Skip to main content

A Full-Scale Hardware Solution for Crowd Evacuation via Multiple Cameras

  • Chapter
  • First Online:
Human Behavior Understanding in Networked Sensing

Abstract

Crowd evacuation is thoroughly investigated in recent years. All efforts focus on improving safety standards of such a process. Past and latest life-threatening incidents related to evacuation procedures justify both the growing scientific interest as well as the interdisciplinary character of most research approaches. In this chapter, we describe the hardware implementation of a management system that aims at acting anticipatively against crowd congestion during evacuation. The system consists of two structural components. The first one relies on an elaborated form of the Viola et al. [55] detection and tracking algorithm, which incorporates both appearance and motion in real-time. Being supported by cameras, this algorithm realises the initialisation process. In principal, it consists of simple sum-of-pixel filters that are boosted into a strong classifier. A linear combination of these filters properly set thresholds, thus succeeding detection. The second part consists of a Cellular Automata (CA) based route estimation model. Presumable congestion in front of exits during crowd egress, leads to the prompt activation of sound and optical signals that guide pedestrians towards alternative escaping points. The CA model, as well as the tracking algorithm are implemented by means of Field Programmable Gate Array (FPGA) logic. Hardware accelerates the response of the model by exploiting the distinct feature of parallelism that CA structures inherently possess. Furthermore, implementing the model on an FPGA device takes advantage of their natural parallelism, thus reaching significant speed-ups with respect to software simulation. The incorporation of the design as a fast processing module of an embedded system dedicated to surveillance is also advantageous in terms of compactness, portability and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altera: Quartus II handbook version 13.1. Altera Corporation (2013). http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

  2. Altshuler E, Ramos O, Nunez Y, Fernandez J, Batista-Leyva AJ, Noda C (2005) Symmetry breaking in escaping ants. Am Nat 166(6):643–649

    Article  Google Scholar 

  3. Bandini S, Federici ML, Vizzari G (2007) Situated cellular agents approach to crowd modeling and simulation. Cybern Syst 38:729–753

    Article  MATH  Google Scholar 

  4. Girau B, Tisserand A (1996) On-line arithmetic based reprogrammable hardware implementation of multilayer perceptron back-propagation. Technical report, Ecole Normale Superieure de Lyon

    Google Scholar 

  5. Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci USA (PNAS) 99(3):7280–7287

    Article  Google Scholar 

  6. Brand M, Kettnaker V (2000) Discovery and segmentation of activities in video. IEEE Trans Pattern Anal Mach Intell 22:844–851

    Article  Google Scholar 

  7. Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295:507–525

    Article  MATH  Google Scholar 

  8. Vihas C, Georgoudas IG, Sirakoulis GC (2013) Cellular automata incorporating follow-the-leader principles to model crowd dynamics. J Cell Autom 8(5–6):333–346

    MathSciNet  Google Scholar 

  9. Coifman B, Beymer D, McLauchlan P, Malik J (1998) A real-time computer vision system for vehicle tracking and traffic surveillance. Transp Res: Part C 6(4):271–288

    Google Scholar 

  10. Cutler R, Davis LS (2000) Robust real-time periodic motion detection, analysis, and applications. IEEE Trans Pattern Anal Machine Intell 22:781–796

    Article  Google Scholar 

  11. Georgoudas IG, Sirakoulis GC, Andreadis I (2007) An intelligent cellular automaton model for crowd evacuation in fire spreading conditions. In: Proceedings of the 19th IEEE international conference on tools with artificial intelligence (ICTAI 2007), vol 1, pp 36–43

    Google Scholar 

  12. Georgoudas IG, Kyriakos P, Sirakoulis GC, Andreadis I (2010) An fpga implemented cellular automaton crowd evacuation model inspired by the electrostatic-induced potential fields. Microprocess Microsyst 34(7–8):285–300

    Article  Google Scholar 

  13. Georgoudas IG, Sirakoulis GC, Andreadis I (2007) Modelling earthquake activity features using cellular automata. Math Comput Model 46(1–2):124–137

    Article  Google Scholar 

  14. Georgoudas IG, Sirakoulis GC, Andreadis I (2011) An anticipative crowd management system preventing clogging in exits during pedestrian evacuation processes. IEEE Syst 5(1):129–141

    Article  Google Scholar 

  15. Goldstone RL, Janssen MA (2005) Computational models of collective behavior. Trends Cognitive Sci 9(9):424–430

    Article  Google Scholar 

  16. Goodrich MA Potential fields tutorial. http://www.ee.byu.edu/ugrad/srprojects/robotsoccer/papers/goodrich_potential_fields.pdf

  17. Haldera C, Madeja L, Pietrzyka M (2014) Discrete micro-scale cellular automata model for modelling phase transformation during heating of dual phase steels. Arch Civil Mech Eng 14:96–103

    Article  Google Scholar 

  18. Haritaoglu I, Harwood D, Davis LS (2000) W4: Real-time surveillance of people and their activities. IEEE Trans Pattern Anal Machine Intell 22(8):809–822

    Article  Google Scholar 

  19. Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–490

    Article  Google Scholar 

  20. Howarth RJ, Buxton H (1992) Analogical representation of space and time. Image Vis Comput 10:467–478

    Article  Google Scholar 

  21. Hu W, Tan T, Wang L, Maybank S (2004) A survey on visual surveillance of object motion and behaviors. IEEE Trans Syst Man Cybern - C: Appl Rev 34(3):334–352

    Google Scholar 

  22. Hu WHW, Tan TTT, Wang LWL, Maybank SMS (2004) A survey on visual surveillance of object motion and behaviors. IEEE Trans Syst Man Cybern C 34:334–352

    Google Scholar 

  23. Hughes R (2002) A continuum theory for the flow of pedestrians. Transp Res B 36:507–535

    Google Scholar 

  24. Kilger M (1992) A shadow handler in a video-based real-time traffic monitoring system. In: Proceedings of the IEEE workshop applications of computer vision. IEEE, Palm Springs, pp 11–18

    Google Scholar 

  25. Kirchner A, Klupfel H, Nishinari K, Schadschneider A, Schreckenberg M (2003) Simulation of competitive egress behavior: comparison with aircraft evacuation data. Physica A 324:689–697

    Article  MATH  Google Scholar 

  26. Kuno Y, Watanabe T, Shimosakoda Y, Nakagawa S (1996) Automated detection of human for visual surveillance system. In: Proceedings of the international conference on pattern recognition, pp 865–869

    Google Scholar 

  27. Li J, Yang L, Zhao D (2005) Simulation of bi-direction pedestrian movement in corridor. Physica A 354:619–628

    Article  Google Scholar 

  28. Lo SM, Huang HC, Wang P, Yuen KK (2006) A game theory based exit selection model for evacuation. Fire Saf J 41:364–369

    Article  Google Scholar 

  29. Lou JG, Yang H, Hu WM, Tan TN (2002) Visual vehicle tracking using an improved ekf. In: Proceedings of the Asian conference on computer vision, pp 296–301

    Google Scholar 

  30. Schultz M, Lehmann S, Fricke H (2007) A discrete microscopic model for pedestrian dynamics to manage emergency situations in airport terminals. In: Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) Pedestrian andevacuation dynamics 2005. Springer, Berlin, pp 369–375

    Chapter  Google Scholar 

  31. Mackay M, Benhabib B (2007) A multi-camera active-vision system for dynamic form recognition. In: Proceedings of international conference on computer, information, and systems sciences, and engineering (CISSE2007)

    Google Scholar 

  32. Mackay M, Fenton RG, Benhabib B (2008) Time-varying-geometry object surveillance using a multi-camera active-vision system. Int J Smart Sens Intell Syst 1(3):679–704

    Google Scholar 

  33. Mackay M, Fenton RG, Benhabib B (2011) Multi-camera active surveillance of an articulated human form - an implementation strategy. Comput Vis Image Underst 115:1395–1413

    Article  Google Scholar 

  34. McKenna S, Jabri S, Duric Z, Rosenfeld A, Wechsler H (2000) Tracking groups of people. Comput Vis Image Underst 80(1):42–56

    Article  MATH  Google Scholar 

  35. Mehran R (2011) Analysis of behaviors in crowd videos. Ph.D. thesis, University of Central Florida. http://crcv.ucf.edu/papers/theses/thesis-mehra005_300.pdf

  36. Meyer D, Denzler J, Niemann H (1998) Model based extraction of articulated objects in image sequences for gait analysis. In: Proceedings of the IEEE international conference on image processing, pp 78–81

    Google Scholar 

  37. Meyer D, Denzler J, Niemann H (1998) Model based extraction of articulated objects in image sequences for gait analysis. In: Proceedings of the IEEE international conference on image processing, pp 78–81

    Google Scholar 

  38. Mita T, Kaneko T, Hori O (2005) Joint haar-like features for face detection. Multimed Lab Corp Res Dev Cent Toshiba Corp 2:1619–1626

    Google Scholar 

  39. Mohan A, Papageorgiou C, Poggio T (2001) Example-based object detection in images by components. IEEE Trans Pattern Recognit Machine Intell 23:349–361

    Article  Google Scholar 

  40. Nalpantidis L, Sirakoulis GC, Gasteratos A (2011) Non-probabilistic cellular automata-enhanced stereo vision simultaneous localisation and mapping (slam). Meas Sci Technol 22(11):114027

    Article  Google Scholar 

  41. Orts-Escolano S, Garcia-Rodriguez J, Morell V, Cazorla M, Azorin J, Garcia-Chamizo JM (2014) Parallel computational intelligence-based multi-camera surveillance system. J Sens Actuator Netw 3:95–112

    Article  Google Scholar 

  42. Panagiotakis C, Tziritas G (2004) Recognition and tracking of the members of a moving human body. In: Perales FJ, Draper BA (eds) AMDO 2004, LNCS 3179, Springer, pp 86–98

    Google Scholar 

  43. Papers AW (2007) Video surveillance implementation using FPGAs. Altera Corporation. http://www.altera.com/literature/wp/wp-videosrvl.pdf

  44. Parisi D, Dorso C (2005) Microscopic dynamics of pedestrian evacuation. Physica A 354:606–618

    Article  Google Scholar 

  45. Recatala G, Carloni R, Melchiorri C, Sanz PJ, Cervera E, del Pobil AP (2008) Vision-based grasp tracking for planar objects. IEEE Trans Syst Man Cybern - C: Appl Rev 38(6):844–849

    Google Scholar 

  46. Remagnino P, Tan T, Baker K (1998) Agent orientated annotation in model based visual surveillance. In: Proceedings of the IEEE international conference on computer vision, pp 857–862

    Google Scholar 

  47. Rother C, Kolmogorov V, Blake A (2004) Grabcut: interactive foreground extraction using iterated graph cuts. In: Proceeding ACM SIGGRAPH ’04. ACM, pp 309–314

    Google Scholar 

  48. Roy A, Sural S (2009) A fuzzy interfacing system for gait recognition. In: Proceedings of the 28th north american fuzzy information processing society annual conference, pp 1–6

    Google Scholar 

  49. Shiwakoti N, Sarvi M, Rose G, Burd M (2011) Animal dynamics based approach for modeling pedestrian crowd egress under panic conditions. Transp Res B: Methodol 45(9):1433–1449

    Google Scholar 

  50. Tarabanis KA, Allen PK, Tsai RY (1995) A survey of sensor planning in computer vision. IEEE Trans Robot Autom 11(1):86–104

    Article  Google Scholar 

  51. Toffoli T (1984) Cam: a high-performance cellular automaton machine. Physica D 10(1–2):195–204

    Article  MathSciNet  Google Scholar 

  52. Varas A, Cornejo M, Mainemer D, Toledo B, Rogan J, Munoz V, Valdivia JA (2007) Cellular automaton model for evacuation process with obstacles. Physica A 382:631–642

    Google Scholar 

  53. Velastin S, Remagnino P, (2006) Intelligent distributed video surveillance systems., IEE Computing Series, Institution of Engineering and Technology, Stevenage

    Google Scholar 

  54. Viola P, Jones M (2001) Fast and robust classification using asymmetric adaboost and a detector cascade. In: Advances in Neural Information Processing System, vol 14. MIT Press, Cambridge, pp 1311–1318

    Google Scholar 

  55. Viola P, Jones MJ, Snow D (2003) Detecting pedestrians using patterns of motion and appearance. In: Proceedings of the IEEE international conference on computer vision, pp 734–741

    Google Scholar 

  56. Vlassopoulos N, Fates NA, Berry H, Girau B (2010) An fpga design for the stochastic greenberg-hastings cellular automata. In: International conference on high performance computing & simulation - HPCS, IEEE Computer Society, pp 565–574

    Google Scholar 

  57. Wang X, Wang S, Bi D (2009) Distributed visual-target-surveillance system in wireless sensor networks. IEEE Trans Syst Man Cybern - B: Cybern 39(5):1134–1146

    Google Scholar 

  58. Yuan WF, Tan KH (2007) An evacuation model using cellular automata. Phys A 384:549–66

    Article  Google Scholar 

  59. Zhang W, Tong R, Dong J (2009) Boosting 2-thresholded weak classifiers over scattered rectangle features for object detection. Institute of Artificial Intelligence Zhejiang University Hangzhou, pp 397–404

    Google Scholar 

  60. Zhao D, Yang L, Li J (2006) Exit dynamics of occupant evacuation in an emergency. Physica A 363:501–511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Ch. Sirakoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Portokalidis, D., Georgoudas, I.G., Gasteratos, A., Sirakoulis, G.C. (2014). A Full-Scale Hardware Solution for Crowd Evacuation via Multiple Cameras. In: Spagnolo, P., Mazzeo, P., Distante, C. (eds) Human Behavior Understanding in Networked Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-10807-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10807-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10806-3

  • Online ISBN: 978-3-319-10807-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics