Skip to main content

Towards Cognitive and Perceptive Video Systems

  • Chapter
  • First Online:

Abstract

In this chapter we cover research and development issues related to smart cameras. We discuss challenges, new technologies and algorithms, applications and the evaluation of today’s technologies. We will cover problems related to software, hardware, communication, embedded and distributed systems, multi-modal sensors, privacy and security. We also discuss future trends and market expectations from the customer’s point of view.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dollar P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: an evaluation of the state of the art. IEEE Trans Pattern Anal Mach Intell 34(4):743–761

    Article  Google Scholar 

  2. Koblar V, Filipic B (2013) Designing a quality-control procedure for commutator manufacturing. In: Proceedings of multiconference information society, Ljubljana, Slovenia, Oct 2013, pp 55–58

    Google Scholar 

  3. Stalder S, Grabner H, Van Gool L (2010) Cascaded confidence filtering for improved tracking-by-detection. In: Proceedings of European conference on computer vision, Crete, Greece, Sept 2010, pp 369–382

    Google Scholar 

  4. Abdelkader MF, Chellappa R, Zheng Q, Chan AL (2006) Integrated motion detection and tracking for visual surveillance. In: Proceedings of the computer visionsystems, New York, pp 28–34

    Google Scholar 

  5. Kiryati N, Raviv TR, Ivanchenko Y, Rochel S (2008) Real-time abnormal motion detection in surveillance video. In: Proceedings of international conference on patternrecognition, Tampa, Dec 2008, pp 1–4

    Google Scholar 

  6. Bhargava M, Chen CC, Ryoo MS, Aggarwal JK (2009) Detection of object abandonment using temporal logic. Mach Vis Appl 20(5):271–281

    Article  Google Scholar 

  7. Smith K, Quelhas P, Gatica-Perez D (2006) Detecting abandoned luggage items in a public space. In: Proceedings of computer vision and pattern recognition, workshop on performance evaluation of tracking and surveillance, New York, June 2006, pp 75–82

    Google Scholar 

  8. Szwoch G, Dalka P, Czyzewski A (2010) A framework for automatic detection of abandoned luggage in airport terminal. In: Tsihrintzis GA, Damiani E, Virvou M, Howlett RJ, Jain LC (eds) Smart innovation, systems and technologies, intelligent interactive multimedia systems and services. Springer, Heidelberg, pp 13–22

    Chapter  Google Scholar 

  9. Chen X, Yang SX (2013) A practical solution for ripe tomato recognition and localization. J Real-Time Image Proc 8(1):35–51

    Article  Google Scholar 

  10. What is GPU accelerated computing? (2014) http://www.nvidia.com/object/what-is-gpu-computing.html. Last accessed June 2014

  11. DARPA PERFECT (2014) http://www.darpa.mil/Our_Work/MTO/Programs/Power_Efficiency_Revolution_for_Embedded_Computing_Technologies_(PERFECT).aspx. Last accessed June 2014

  12. Melpignano D et al (2012) Platform 2012, a many-core computing accelerator for embedded SoCs: performance evaluation of visual analytics applications. In: Proceedings of design automation conference, San Francisco, June 2012, pp 1137–1142

    Google Scholar 

  13. Wilson R et al (2014) A 460mhz at 397mv, 2.6ghz at 1.3v, 32b vliw dsp, embedding fmax tracking. In: Proceedings of solid-state circuits conference digest of technical papers, San Francisco, Feb 2014, pp 452–453

    Google Scholar 

  14. Meincke T et al (1999) Globally asynchronous locally synchronous architecture for large high-performance ASICs. In: Proceedings of circuits and systems, Orlando, July 1999, pp 512–515

    Google Scholar 

  15. Smart camera NI (2014) http://sine.ni.com/nips/cds/view/p/lang/en/nid/210036. Last accessed June 2014

  16. Belbachir AN, Nabil A (eds) (2010) Smart cameras. Springer, New York

    Google Scholar 

  17. MALI OpenCL SDK (2014) http://malideveloper.arm.com/develop-for-mali/sdks/mali-opencl-sdk/. Last accessed June 2014

  18. Open Computing Language (2014) https://www.khronos.org/opencl. Last accessed June 2014

  19. Gaster B, Howes L, Kaeli DR, Mistry P, Schaa D (eds) (2011) Heterogeneous computing with OpenCL. Elsevier, Amsterdam

    Google Scholar 

  20. Munshi A, Gaster B, Mattson TG, Fung J, Ginsburg D (eds) (2011) OpenCL programming guide. Addison-Wesley Professional, New Delhi

    Google Scholar 

  21. Scarpino M (ed) (2011) OpenCL in action: how to accelerate graphics and computations. Manning Publications, Waltham

    Google Scholar 

  22. Jaja J (ed) (1992) Introduction to parallel algorithms. Addison-Wesley Professional, Reading

    MATH  Google Scholar 

  23. Kirk DB, Hwu WW (eds) (2012) Programming massively parallel processors: a hands-on approach. Morgan Kaufmann, San Francisco

    Google Scholar 

  24. Roosta SH (ed) (2000) Parallel processing and parallel algorithms: theory and computation. Springer, New York

    Google Scholar 

  25. Fabre C et al (2013) PRO3D, programming for future 3D manycore architectures: project interim status. Formal Methods Compon Objects Lect Notes Comput Sci 7542:277–293

    Google Scholar 

  26. A parallel computing platform and programming model (2014) http://www.nvidia.com/object/cuda_home_new.html. Last accessed June 2014

  27. A specification for parallel programming (2014) http://openmp.org/wp/. Last accessed June 2014

  28. Lepley T, Paulin P, Flamand E (2013) A novel compilation approach for image processing graphs on a many-core platform with explicitly managed memory. In: Proceedings of compilers, architecture and synthesis for embedded systems, Montreal, pp 1–10

    Google Scholar 

  29. Llopard I, Cohen A, Fabre C, Hili N (2014) A parallel action language for embedded applications and its compilation flow. In: Proceedings of software and compilers for embedded systems, St. Goar, June 2014, pp 118–127

    Google Scholar 

  30. Guler P, Emeksiz D, Temizel A, Teke M, Temizel T (2013) Real-time multi-camera video analytics system on GPU. J Real-Time Image Process 8(4):389–401

    Article  Google Scholar 

  31. SanMiguel JC, Micheloni C, Shoop K, Foresti GL, Cavallaro A (2014) Self-reconfigurable smart camera networks. IEEE Comput 47(5):67–73

    Article  Google Scholar 

  32. Camera Link Standard (2014) http://www.visiononline.org/vision-standards-details.cfm?type=6. Last accessed June 2014

  33. Open Network Video Interface Forum (2014) http://www.onvif.org/. Last accessed June 2014

  34. The Physical Security Interoperability Alliance (2014) http://www.psialliance.org/. Last accessed June 2014

  35. OmniCast (2014) http://www.genetec.com/solutions/all-products/omnicast. Last accessed June 2014

  36. Corsi C (2014) Infrared: a key technology for security systems. In: Baldini F et al (eds) Sensors, lecture notes in electrical engineering, vol 162. Springer, Heidelberg, pp 37–42

    Google Scholar 

  37. Houben Q, Czyz J, Tocino D, Debeir O, Warzee N (2009) Feature-based stereo vision using smart cameras for traffic surveillance. In: Fritz M, Schiele B, Piater JH (eds) Computer vision systems. Springer, Heidelberg, pp 144–153

    Chapter  Google Scholar 

  38. Wang Y, Kato J (2012) Integrated pedestrian detection and localization using stereo cameras. In: Hansen J, Boyraz P, Takeda K, Abut H (eds) Signal processing for in-vehicle systems and safety. Springer, Heidelberg, pp 229–238

    Chapter  Google Scholar 

  39. Mittal A, Davis LS (2002) M2Tracker: a multi-view approach to segmenting and tracking people in a cluttered scene using region-based stereo. In: Proceedings of European conference on computer vision, Copenhagen, May 2002, pp 18–22

    Google Scholar 

  40. Szwoch G, Dalka P, Czyzewski A (2013) Spatial calibration of a dual PTZ-fixed camera system for tracking moving objects in video. J Imaging Sci Technol 57(2):1–10

    Article  Google Scholar 

  41. Haering N, Venetianer PL, Lipton A (2008) The evolution of video surveillance: an overview. Mach Vis Appl 19(5–6):279–290

    Article  MATH  Google Scholar 

  42. Lopatka K, Kotus J, Czyzewski A (2011) Application of vector sensors to acoustic surveillance of a public interior space. Arch Acoust 36(4):851–860

    Article  Google Scholar 

  43. Arguedas VF, Zhang Q, Izquierdo E (2014) Multimodal fusion in surveillance applications. In: Ionescu B, Benois-Pineau J, Piatrik T, Qunot G (eds) Fusion in computer vision. Springer, Heidelberg, pp 161–184

    Chapter  Google Scholar 

  44. Kotus J (2010) Application of passive acoustic radar to automatic localization, tracking and classification of sound sources. In: Proceedings of information technology, Gdansk, June 2010, pp 67–70

    Google Scholar 

  45. Kotus J, Lopatka K, Czyzewski A (2014) Detection and localization of selected acoustic events in acoustic field for smart surveillance applications. Multimed Tools Appl 68(1):5–21

    Article  Google Scholar 

  46. Cisco Gunshot Location Surveillance (2014) http://www.cisco.com/web/strategy/government/solution_GunshotLocationSurveillance.html. Last accessed June 2014

  47. SST, Shotspotter Flex (2014) http://www.shotspotter.com/solutions. Last accessed June 2014

  48. Lopatka K, Kotus J, Czyzewski A (2014) Evaluation of sound event detection, classification and localization in the presence of background noise for acoustic surveillance of hazardous situations. In: Andrzej D, Andrzej C (eds) Multimedia communications, services and security communications in computer and information science, vol 429. Springer, pp 96–110

    Google Scholar 

  49. Microflown (2014) http://www.microflown.com/. Last accessed June 2014

  50. Wind J, de Bree H-E, Buye X (2010) 3D sound source localization and sound mapping using a PU sensor array. In: Proceedings of AIAA/CEAS aeroacoustics, Stockholm, June 2010

    Google Scholar 

  51. Kellermann W (2008) Beamforming for speech and audio signals. In: Havelock D, Kuwano S, Vorlander M (eds) Handbook of signal processing in acoustics, vol 691–702. Springer, Heidelberg

    Google Scholar 

  52. Cichowski J, Czyzewski A (2011) Reversible video stream anonymization for video surveillance systems based on pixels relocation and watermarking. In: Proceedings of international conference on computer vision workshops, Barcelona, Nov 2011, pp 1971–1977

    Google Scholar 

  53. Helten F, Fischer B (2004) Reactive attention: video surveillance in Berlin shopping malls. Surveill Soc 2(2/3):323–345

    Google Scholar 

  54. Cavallaro A (2007) Privacy in video surveillance. IEEE Signal Process Mag 24(2):166–168

    Article  MathSciNet  Google Scholar 

  55. Dalka P (2012) Multi-camera vehicle tracking using local image features and neural networks. In: Andrzej D, Andrzej C (eds) Multimedia communications, services and security. Communications in computer and information science, vol 287. Springer, Heidelberg, pp 58–67

    Google Scholar 

  56. Hamdoun O, Moutarde F, Stanciulescu B, Steux B (2008) Person re-identification in multi-camera system by signature based on interest point descriptors collected on short video sequences. In: Proceedings of distributed smart cameras, Stanford, Sept 2008, pp 1–6

    Google Scholar 

  57. D’Arminio P et al (2012) Technologies for granting balance between security and privacy in video-surveillance. In: Proceedings of intelligence and security informatics, Arlington, VA, Aug. 2012, pp 278–283

    Google Scholar 

  58. Dalka P, Bratoszewski P (2013) Visual detection of people movement rules violation in crowded indoor scenes. In: Andrzej D, Andrzej C (eds) Multimedia communications, services and security. Communications in computer and information science, vol 368. Springer, Berlin, pp 48–58

    Google Scholar 

  59. Szczuko P (2014) Augmented reality for privacy-sensitive visual monitoring. In: Dziech A, Czyzewski A (eds) Multimedia communications, services and security. Communications in computer and information science, vol 429. Springer, Switzerland, pp 229–241

    Google Scholar 

  60. Kato Z, Zerubia J (2012) Markov random fields in image segmentation. Found Trends Sig Process 5(1–2):1–155

    Google Scholar 

  61. NVIDIA Whitepaper (2014) http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-K1-whitepaper.pdf. Last accessed June 2014

  62. SAMSUNG Whitepaper (2014) http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf. Last accessed June 2014

Download references

Acknowledgments

This work has been partially funded by the Artemis JU and partially by TÜBİTAK—The Scientific and Technological Research Council of Turkey (Toygar Akgun), the UK Technology Strategy Board (Charles Attwood, Andrea Cavallaro, Fabio Poiesi), French Ministère de l’économie, du redressement productif et du numérique (Christian Fabre) and Polish National Centre for Research and Development (Piotr Szczuko) as part of the COPCAMS project (http://copcams.eu) under Grant Agreement number 332913.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Poiesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akgun, T., Attwood, C., Cavallaro, A., Fabre, C., Poiesi, F., Szczuko, P. (2014). Towards Cognitive and Perceptive Video Systems. In: Spagnolo, P., Mazzeo, P., Distante, C. (eds) Human Behavior Understanding in Networked Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-10807-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10807-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10806-3

  • Online ISBN: 978-3-319-10807-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics