Skip to main content

Distance Measures for Permutations in Combinatorial Efficient Global Optimization

  • Conference paper
Parallel Problem Solving from Nature – PPSN XIII (PPSN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8672))

Included in the following conference series:

Abstract

For expensive black-box optimization problems, surrogate-model based approaches like Efficient Global Optimization are frequently used in continuous optimization. Their main advantage is the reduction of function evaluations by exploiting cheaper, data-driven models of the actual target function. The utilization of such methods in combinatorial or mixed search spaces is less common. Efficient Global Optimization and related methods were recently extended to such spaces, by replacing continuous distance (or similarity) measures with measures suited for the respective problem representations.

This article investigates a large set of distance measures for their applicability to various permutation problems. The main purpose is to identify, how a distance measure can be chosen, either a-priori or online. In detail, we show that the choice of distance measure can be integrated into the Maximum Likelihood Estimation process of the underlying Kriging model. This approach has robust, good performance, thus providing a very nice tool towards selection of a distance measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul-Razaq, T., Potts, C., Wassenhove, L.V.: A survey of algorithms for the single machine total weighted tardiness scheduling problem. Discrete Applied Mathematics 26(23), 235–253 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allahverdi, A., Ng, C., Cheng, T.E., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. European Journal of Operational Research 187(3), 985–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altenberg, L.: Fitness distance correlation analysis: An instructive counterexample. In: Bäck, T. (ed.) ICGA, pp. 57–64. Morgan Kaufmann (1997)

    Google Scholar 

  4. Bartz-Beielstein, T., de Vegt, M., Parsopoulos, K.E., Vrahatis, M.N.: Designing particle swarm optimization with regression trees. Technical Report CI–173/04, Universität Dortmund, (Mai 2004)

    Google Scholar 

  5. Beasley, J.E.: OR-Library: distributing test problems by electronic mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990)

    Article  Google Scholar 

  6. Burkard, R.E.: Quadratic assignment problems. European Journal of Operational Research 15(3), 283–289 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB – a quadratic assignment problem library. Journal of Global Optimization 10(4), 391–403 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Camacho, D., Huerta, R., Elkan, C.: An evolutionary hybrid distance for duplicate string matching. Technical report, Universidad Autonoma de Madrid (2008)

    Google Scholar 

  9. Campos, V., Laguna, M., Martí, R.: Context-independent scatter and tabu search for permutation problems. INFORMS Journal on Computing 17(1), 111–122 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caprara, A.: Sorting by reversals is difficult. In: Proceedings of the First Annual International Conference on Computational Molecular Biology, RECOMB 1997, pp. 75–83. ACM, New York (1997)

    Chapter  Google Scholar 

  11. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling. Wiley (2008)

    Google Scholar 

  12. Gagné, C., Schoenauer, M., Sebag, M., Tomassini, M.: Genetic programming for kernel-based learning with co-evolving subsets selection. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 1008–1017. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences. Communications of the ACM 18(6), 341–343 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hutter, F.: Automated configuration of algorithms for solving hard computational problems. PhD thesis, University of British Columbia (2009)

    Google Scholar 

  15. Jin, Y.: Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation 1(2), 61–70 (2011)

    Article  Google Scholar 

  16. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. Journal of Global Optimization 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  18. Kallel, L., Schoenauer, M.: Fitness distance correlation for variable length representations. Technical report, Ecole Polytechnique (1996)

    Google Scholar 

  19. Kendall, M., Gibbons, J.: Rank correlation methods. A Charles Griffin Book. E. Arnold (1990)

    Google Scholar 

  20. Lee, C.: Some properties of nonbinary error-correcting codes. IRE Transactions on Information Theory 4(2), 77–82 (1958)

    Article  Google Scholar 

  21. Li, R., Emmerich, M.T.M., Eggermont, J., Bovenkamp, E.G.P., Back, T., Dijkstra, J., Reiber, J.: Metamodel-assisted mixed integer evolution strategies and their application to intravascular ultrasound image analysis. In: Congress on Evolutionary Computation, pp. 2764–2771. IEEE (2008)

    Google Scholar 

  22. Moraglio, A., Kattan, A.: Geometric generalisation of surrogate model based optimisation to combinatorial spaces. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 142–154. Springer, Heidelberg (2011)

    Google Scholar 

  23. Moraglio, A., Kim, Y.-H., Yoon, Y.: Geometric surrogate-based optimisation for permutation-based problems. In: Krasnogor, N., et al. (eds.) Genetic and Evolutionary Computation Conference, pp. 133–134. ACM (2011)

    Google Scholar 

  24. Reeves, C.R.: A genetic algorithm for flowshop sequencing. Computers & Operations Research 22(1), 5–13 (1995)

    Article  MATH  Google Scholar 

  25. Reeves, C.R.: Landscapes, operators and heuristic search. Annals of Operations Research 86, 473–490 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reinelt, G.: TSPLIB – A traveling salesman problem library. ORSA Journal on Computing 3(4), 376–384 (1991)

    Article  MATH  Google Scholar 

  27. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search landscape analysis. Computers & Operations Research 34(10), 3143–3153 (2007)

    Article  MATH  Google Scholar 

  28. Serpell, M., Smith, J.E.: Self-adaptation of mutation operator and probability for permutation representations in genetic algorithms. Evolutionary Computation 18(3), 491–514 (2010)

    Article  Google Scholar 

  29. Sevaux, M., Sörensen, K.: Permutation distance measures for memetic algorithms with population management. In: Metaheuristics International Conference, pp. 832–838 (2005)

    Google Scholar 

  30. Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem. European Journal of Operational Research 47(1), 65–74 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Voutchkov, I., Keane, A., Bhaskar, A., Olsen, T.M.: Weld sequence optimization: The use of surrogate models for solving sequential combinatorial problems. Computer Methods in Applied Mechanics and Engineering 194(30-33), 3535–3551 (2005)

    Article  MATH  Google Scholar 

  32. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of the ACM (JACM) 21(1), 168–173 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wikipedia. Longest common substring problem — wikipedia, the free encyclopedia (2014) (Online; accessed March 26, 2014)

    Google Scholar 

  34. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein, T.: Efficient global optimization for combinatorial problems. In: Genetic and Evolutionary Computation Conference (accepted 2014) (preprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zaefferer, M., Stork, J., Bartz-Beielstein, T. (2014). Distance Measures for Permutations in Combinatorial Efficient Global Optimization. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds) Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014. Lecture Notes in Computer Science, vol 8672. Springer, Cham. https://doi.org/10.1007/978-3-319-10762-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10762-2_37

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10761-5

  • Online ISBN: 978-3-319-10762-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics