– Select a random heuristic and replace a random node with a randomly se-

lected node.
– Select a random heuristic from the network and remove a random node.
– Select a random heuristic and add a random node at a random position.
– Select two random heuristics from the network and concatenate their nodes.

Figure 2 shows a generic example of a heuristic represented by a string of
five heuristic components with a “pointer” used by an encompassing wrapper
to indicate the current component position. Each component is chosen from the
list of nodes shown. If a node is successful in packing one or more items into
a bin, then the pointer is advanced to the next node and the process continues
with the current bin – when a node fails, a new bin is opened, and the pointer
advances. The pointer is returned to the start after evaluation of the last node
in the sequence. Each heuristic contains a sequence of nodes that are instanti-
ated randomly up to a maximum initial length, specified by a parameter of the
algorithm (lmax). The sequence may alter in length during the course of a run —
the only constraint imposed is that the sequence must retain at least one node.

The network sustains a network of heuristics and problems through a process
that varies the concentration of each element based on its stimulation. Problems



are directly stimulated by heuristics, and vice versa. Heuristics are indirectly
stimulated by other heuristics. The total stimulation of a heuristic is the sum
of its affinity with each problem in the set P currently in the network N . A
heuristic h has a non-zero affinity with a problem p ∈ P if and only if it provides
a solution that uses fewer bins than any other heuristic currently in H. If this
is the case, then the value of the affinity p ↔ h is equal to the improvement in
the number of bins used by h compared to the next-best heuristic. If a heuristic
provides the best solution for a problem p but one or more other heuristics give
an equal result, then the affinity between problem p and the heuristic h is zero.
If a heuristic h uses more bins than another heuristic on the problem, then
the affinity between problem p and the heuristic h is also zero. This is shown
mathematically in Equations 1 and 2 described in detail in [13]. Essentially,
the equations favour heuristics that are able to find a niche in solving at least
one problem better than any other heuristic in the system, and problems that
represent niche regions of the instance space, i.e. two or more heuristics do not
perform equally on them.

hstim =
∑
p∈P

δbins

{
δbins = min (binsH′p)− binshp : if min (binsH′p)− binshp > 0

δbins = 0 : otherwise

(1)

pstim =
∑
h∈H

δbins

{
δbins = min (binsH′p))− binshp : if min (binsH′p)− binshp > 0

δbins = 0 : otherwise

(2)

Algorithm 1 NELLI* Pseudo Code

Require: H = ∅ :The set of heuristics
Require: P = ∅ :The set of current problems
Require: E = Et=0 :The set of problems to be solved at time t
1: repeat
2: optionally replace E : E∗ ← E∗ ∪ E
3: repeat
4: With probability pm generate a new heuristic via mutation
5: With probabilty 1− pm generate a new heuristic via random initialisation
6: until nh new heuristics generated
7: Add nh new heuristics to H with concentration cinit

8: Add np randomly selected problem instances from E to P with concentration cinit

9: calculate hstim∀h ∈ H using Equation 1
10: calculate pstim∀p ∈ P using Equation 2
11: increment all concentrations (bothH and P) that have concentration < cmax and stimulation

> 0 by ∆c

12: decrement all concentrations (both H and P) with stimulation ≤ 0 by ∆c

13: Remove heuristics and problems with concentration ≤ 0
14: until stopping criteria met

4 NELLI* as a life-long-learning system

In [15] we demonstrated that the linear representation described above improved
the performance of NELLI in terms of finding optimal solutions when applied
to a large but static set of problems. However, the capabilities of NELLI* as
a life-long learning system were not demonstrated. The goal of the paper is to
address this, showing that NELLI* is able to



Node Type Description
1 Packs the single largest item into the

current bin
2 Packs the largest combination of exactly

2 items into the current bin
3 Works as for 1 but packs exactly 3 items
4 Works as for 2 but packs exactly 4 items
5 Works as for 2 but packs exactly 5 items
6 Packs the largest combination of up to 2

items into the current bin giving preference
to sets of lower cardinality.

7 As for 5 but considers sets of up to 3 items
8 As for 5 but considers sets of up to 4 items
9 As for 5 but considers sets of up to 5 items

Fig. 2: Heuristics are represented as linear sequences of nodes. A pointer keeps
track of which node to apply next. The sequence restarts from the beginning
after the last node is processed.

1. Demonstrate memory by quickly (re)finding solutions to problems that were
seen by the system in the past

2. Continue to learn by continuing to improve its performance on problems in
the datasets

3. Generalise, by quickly finding good solutions to problems that are similar to
instances seen previously

We demonstrate this using a set of 1370 bin-packing problems taken from
a variety of sources in the literature. Data sets ds1, ds2 & ds3 were introduced
by [11] and comprise 720, 480 and 10 of the instances respectively. Problems
in ds1, ds3 have optimal solutions with on average 3 items per bin and are
similar in nature; solutions for problems in ds2 which have widely variable item
weights have between 3 and 9 items per bin. Literature indicates that for a given
algorithm, performance varies greatly on ds2 when compared to (ds1, ds3) [5].
The remaining instances are taken from FalU , FalT , and were introduced by
[3]. All 1370 problems have known optimal solutions. In the following discussion
we distinguish the following :

– U - the set of 1370 problems from the class of 1D-BPP of interest.
– E - the current environment, i.e. the set of problems we are currently inter-

ested in solving, E ⊂ U
– E∗ - the set of problems presented to the network so far
– P - the set of problems currently sustained in the immune network P ⊂ E∗

(this is an internal property of the network)

5 Results

Four experiments were conducted using parameters described in Table 1 (taken
from [15] where the tuning process is described). Performance was evaluated in
terms of the number of problems solved optimally and in terms of the number
of bins required over the known optimal solutions.



Clearly the problems considered have been solved by a plethora of optimi-
sation methods in the past (including hyper-heuristics). For instance, Burke et
al [2] obtain excellent results on the 90 problem instances in FalU and ds3 by
evolving an individual heuristic per problem instance using 50000 evaluations
for each instance. Others seek optimality using exact methods (e.g. [11]) to solve
each instance separately. In contrast, NELLI aims to find high quality solutions
to very large sets of problems by only evaluating a very small subset of the in-
stance space, therefore, direct comparisons with ‘per-instance’ methods cannot
be made. Some earlier hyper-heuristic methods do attempt a similar kind of gen-
eralisation (e.g. [10]), however as we have already shown in [13] that the original
version of NELLI outperforms these methods we omit these comparisons.

In addition to comparing to NELLI [13], we compare our results to those
obtained by a set of four well known heuristics from the literature (FFD, DJD,
ADJD and DJT, see [16]) in which the best heuristic for each problem is selected
using a greedy approach. Additionally, where appropriate we also compare to
our own earlier work using an AIS model introduced in [17] and an island-model
evolutionary algorithm described in [14].

Table 1: Default parameter settings for experiments

Parameter Description Value
np number of problems added each iteration 30
nh number of heuristics added each iteration 1
cinit initial concentration of heuristics/problems 200
∆c variation in concentration based on stimulation 50
cmax maximum concentration level 1000
pm Probability of mutation 0.75
lmax maximum initial heuristic sequence length 10

5.1 Generalisation Capabilities

In order to test the generalisation capabilities of NELLI*, in the first instance
the full set of 1370 instances was randomly split into two equally sized sets,
labelled train and test — each set contained an equal distribution of examples
from each of the 5 constituent problem sets. NELLI* was run for 200 iterations
using the train set before being presented with the unseen problems in the
test set. Performance was evaluated in terms of the number of problems solved
optimally and in terms of the number of bins required over the known optimal
solution and is shown in table 2 where all results are averaged over 20 runs.

NELLI* clearly generalises, finding the optimal solution to 82.6% of the un-
seen problems, and reducing the number of bins over optimal in comparison to
the other algorithms. Comparing the results obtained using NELLI and NELLI*
using a t-test proves the result is highly significant (P < 0.0001). Although not
shown, NELLI* continues to learn and improve results (albeit at a slower rate)
if executed over a much larger number of generations.

An additional experiment was performed in which every 200 iterations, a
random set of n instances were selected from U to form the environment E
and presented to the system. At each iteration, the performance of the system
against U (the complete universe of 1370 problems) is measured. Recall that at
each iteration, the environment contains at most n = 685 problems, and only



Table 2: Results on the unseen 685 problems in the test set after 200 iterations
training on the 685 problems in the training set

Problems Solved Extra Bins

min max mean sd min max mean sd

Greedy Heuristic selection 548 548 548 0 188 188 188 0

AIS model [17] 554 559 556 1.4 159 165 162 1.4

Island Model [14] 552 559 557 1.4 159 164 162 1.4

NELLI [13] 559 559 559 0 159 159 159 0

NELLI* 549 576 566 5.8 131 164 146 8.2

np = 30 of these are presented to the network at each instance, hence many of the
instances in U have never been seen. Figure 3 plots performance over U over 1000
iterations (averaged over 20 runs) for n ∈ 100, 200, 685 and compares the results
to the best result obtained by the old version of NELLI. A number of important
points are apparent: NELLI* clearly outpeforms NELLI; it generalises over U
— recall that in the early iterations most of the problems in U are unseen; it
continues to learn over time; the ability to generalise is maximised by increasing
the size of E .
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Fig. 3: The average number of bins greater than the optimal; the environment E
is replaced with n randomly selected problem instances every 200 iterations.

5.2 Memory and Learning

In order to investigate the memory capabilties of NELLI* we conduct an experi-
ment in which the environment E is toggled between two different datasets every
200 iterations. The first dataset contains the 720 problems in ds1 and the second
the 480 problem instances in ds2. As previously mentioned, these datasets have
different characteristics such that heuristics that perform well on one dataset
are not expected to perform well on the second. Typically, ds1 problems are also
easier to solve. Each dataset is presented twice in the sequence ds2, ds1, ds2, ds1
following a ‘start-up’ epoch in which the system is initialised from scratch with
ds1 and run for 200 iterations. For each dataset, we record the number of bins
more than optimal at the start of each epoch it is introduced (bs), and at the
end of each epoch (be). We formulate the following hypotheses:



– Hypothesis 1 if the system has retained some memory of heuristics that
previously solved these problems, we expect the value of be at epoch t to be
similar to bs at the next epoch the dataset is introduced (epoch t + 2)

– Hypothesis 2 If the system continues to learn over an epoch, there should be
a significant difference between bs and be over an epoch during which the
dataset is present

– Hypothesis 3 If the system continues to learn over its lifetime, there should
be a significant difference between be at the first epoch the dataset appears,
and be at the last epoch it occurs

The results are shown in Table 3 and graphically in figure 4a, averaged over
20 runs in each case and compared to the results previously published in [17].
With respect to hypothesis 1, t-tests conducted on the values obtained at the
end of epoch 1 and the start of epoch 3 for ds2, and epochs 2 and 4 for ds1 show
no significant difference between results (P=0.581,0.581), thus we infer that the
system has retained memory1. With respect to hypothesis 2, t-tests between the
values of bs and be at the two epochs where ds2 appears both given p-values
< 0.0001, confirming that the observed difference is performance is significant.
The same result is found for ds1 at epochs 2 and 4. Thus, we confirm that
learning occurs over an epoch. Finally, we compare the value of be at epoch 1
with be at epoch 3 (P < 0.0001) and similarly with epochs 2 and 4 (P = 0.0138)
proving the ability of NELLI* to learn over time.

Figure 3 confirms these trends by further analysing the final experiment
described in section 5.1 in which E is changed to a randomly selected set of 685
instances from the 1370 problems in U every 200 instances. The same general
trends are observed as in Figure 4a in that learning continues across the 1000
iterations. The difference between be and bs is less defined at each epoch in this
instance, as problems in E at epoch t are likely to overlap with those in E at
epoch t+1. The magnitude of |be−bs| (where be is measured at the end of epoch
t and bs at the start of epoch t + 1 decreases over time, as a direct result of the
memory of the system.

Table 3: Bins greater than the known optimal at epochs. Averaged over 20 runs.
Epoch 1 Epoch 2 Epoch 3 Epoch 4

DS2 DS1 DS2 DS1

Set Start End Start End Start End Start End

NELLI* E 123.28 80.61 52.94 45.78 79.39 70.72 44.83 41.28

NELLI E 123.95 104.8 67.3 59 116.95 104.65 65.6 59

Greedy E 129 129 75 75 129 129 75 75

NELLI* U 312.89 259.17 257.67 247.22 246.89 233.94 234.44 229.17

NELLI U 333.1 315.75 317.05 321.5 320.95 315.15 315.25 320.85

Greedy U 364 364 364 364 364 364 364 364

1 strictly speaking, this only suggests that there is no evidence to suggest otherwise
rather than providing proof
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6 Conclusions and Future Work

In an extension to previous work, we have shown that the NELLI* system is ca-
pable of operating as a life-long learning (LML) system. As identified by [12] in
their recent proposal, the system exhibits the three defining characteristics of an
LML system: it incorporates a long-term memory; it selectively transfers prior
knowledge when learning new tasks; it adopts a systems approach that ensures
the effective and efficient interaction of the elements of the system. In compari-
son to previous hyper-heuristic approaches, it obtains better performance when
evaluated according to two metrics, number of problems solved, and number of
bins over optimal. Although any hyper-heuristic method that focuses on solving
large sets of problems will inevitably trade some loss in performance against
both generality and speed when compared to approaches that optimise solu-
tions for each problem individually, we believe that in practice, such solutions
are more than acceptable. In a recent article considering why evolutionary al-
gorithms are not widely adopted in the real-world [8], the author notes that in
industry, organisations do not have time to generate globally optimum solutions
and therefore place higher importance on finding robust, quality solutions that
can be generated quickly due to changes in the environment. NELLI directly
addresses this issue, in providing cheap, high quality solutions in a system that
does not need either tuning or modifying even as the environment it operates in
changes.
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