Skip to main content

In Vivo Veritas: Towards the Evolution of Things

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8672))

Abstract

The main thesis of the position paper is that in the near future it will be possible to create populations of animate physical objects that undergo evolution in real space and real time. The resulting systems will differ from Evolutionary Computing in two crucial aspects. First, the individuals will be physical rather than digital. This requires reproduction operators for physical objects, which forms an engineering challenge. Second, the evolutionary process will be induced by the autonomous behavior of the individuals themselves, not by some central evolutionary agency that orchestrates selection and reproduction. These differences imply severe challenges for evolutionary algorithm designers because ‘tricks’ that work in in silico may not work in vivo. However, overcoming these challenges will ignite the development of a new field that combines Evolutionary Computing, Robotics, Artificial Life, and Embodied AI with a great potential for engineering as well as scientific research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, M.: Embodied cognition: A field guide. Artificial Intelligence (149), 91–130 (2003)

    Google Scholar 

  2. Ashlock, D.: Evolutionary Computation for Modeling and Optimization. Springer (2006)

    Google Scholar 

  3. Auerbach, J., Bongard, J.: Environmental influence on the evolution of morphological complexity in machines. PLOS Computational Biology 10(1), e1003399 (2014)

    Google Scholar 

  4. Bentley, P. (ed.): Evolutionary Design by Computers. Morgan Kaufmann, San Francisco (1999)

    MATH  Google Scholar 

  5. Bentley, P., Corne, D.: Creative Evolutionary Systems. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  6. Bongard, J.: Evolutionary robotics. Communications of the ACM 56(8), 74–85 (2013)

    Article  Google Scholar 

  7. Brooks, R.: Cambrian Intelligence: The Early History of the New AI. MIT Press (1999)

    Google Scholar 

  8. Buresch, T., Eiben, A.E., Nitschke, G., Schut, M.: Effects of evolutionary and lifetime learning on minds and bodies in an artifical society. In: Proceedings of the IEEE Conference on Evolutionary Computation, CEC 2005, pp. 1448–1454. IEEE Press (2005)

    Google Scholar 

  9. Darwin, C.: The Origin of Species. John Murray, London (1859)

    Google Scholar 

  10. De Jong, K.: Evolutionary Computation: A Unified Approach. The MIT Press (2006)

    Google Scholar 

  11. De Jong, K.: Are genetic algorithms function optimizers? In: Männer, R., Manderick, B. (eds.) Proceedings of the 2nd Conference on Parallel Problem Solving from Nature, pp. 3–13. North-Holland, Amsterdam (1992)

    Google Scholar 

  12. Doncieux, S., Bredèche, N., Mouret, J.-B. (eds.): New Horizons in Evolutionary Robotics. SCI, vol. 341. Springer, Heidelberg (2011)

    Google Scholar 

  13. Eiben, A.: Grand challenges for evolutionary robotics. Frontiers in Robotics and AI 1(4) (2014), doi:10.3389/frobt.2014.00004

    Google Scholar 

  14. Eiben, A., Bredeche, N., Hoogendoorn, M., Stradner, J., Timmis, J., Tyrrell, A., Winfield, A.: The triangle of life: Evolving robots in real-time and real-space. In: Liò, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances in Artificial Life, ECAL 2013, pp. 1056–1063. MIT Press (2013)

    Google Scholar 

  15. Eiben, A.E.: Multiparent recombination in evolutionary computing. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing. Natural Computing Series, pp. 175–192. Springer (2002)

    Google Scholar 

  16. Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution for autonomous robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution, ch. 5.2, pp. 361–382. Springer (May 2010)

    Google Scholar 

  17. Eiben, A.E., Kernbach, S., Haasdijk, E.: Embodied artificial evolution – artificial evolutionary systems in the 21st century. Evolutionary Intelligence 5(4), 261–272 (2012)

    Article  Google Scholar 

  18. Eiben, A.E., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)

    Google Scholar 

  19. Fernando, C., Kampis, G., Szathmáry, E.: Evolvability of natural and artificial systems. Procedia Computer Science 7, 73–76 (2011)

    Article  Google Scholar 

  20. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, vol. Part G.61, pp. 1423–1451. Springer (2008)

    Google Scholar 

  21. Floreano, D., Keller, L.: Evolution of adaptive behavior in robots by means of darwinian selection. PLOS Biology 8(1), e1000292 (2010)

    Google Scholar 

  22. Griffioen, A., Smit, S.K., Eiben, A.E.: Learning benefits evolution if sex gives pleasure. In: Michalewicz, Z., Reynolds, B. (eds.) Proceedings of the 2008 IEEE Congress on Evolutionary Computation, Hong Kong, China, pp. 2073–2080. IEEE Computational Intelligence Society. IEEE Press (2008)

    Google Scholar 

  23. Haasdijk, E., Bredeche, N.: Controlling task distribution in MONEE. In: Liò, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances in Artificial Life, ECAL 2013, pp. 671–678. MIT Press (2013)

    Google Scholar 

  24. Haasdijk, E., Bredeche, N., Eiben, A.E.: Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics. PLoS ONE 9(6), e98466 (2014)

    Google Scholar 

  25. Haasdijk, E., Weel, B., Eiben, A.: Right on the MONEE. In: Blum, C., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2013), Amsterdam, The Netherlands, July 6-10, pp. 207–214. ACM (2013)

    Google Scholar 

  26. Hoffmann, M., Pfeifer, R.: The implications of embodiment for behavior and cognition: animal and robotic case studies. In: Tschacher, W., Bergomi, C. (eds.) The Implications of Embodiment: Cognition and Communication, pp. 31–58. Imprint Academic (2012)

    Google Scholar 

  27. Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.): Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139. Springer, Heidelberg (2004)

    Google Scholar 

  28. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary algorithms: Trends and challenges. IEEE Transactions on Evolutionary Computation (to appear, 2014), doi:10.1109/TEVC.2014.2308294

    Google Scholar 

  29. Laredo, J., Eiben, A.E., van Steen, M., Merelo, J.J.: EvAg: a scalable peer-to-peer evolutionary algorithm. Genetic Programming and Evolvable Machines 11, 227–246 (2010)

    Article  Google Scholar 

  30. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406, 974–978 (2000)

    Article  Google Scholar 

  31. Long, J.: Darwin’s Devices: What Evolving Robots Can Teach Us About the History of Life and the Future of Technology. Basic Books (2012)

    Google Scholar 

  32. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: A survey and analysis. Robotics and Autonomous Systems 57(4), 345–370 (2009)

    Article  Google Scholar 

  33. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  34. Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think. MIT Press (2006)

    Google Scholar 

  35. Pollack, J.B., Lipson, H., Ficici, S.G., Funes, P., Hornby, G., Watson, R.A.: Evolutionary techniques in physical robotics. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 175–186. Springer, Heidelberg (2000)

    Google Scholar 

  36. Schut, M., Haasdijk, E., Eiben, A.E.: What is situated evolution? In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, May 18-21, pp. 3277–3284. IEEE Press, Piscataway (2009)

    Chapter  Google Scholar 

  37. Sims, K.: Evolving 3D morphology and behavior by competition. Artificial Life 1(4), 353–372 (1994)

    Article  Google Scholar 

  38. Trianni, V.: Evolutionary Swarm Robotics – Evolving Self-Organising behaviors in Groups of Autonomous Robots. SCI, vol. 108. Springer, Heidelberg (2008)

    Google Scholar 

  39. Vargas, P., Paolo, E.D., Harvey, I., Husbands, P. (eds.): The Horizons of Evolutionary Robotics. MIT Press (2014)

    Google Scholar 

  40. Waibel, M., Floreano, D., Keller, L.: A quantitative test of Hamilton’s rule for the evolution of altruism. PLOS Biology 9(5), e1000615 (2011)

    Google Scholar 

  41. Wang, L., Tan, K., Chew, C.: Evolutionary Robotics: from Algorithms to Implementations. World Scientific Series in Robotics and Intelligent Systems, vol. 28. World Scientific (2006)

    Google Scholar 

  42. Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an evolutionary algorithm in a population of robots. Robotics and Autonomous Systems 39(1), 1–18 (2002)

    Article  Google Scholar 

  43. Wickramasinghe, W., van Steen, M., Eiben, A.E.: Peer-to-peer evolutionary algorithms with adaptive autonomous selection. In: D. T., et al. (eds.) GECCO 2007: Proc of the 9th Conference on Genetic and Evolutionary Computation, pp. 1460–1467. ACM Press (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Eiben, A.E. (2014). In Vivo Veritas: Towards the Evolution of Things. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics