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Abstract. Recently, there has been a renewed interest in decompobiised
approaches for evolutionary multiobjective optimizatibfowever, the impact of
the choice of the underlying scalarizing function(s) il & from being well un-
derstood. In this paper, we investigate the behavior oéréffit scalarizing func-
tions and their parameters. We thereby abstract firstly oynspecific algorithm
and only consider the difficulty of the single scalarizedipems in terms of the
search ability of 1 + \)-EA on biobjective NK-landscapes. Secondly, combin-
ing the outcomes of independent single-objective runswallfor more general
statements on set-based performance measures. Finallyegtigate the corre-
lation between the opening angle of the scalarizing funiiaonderlying contour
lines and the position of the final solution in the objectipace. Our analysis is
of fundamental nature and sheds more light on the key claisiits of multiob-
jective scalarizing functions.

1 Introduction

Multiobjective optimization problems occur frequently mactice and evolutionary
multiobjective optimization (EMO) algorithms have beemsh to be well-applicable
for them—especially if the problem under study is nonlingad/or derivatives of the
objective functions are not available or meaningless.d@ssihe broad class of Pareto-
dominance based algorithms such as NSGA-II or SPEA2, a récemest in the so-
calleddecomposition-based algorithraan be observed. Those decompose the multi-
objective problem into a set of single-objective, ‘scalad’ optimization problems. Ex-
amples of such algorithms include MSORS [1], MOEAID [2], dheir many variants.
We refer to [3] for a recent overview on the topic. The mairaidkehind those algo-
rithms is to define a set of (desired) search directions iraibje space and to specify
the scalarizing functions corresponding to these dirastidhe scalarizing functions
can then be solved independently (such as in the case of MEOP1B a dependent
manner (like in MOEA/D where the recombination and selectiperators are allowed
to use information from the solutions maintained in neigimgpsearch directions).
Many different scalarizing functions have been proposdidediterature, see e.@1.[4]
for an overview. Well-known examples are the weighted sumh e (augmented)
weighted Chebychev functions, where the latter has an émttgrarameter that con-
trols the shape of the lines of equal function values in dbhjespace. Especially with
respect to decomposition-based EMO algorithms, it has begorted that the choice
of the scalarizing function and their parameters has andtgrathe search process [3].
Moreover, it has been noted that adapting the scalarizingtion’s parameters dur-
ing the search can allow improvement over having a constnifsscalarizing func-
tions [5]. Although several studies on the impact of theagzihg function have been
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conducted in recent years, e.gl [6], to the best of our kndbgdeall of them investi-
gate it on a concrete EMO algorithm and on the quality of tlelteng solution sets
when more than one scalarizing function is optimized (tglycas mentioned above,
in a dependent manner). Thereby, the focus is not in uncdhelisiga why those perfor-
mance differences occur but rather in observing them araigtty improve the global
algorithm. However, we believe that it is more important tetfunderstand thoroughly
the impact of the choice of the scalarizing function fosiagle search direction be-
fore analyzing more complicated algorithms such as MOEMB-approaches with
specific neighboring structures, recombination, and seleoperators. In this paper,
we fundamentally investigate the impact of the choice ofsttedarizing functions and
their parameters on the search performance, independsrdlyy known EMO algo-
rithm. Instead, we consider one of the most simple singleative scalarizing search
algorithms, i.e., g1 + A)-EA with standard bit mutation, as an example of a local
search algorithm that optimizes a single scalarizing fian¢icorresponding to a single
search direction in the objective space. Experiments anduwied on well-understood
bi-objectivepMNK-landscapes.

More concretely, we look experimentally at the impact of plagameters of a gen-
eralized scalarizing function (which covers the speciakseof the weighted sum and
augmented Chebychev scalarizing functions) in terms optigition (angle/direction)
reached by the final points, as well as their quality with ee$po the Chebychev func-
tion. We then consider how the opening of the cones that dhestire lines of equal
scalarizing function values can provide a theoretical @xation for the impact of the
final position of the obtained solutions in objective spatle also investigate the result-
ing set qualityin terms of hypervolume andindicator if several scalarizinfl + \)-
EAs are run independently for different search directiorthe objective space. Finally,
we conclude our findings with a comprehensive discussiomarhfsing research lines.

2 Scalarizing Functions

We consider the maximization of two objectivés f, that map search points € X
to an objective vectoyf(z) = (fi(x), fa(x)) = (21, 22) in the so-called objective
spacef (X). A solutionz is calleddominatedby another solutiony if f1(y) > fi(z),
f2(y) > fa2(x), and for at least ong f;(y) > f:(x) holds. The set of all solutions, not
dominated by any other, is called Pareto set and its imageidfront.

Many ways ofdecomposing multiobjective optimization problem into a (set of)
single-objectivescalarizing functiongxist, including the prominent examplesmedigh-
ted sum(WS), weighted ChebychW), or augmented weighted Chebycl{By,g) [4].
For most of them, theoretical results, especially abouttviareto-optimal solutions
are attainable, exist|[4,7] but they are typically of too geh nature to allow for state-
ments on the actual search performance of (stochasticnigatiion algorithms. In-
stead, we are here not interested in any particular scalgrimnction, but rather in
understanding which general properties of them influenes#arch behavior of EMO
algorithms. We argue by means of experimental investigatthat it is not the actual
choice of the scalarizing function or their parameters thakes the difference in terms
of performance, but rather the general properties of thdtieg lines of equal function
values. To this end, we consider the minimization of theof@lhg general scalarizing
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Table 1. Overview of the considered scalarizing functions, and threesponding an-
gles of the lines of equal function values with the standane:® dominance cone.

scalar function parameters $igen Opening angles reference
WS(z) = wi|Z1 — 21| + w2|Z2 — 22| a=0e=1 91:arctan(— Z—;) 4l Eq. 3.1.1]
02 = 5 + arctan (%)
T(2) = max{A1|z1 — z1], A2]Z2 — 22]} a=1,e=0 601=0 [@ Eq. 3.4.2]
0, = 71’/2
Saug(z) = T(z) + € (|z21 — z1]| + |22 — 22|) &« = 1, 61 = arctan ( — ﬁ) [4 Eq. 3.4.5]
wy = wz =1 92:%+arctan(#)
Snom(z) = (1 — )T (z) + eWS(z) a = 1 —¢g6;= arctan(—%) here
wy; = 1/)\1 EwW2

0= %5 + arctan(m)

function that covers the special cases\d, T, andSayg functions:
Sgen(z) = - max{)\l . |51 — 2’1|,)\2 . |52 — 2’2|} + € (’LU1 . |51 — 21| =+ waq - |22 — 22|)

wherez = (z1, 22) is the objective vector of a feasible solutian= (z1, z2) a utopian
point, A1, A2, w1, andws > 0 scalar weighting coefficients indicating a search directio
in objective space, and > 0 ande > 0 parameters to be fixed. For more details about
the mentioned scalarizing functions and their relatiomsive refer to TablE]1.

In the following, we also consider a case %k that combinesVS andT with a
single parameter. the normalize®nom(z) = (1 —¢)T(z) + eWS(z) wherea = 1 —¢
ande € [0,1]. For optimizing in a given search directigd,, d2) in objective space,
we follow [1/8] and set\;, = 1/d;3 In addition, we refer to the direction angle as
0 = arctan(d;/ds). For the case 0Bnorm, We furthermore choose;, = cos(d) and
wy = sin(d) (thus,w? + w3 = 1) for the weighted sum part in order to normalize
the search directions in objective space uniformly whgitangles Though, in many
textbooks you can find statements likelfas to be chosen small (enough)”, we do not
make such an assumption but want to understand which in#uehas on the finally
obtained solutions and how it introduces a trade-off beiwtbe Chebychev approach
and a weighted sum. For the question of how smahould be chosen to find all Pareto-
optimal solutions in exact biobjective discrete optimiaaf we refer to[[9].

As mentioned above, one important property of a scalarifzingtion turns out to
be the shape of its sets of equal function values, which aogvkrfor theWs, T, and
Saugfunctions[4]. However, no description of the equi-funatiealue lines for the gen-
eral scalarizing functioBge, has been given so far. We think that it is necessary to state
those opening angles explicitly in order to gain a deepeaiitimé understanding of the
above scalarizing approaches and related concepts suod B2 indicatori[B8] or more
complicated scalarizing algorithms such as MOEA/D [2]. Blrer, it allows us to in-
vestigate how a linear combination of weighted sum and Ctiedyfunctions affect the
search behavior of decomposition-based algorithms. Thanfimg proposition, proven
in the accompanying repolt[10], states these opening afAgketween the equi-utility
lines and thef; -axis, see also Fif] 2 for some examples.

4 Contrary to the standard literature, our formalizatioruasss minimization and we therefore
have included the utopian poigtthat is typically assumed to kle= (0, 0) for minimization.
® The pathologic cases of directions parallel to the cootdimare left out to increase readability.



Table 2. Parameter setting.

scalarizing functions pMNK-landscapes (1+ X\)-EA
zZ= (1,1) p€{—09,-038,...,0.0,...,0.0} A=n
§=4-1072- 2, j€[1,99] m =2 bit-flip rate= 1/n
Snom: € = £-1072; £ € [0,100] n =128 stopped after
Saug € = £-107%; £€[0,10];k € [-1,2] k=4 n iterations

Proposition 1. Letz be a utopian pointj;, Az, w1, andwsy > 0 scalar weighting coef-
ficients,a > 0 ande > 0, where at least one of the latter two is positive. Then, tHarpo
angles between the equi-utility lines $fenand thef, -axis aref, = arctan(— M?j;w )
andf, = 7 + arctan(

A tewr)-
3 Experimental Design

This section presents the experimental setting allowing asalyze the scalarizing ap-
proaches introduced above on bi-objectidNK-landscapes. The family gsMNK-
landscapes constitutes a problem-independent model wsembfistructing multiob-
jective multimodal landscapes with objective correlatiibfi]. A bi-objective pMNK-
landscape aims at maximizing an objective function vegtor{0,1}" — [0,1]%. A
correlation parameterdefines the degree of conflict between the objectives. Wesinve
tigate a random instance for each parameter combinati@mgivTabld 2.

We investigate the two scalarizing functid®gm andSaug of Table[1 with different
parameter settings for the weighting coefficient vector thied parameter, as reported
in Table[2. In particular, th&VS (resp.T) function corresponds t8nom With ¢ =
1 (resp.e = 0). The set of weighting coefficiertirection angless; with respect to
the fi-axis (j € {1,...,99}) are uniformly defined with equal distances in the angle
space. For both functions, we skt = 1/cos(d;), andXy = 1/sin(d;). We recall
that for Sporm, w; = 1/X;, and forSayg w; = 1. To evaluate the relative and the joint
performance of the considered scalarizing functions, westigate the dynamics and
the performance of a randomized local search, a sirfible )\)-EA. After initially
drawing a random solution, at each iterationpffspring solutions are generated by
means of an independent bit-flip mutation, where each bitefgarent solution is
independently flipped with a ratg/'n. The solution with the best (minimum) scalarizing
function value among parent and offspring is chosen for e iteration. For each
configuration 30 independent executions are performed. Due to space lionigtwe
shall only show a representative subset of settings allpwin to state our findings.
More exhaustive results can be foundin|[10].

4 Single Search Behavior

This section is devoted to the study of the optimization pdtilowed bysinglein-
dependenfl + \)-EA runs for each direction angteand parameter of a scalarized
problem. In particular, we study the final solution sets heaicby the(1 + \)-EA in
terms of diversity and convergence and give a sound exptamah how the search
behaviour is related to the lines of equal function valuethefscalarizing functions.
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Fig. 1. Left: Angles of final solutions fo$,om andp = —0.7 as a function of. Middle:
Average deviation to best as a function of weight vectoSigr, andp = —0.7. Right:
e-values providing the smallest deviation for every fixedediion inSpem andp €
{-0.7,0.0,0.7}.

4.1 Diversity: Final Angle

In Fig.[ (Left), we examine the averagagle of the final solution reached by the
algorithm with respect to thé -axis usingS,orm. The final angle of solution is defined
as ¢(x) = arctan(f2(x)/f1(z)). It informs about the actualirection followed by
the search process. We can see that the final solutions ayeimegtric positions with
respect to direction angle/4. This is coherent with the symmetric naturedfNK-
landscapes [11]. FONVS (¢ = 1), every single direction angle infers a different final
angle. FofT (¢ = 0), the extreme direction angles end up reaching ‘similagions of
the objective space. These regions actually corresportiexicographically optimal
points of the Pareto front, which is because of the choic@@futopian point that lies
beyond them. Without surprise, we can also seeThamdWS do not always allow to
approach the same parts of the Pareto front when using the diaection angle.

When varyinge for a fixed d, the search process is able to span a whole range
of positions that are achieved by eithEror WS but for variabled values. Actually,
when considering the direction angle being in the middk §i.~ 7/4), the choice of
¢ does not substantially impact the search direction—bec@usnd WS do allow to
move to similar regions in this case. However, as the divaciingle goes away from
the middle, the influence af grows significantly; and the search direction is drifting
in a whole range of values. This indicates that the choicé& isfnot the only feature
that determines the final angle but also the choicetoghly matters: For some specific
e-values, the direction angles allow to distribute final @sgfairly between the two
lexicographically optimal points of the Pareto front—irethkense that each direction
angle is inferring a different final angle, just like what wieserve forWS. For some
othere-values, however, it may happen that the final angles ardssifor two different
direction angles. In particular, this is the case for largmlues inS,orm, for whichWS
has more impact thaf. We remark that equivalent conclusions can be drawn when
examiningSaug Which we do not detail here due to lack of space.

The distribution of final directions is tightly related toettdiversity of solutions
computed by different independent single )-EAs. As it will be discussed later, this
is of crucial importance from a multiobjective standpogigce diversity in the objective
space is crucial to approach different parts of the Paretat fr



4.2 Convergence: Relative Deviation to Best

In the following, we examine the impact of the scalarizingdtion parameters on the
performance of thél + X\)-EA in terms of convergence to the Pareto front. For that
purpose, we compute, for every direction angl¢he best-found objective vectof
corresponding to the best (minimum) fithess value with respeT, over all expér-
imented parameter combinations and over all simulationsmwestigated. For both
functionsSnem and Saug We consider the final objective vecterobtained for every
direction angled and every-value. We then compute the relative deviationzafith
respect to:j +, which we define as followsA(z) = (T(z) — T(z51))/T(z5+). Notice
that this relative deviation factor is computed with regge¢heT function, which is to
be viewed as a reference measure of solution quality. Thig\actually informs about
the performance of thel + \)-EA for a fixed direction angle, but variablevalues.

In Fig.[d (Middle), we show the average relative deviatiomést as a function of
direction anglesd) for differente-values. To understand the obtained results, one has
to keep in mind the results discussed in the previous sectinnerning the final angles
inferred by a given parameter setting. In particular, sMtSandT do not infer similar
final angles, the final computed solutions lay in differegioas of the objective space.
Also, for the extreme direction angles, different rangesiaiply different final angles.
Thus, it is with no surprise that the average relative devidb best can be substantial
in such settings. However, the situation is different whemsidering direction angles in
the middle § ~ 7/4). In fact, we observe that for such a configuration ghalue does
not have a substantial effect on final angles, i.e., final sahstige in similar regions of
the objective space. Hence, one may expect that the seavchgsrhas also the same
performance in terms of average deviation to best. Thistisadlg not the case since
we can observe that the value ®has a significant impact on the relative deviation
for the non-extreme direction angles. To better illustthte observation, we show, in
Fig.[ (Right), thes-value providing the minimum average relative deviatiobést as
a function of every direction angle. We clearly see that thst Iperformances of the
(1 4+ X)-EA for different direction angles are not obtained with faene:z-value.

4.3 Understanding the Impact of the Opening Angle

In this section, we argue that the dynamics of the searchegsogbserved previously
is rather independent of the scalarizing function undesi@aration or its parameters.
Instead, we show that the search process is guided by theopasy of the lines of
equal function values in the objective space—describedhbyopening angle, i.e., the
angle between the line of equal function values andfthaxis (cf. Propositionll).
Fig.[2 shows three typical exemplary executions of(the- A)-EA in the objective
space for different parameter settings. The typical instidution maps around the point
z = (0.5,0.5) in the objective space, which is the average objective véot@ random
solution of p)MNK-landscapes. The evolution of the current solution carekplained
by the combination of two effects. The first one is given byitttependent bit-flip mu-
tation operator, that produces more offspring in a paricdirection compared to the
other ones, due to the underlying characteristics opMBIK-landscape under consid-
eration. The second one is given by the lines of equal functadues, i.e., the current
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Fig. 2. Exemplfi’;\ry runs of thél + \)-EA for different direction angle& (straight line)
and differents-values Gnorm, p = —0.7). Shown are the best known Pareto front ap-
proximation, the offspring at some selected generatitvesstolution of the parent, and
the lines of equal function values. Left= 0,0 = 3 - 2. Middleze = 1,6 = 3 - 2.

Right:e = 0.6,6 = % - Z.
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Fig. 3. Left (resp. Middle): scatter plots showing final anglgs) and opening; (¢)
for p = —0.7 andSnom (resp.Saug). Every color is for a fixed and variables. Right:
Scatter plot showin@e(Snorm), #(Saug))-

solution moves perpendicular to the iso-fitness linespwathg the gradient direction in
the objective space. We can remark that the search processrily guided by the lower
part of the cones of equal function values when the diredgi@bove the initial solu-
tion, andvice versaWhen the direction angl&is smaller (resp. larger) thary4, the
dynamics of the search process are better captured by timéngpengled; (resp.fs),
defined between the equi-fitness lines andfthaxis. Geometrically, the optimal solu-
tion with respect to a scalarizing function should corregpto the intersection of one
of the ‘highest’ lines of equal fithess values in the grad@irgction and the feasible
region of the objective space. Although the above desorips mainly intuitive, a more
detailed analysis can support this general idea.

Let us focus on the influence of the opening anglevhen the direction anglé
is smaller thanr/4 (similar results hold fos > /4 and#é,). Fig.[3 shows the scatter
plots of the final angle as a function of the opening andle for different direction
angless € [0,7/4]. A scatter plot gives a set of valué$, (¢), ¢(¢)) for thee-values
under study. From Propositiéh 1, for a given direction angléhe opening anglé;
belongs to the intervgh — 7/2,0] for Sporm, and to the interval—m/4,0] for Sayg
Independently of the scalarizing function, when the ditectngle is betweefi and
around3r /16 (blue color), the value o is highly correlated with the opening angle
0, . For such directions, a simple linear regression confirnssahservation and allows
us to explain the relation between the opening angle andrthkdingle by means of the
following approximate equatior: ~ (¢ + 7/4) + ¢ - 61, such that equals0.05, 0.2,
and0.4 for p = —0.7, 0, and0.7 respectively. We emphasize that this is independent
of the definition of the scalarizing function, and dependnfgan the property of the
lines of equal function values. The previous equation tedlshat the lines of equal fit-
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Fig.4.Column 1 and 3 (resp. 2 and 4) depict the hypervolume (resioap indicators
for scalar functiorb,om. Left (resp. right): objective correlations= —0.7 (resp.p =
0.7).

ness values are guiding the search process following ththegredirection given by the
opening angle in the objective space. Eig. 3 (Right) shoasttie obtained final angles
are equivalent when the opening angle is the same, evenfferatit direction angles
and/or scalarizing functions. In fact, we observe that thalfangles obtained are very
similar for the scalarizing functiorSyem andSag if ¢ is the same for both functions
and thes-values are chosen in order to have matching opening anjlestever the-
ande-values, the points are close to the lipe= z, which shows that independently of
the scalarizing function, the final angle is strongly catetl to the opening angle, and
not to a particular scalarizing function. Also, the openirfighe lines of equal function
values have more impact on the dynamics of the search prtwasshe direction an-
gle alone. In this respect, the opening angle should be deresd as a key feature to
describe and understand the behavior of scalarizing sedégohithms.

5 Global Search Behavior

In the previous section, we considered every sir{gle- \)-EA separately. However,
the goal of a general-purpose decomposition-based digoii to compute a set of
solutions approximating the whole Pareto front. In thistiseg we study the quality
of the set obtained when combining the solutions computedifisrent configurations
of the scalarizing functions. A natural way to do so is to usesame:-value for all
direction angles. Fid.]4 illustrates the relative perfonee in terms of hypervolume
difference and multiplicative epsilon indicators [12], evhconsidering such a setting
and aggregating the solutions from the different weightmexc

The hypervolume reference point is set to the origin, andréfierence set is the
best-known approximation for the instance under constitera

Over all the consideredMNK-landscapes, we found that thevalues minimizing
both indicator-values correspond to those that allow td distribute the final angles
among direction angles (cf. Figl 1) independently of thestbered scalarizing func-
tion. Some differences can however be observed dependitigea@onsidered indicator,
especially for the most correlated instances as illusiriat&ig.[4. To explain the differ-
ence of optimak-values between both indicators, we remark that the lexagjcally
optimal regions of the Pareto front approximation have aéigmpact on the hypervol-
ume indicator value, due to the setting of the referencetpBaor instance, fop = 0.7,
the smallest-values concentrate the final angles to the extreme of thet@é&ont,
which allows to obtain better results in terms of hypervodui@ontrarily, the epsilon
indicator values are better when the final angles are wsttiluted around /4.

Moreover,WS is found to be in general competitive with respect to otheedix
g-values. This observation might suggest & is the best-performing parameter set-
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Table 3. Comparison oS, T, and non-uniforns:,,,,, and Sg;g configured withe-
values giving the best deviation w.r.t every direction. Tuenber in braces shows the
number of other algorithms that statistically outperfohre talgorithm under consid-
eration w.r.t. a given indicator and a Mann-Whitney sigmank statistical test with a
p-value of0.05 (the lower, the better).

Avg. hypervolume differencex(10™ 1) Avg. multiplicative epsilon
P WS T Sﬁorm S;ug WS T Sﬁorm S;ug
—0.7 0.353(2) 0434(3) 0.324] 0.307 0) 1057 0) 1.075(3)  1.059Q  1.057 )
0.0 0.418 (2) 0.458 (3) 0.357 (1) 0.320) 1.056 Q) 1.084 (3) 1.062 (1) 1.064 (1)
0.7 0.391 (3) 0.350 (2) 0.303) 0.292 Q) 1.044 Q) 1.062 (3) 1.047 (1) 1.047 (1)

ting, since every different direction angle leads to a défg final angle. Nevertheless,
the diversity of final angles is not the only criterion thahexplain quality. The effi-
ciency of the(1 + \)-EA with respect to the single-objective problem impliedthsg
scalarizing function is also crucial. In F[g. 1, we obseihatthes-value exhibiting the
minimal average deviation to best is not necessarily theesmmevery direction. We
also observe that for direction angles in the middle of thigttespace, the final angles
obtained for different-values can end up being very similar. Thus, it might be fidasi
that, by choosing differentvalues for different directions, one can find a configuratio
for which final solutions are diverse, but also closest taRtaeeto front. Indeed, we can
observe a significant difference between the non-uniforse aehere the scalarizing
function Sporm (Or Saug) is configured with ar providing the best deviation to best for
every direction, and the situation wherés the same for all directions. As shown in
Table[3, such non-uniform configurations are both substiyntietter thanT and also
competitive compared t&/S. We only show the performance of the above non-uniform
configuration in order to illustrate how choosing differentalues can improve the
quality of the resulting approximation set. However, théstgular non-uniform con-
figuration might not be ‘optimal’. In other words, finding tHeest’ parameter config-
uration in a setting wherg independent singlél + \)-EAs are considered, can itself
be formulated as an optimization problem with variakieend ¢; such that direction
angles in the optimal configuration might not necessarilpaiewisely different.

6 Open(ing) (Re)search Lines

We presented an extensive empirical study that sheds ngiiteoln the impact of scalar-
izing functions within decomposition-based evolutionaryltiobjective optimization.
Our results showed that, given a weighting coefficient veatal a relative importance
of the weighted sum and the Chebychev term in the functiois, fiindamentally the
opening of the lines of equal function values that expljaifliides the search towards a
specific region of the objective space. When combining iplglcalarizing search pro-
cesses to compute a whole approximation set, these lingseucial role to achieve
diversity. While our results are with respect to a ratherpdarsetting where multi-
ple scalarizing search procedures are run independdmlyhake a fundamental step
towards strengthening the understanding of the propetidsilynamics of more com-
plex algorithmic settings. It is our hope that the lessoasltfrom our study can highly
serve to better tackle the challenges of decompositiorébagproaches. They also rise
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new interesting issues that were hidden by the complex desigvell-established al-
gorithms. In the following, we identify a non-exhaustivenmoer of promising research
directions that relate directly to our findings.

O Improving existing algorithms. Eliciting the best configuration to tackle a multi-
objective optimization problem by decomposition can hyginhprove search perfor-
mance. As we demonstrated, similar regions can be achiesied different parameter
settings, and the performance could be enhanced by adopsimginiform configura-
tions. One research direction would be to investigate havi siwn-uniformconfigu-
rations perform when plugged into existing approaches.urcbest knowledge, there
exists no attempt in this direction, and previous invesiiges did only consider uniform
parameters, which do not necessarily guarantee to reacptmmad performance.

O Tuning the opening anglesGenerally speaking, the parameters of existing scalar-
izing functions can simply be viewed as one specific tool taipethe openings of the
lines of equal function values. In this respect, other typespening angles can be
considered without necessarily using a particular scaftagifunction. This would offer
more flexibility when tuning decomposition-based algarit e.g., defining the open-
ing angles without being bound to a fixed closed-form debnitbut adaptively, with
respect to the current search state. We believe that cigsicadigms for on-line and
off-line parameter setting are worth to be investigate@udkle this challenging issue.
O Variation operators and problem-specific issuesin our study, we consider the
independent bit-flip mutation operator and bi-objectidNK-landscapes. In future
work, other problem types and search components should/bstigated at the aim of
gaining in generality—also towards problems with more ttvem objectives.

O Theoretical modeling. A challenging issue is to provide a framework, abstracting
from problem-specific issues, and allowing us to reasontadezomposition-based ap-
proaches in a purely theoretical manner. This would enable hetter harness scalariz-
ing approaches and to derive new methodological tools iardaimprove our practice
of decomposition-based evolutionary multiobjective oytiation approaches.
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