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Abstract. Traditional discriminative training methods modify Hidden Markov
Model (HMM) parameters obtained via a Maximum Likelihood (ML) criterion
based estimator. In this paper, anti-models are introduced instead. The anti-models
are used in tandem with ML models to incorporate a discriminative information
from training data set and modify the HMM output likelihood in a discrimina-
tive way. Traditional discriminative training methods are prone to over-fitting
and require an extra stabilization. Also, convergence is not ensured and usually
”a proper” number of iterations is done. In the proposed anti-models concept, two
parts, positive model and anti-model, are trained via ML criterion. Therefore, the
convergence and the stability are ensured.
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1 Introduction

Discriminative training (DT) techniques have been shown to outperform the ML-based
training in automatic speech recognition (ASR). But they require a proper tuning and
use a number of heuristics [3]. Moreover, they usually do not converge and maximiza-
tion of a training criterion may not lead to maximum recognition accuracy with un-
seen data. ASR systems used acoustic models with a reduced complexity in past due
to limited computing power. DT techniques gain is better with the less-complex mod-
els trained from the same amount of training data [7]. The more-complex models are
more sensitive to a DT setup and require a finer tuning to get a significant gain over
the ML models. Nowadays, a multi-core computer architecture has enough computing
power to run any single diagonal-covariance acoustic model in real-time and, with a
GPU acceleration, even multiple models [1] or full-covariance models [2]. Therefore,
the more and more-complex HMMs (even with full-covariance matrices) are used and
it is obvious that some simpler and more robust DT technique could be helpful.

In this paper, a concept of anti-models is introduced. The idea is simple: Instead
of modification of the Gaussian parameters to fit the model into an unnatural (non-
Gaussian) shape using negative statistic or gradient methods, we directly construct the
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anti-model, model of the data that belongs to the others HMM states. The idea is gen-
eral and can be adopted to all major DT criteria, e.g. Maximal Mutual Information
(MMI), boosted-MMI, Minimum Classification Error (MCE), and Minimum Phone Er-
ror (MPE). To keep a clarity and to fit into limited paper size, the MMI case is shown
in detail in this paper. Nevertheless, the derivation for the other criteria is analogous.

This paper is organized as follows. A brief overview of DT techniques is given in
Section 2. The concept of anti-models is introduced in Section 3. The derivation of the
anti-models with the MMI criterion is described in Section 4. Experiments and results
are presented and discussed in Section 5.

2 Dicsriminative Training

In principle, the ML based training is a machine learning method from positive exam-
ples only. In contrast to ML, discriminative approaches take into account an information
about class competition during the training. This extra information may improve results,
but it brings an extra computation burden also. A short review of the most frequently
used discriminative criteria follows.

2.1 Maximum Mutual Information - MMI

In the MMI case, a training algorithm seeks to maximize the posterior probability of
the correct utterance given the used models [8]:

FMMI(λ) =

R∑
r=1

log
Pλ(Or|sr)κP (sr)κ∑
S Pλ(Or|s)κP (s)κ

, (1)

where λ represents the acoustic model parameters, Or is the training utterance fea-
ture set, sr is the correct transcription for the r’th utterance, κ is the acoustic scale
which is used to amply confusions and herewith increases the test-set performance.
P (s) is a language model part. Optimization of the criterion (1) requires to generate
lattices or many-hypotheses recognition run with appropriate language model. The lat-
tices generation is highly time consuming. Furthermore, these methods require good
correspondence between training and testing dictionary and language model. If the cor-
respondence is weak, e.g. there are many words which are only in the test dictionary
then the results of these methods are not good. In this case, we can employ Frame-
Discriminative training (MMI-FD), which is independent on the used dictionary and
language model [6]. In addition, this approach is much faster.

Optimization of the MMI objective function uses Extended Baum-Welch update
equations [5] and it requires two sets of statistics. The first set, corresponding to the
numerator (num) of the equation (1), is the correct transcription. The second one corre-
sponds to the denominator (den) and it is a recognition/lattice model containing all pos-
sible words. An accumulation of statistics is done by the forward-backward algorithm
on reference transcriptions (numerator) as well as generated lattices (denominator). The
Gaussian means and variances are updated as follows [6]:

µ̂jm =
Θnumjm (O)−Θdenjm (O) +Djmµ

′
jm

γnumjm − γdenjm +Djm
(2)
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σ̂2
jm =

Θnumjm (O2)−Θdenjm (O2) +Djm(σ′2jm + µ′2jm)

γnumjm − γdenjm +Djm
− µ2

jm, (3)

where j and m are HMM-state and Gaussian indexes, respectively, γjm is the accu-
mulated occupancy of the Gaussian, Θjm(O) and Θjm(O2) are a posterior proba-
bility weighted by the first and the second order accumulated statistics, respectively.
Gaussian-specific stabilization constants Djm are set to maximum of (i) double of the
smallest value which ensures positive estimated variances, and (ii) value Eγdenjm , where
constant E determines the stability/learning-rate and it is a compromise between sta-
bility and number of iteration which is needed for well-trained models [9]. To bring a
stability to HMM states with low-data, I-smoothing was introduced in [10] that uses a
prior from the ML model or the MMI model from the previous iteration.

2.2 Boosted-MMI

The Boosted-MMI [14] is a modification of the MMI method. The denominator lattice
trajectories are weighted by an error in this method. The error is defined in the same
way like in MPE or MWE (see below). Therefore, the Boosted-MMI is a combination
between MMI and MPE/MWE.

2.3 Minimum Classification Error - MCE

Another popular criterion is MCE [11–13]. The MCE criterion directly minimizes an
error in a recognized word sequence. In contrast, MMI maximizes a probability of the
correct sequence against others. The non-smooth classification error is smoothed via a
sigmoid function to allow gradient-based optimization. It operates with n-best lists or
with lattices that are more suitable for large vocabulary continuous speech recognition.

2.4 Minimum Word Error - MWE

The MWE criterion is defined formally similar to (1), but with a word error incorpora-
tion:

FMWE(λ) =

R∑
r=1

log

∑
S Pλ(Or|sr)κP (sr)κRawAccuracy(s)∑

S Pλ(Or|s)κP (s)κ
, (4)

where RawAccuracy(s) is the error rate of the word sequence s, κ is the acoustic model
weight. This criterion is a weighted mean of the correct recognized words out of all
other possible word sequences. Maximization of the MWE criterion improve a number
of correctly recognized words in the most probable word sequences.

2.5 Minimum Phone Error - MPE

The MWE shows poor ability to generalize the training performance to unseen data.
Therefore, more robust phone-based criteria were introduced. The maximization is
aimed to the phone-level here [7]. Formal description of the MPE criterion is identi-
cal to (4). Only the error part RawAccuracy(s) is different in MPE. It express a relative
count of correct recognized phones. An approximation to the error is used in practice
for efficiency reasons [15].
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2.6 Minimum Phone Frame Error - MPFE

Another approximation to the phone error was introduced in [16]. The MPE described
above does not penalize deletion errors sufficiently. In addition, dynamic range of phone
RawAccuracy(s) is typically quite narrow, which makes MPE occupancies consider-
ably lower than MMI occupancies [10]. This may lead to an MPE robustness problem
when training data are not abundant. MPFE uses phone-lattices and modified criterion
to overcome the MPE shortcomings.

3 Concept of Anti-Models

The traditional DT techniques have two main shortcomings: Low stability and prone-
ness to over-fitting. An implementation of the DT training that successfully copes with
the shortcomings often seems to be more art than science. In contrast, the ML training
is stable and there is a considerable experience how to prevent the over-fitting [17–
22]. The concept of the anti-models is based on advantages of the ML training and in
addition of the HMM state-concurrency information. Other-states data that have high
likelihood in the model of the particular state are modeled separately by the anti-model.
Thus, each state has standard ML model and the anti-model. The final state observation
probability p(ot) of the feature vector p(ot) is calculated as follows

p(ot) =
pML(ot)

2

pML(ot) + wApA(ot)
, (5)

where pML(ot) is the output probability of the ML model and pA(ot) is probability of
the anti-model. wA is the weight of the anti-model that is proportional to an amount of
the wrongly modeled data. An illustration of the anti-model concept is in Figure 1. The
figure shows that the anti-model modifies only the part of the distribution, where the
wrongly modeled data were observed. In contrast, MMI modifies the entire distribution
even in the part where no data were observed and therefore, it may be less optimal
for unseen data. The figure also shows that the anti-model concept is able to model
even non-Gaussian distributions. A log-domain is usually used in practice for HMM
observation probabilities evaluation. The log form of the equation (5) is

log(p(ot)) = 2 log(pML(ot))− log(pML(ot) + wApA(ot)). (6)

The sum of two probabilities evaluated in the log-domain can be calculated in a more
robust and faster way:

log(elp1 + elp2) = max(lp1, lp2) + log(1 + e(min(lp1,lp2)−max(lp1,lp2)))

= max(lp1, lp2) + f(min(lp1, lp2)−max(lp1, lp2)), (7)

where lp1 and lp1 are two probabilities evaluated in the log-domain and the function
f(min(lp1, lp2)−max(lp1, lp2)) is a smooth function that fast limits to zero for larger
values. The function can be effectively approximated via Taylor series decomposition
or calculated via lower-accuracy hardware implemented GPU instructions. Note, that
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Fig. 1. Illustration of the anti-model concept. Probability density functions are compared for ML,
MMI, anti-model, and ML & anti-model as the application of equation 6.

this approach used to be implemented in the HMM evaluation already, thus it is simple
to reuse it for the anti-models also. The resulting anti-models based HMM has about
twice as many parameters to estimate. However, the more reliable ML training is used
to the estimation. Note that the ML model and the anti-model of the state do not need
to have the equal number of components and a proper model complexity can be chosen
for both parts.

4 MMI-Based Anti-Models

Derivation of the anti-model parameters estimation for MMI is straight forward and
simple. The equations are the same like for ML training. Only the denominator statistics
of the MMI criterion is used:

µ̂Ajm =
Θdenjm (O)

γdenjm

(8)

σ̂2
Ajm =

Θdenjm (O2)

γdenjm

− µ2
jm. (9)

No additional stabilization nor the I-smoothing is needed. There is only one difference,
the denominator statistic for the anti-model does not contain the state’s own data - the
positive examples, only the negative ones. Estimation of the anti-model weight wAjm
is also simple

ŵAjm =
γdenjm

γnumjm

. (10)
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5 Experiments

A comparison of the proposed concept of the anti-models with the traditional ML and
MMI criteria was done on a simple ASR task.

5.1 Speech Data, Processing, and Test Description

A part of UWB S01 corpus [4] was used for experiments purposes. Data from first 100
speakers (57 males, 43 females) were used as a training part. Another 100 speakers
(64 males, 36 females) make a test part. The digitization of an analogue signal was
provided at 22.05 kHz sample rate and 16-bit resolution format. In order to extract
features, Mel-frequency cepstral coefficients (MFCCs) were utilized, 15 dimensional
feature vectors were extracted each 10 ms utilizing a 32 ms hamming window, including
the energy coefficient. Then, Cepstral Mean Normalization (CMN) was applied, and
∆, ∆2 coefficients were added. A 3 state HMM based on triphones with 425 states
in total and 8 component GMM with diagonal covariances in each of the states was
trained via ML criterion. In the case of anti-models, 8 component GMMs were trained
for both the parts, ML and anti-model. The anti-models as well as the MMI models are
based on MMI-FD criterion. In the case of MMI, three variants that differ in setup of
the stabilization constant E were trained (see 2.1). Two variants with the fixed E equal
1 and 2 were done and one variant with dynamic E equal

√
iteration has been added.

I-smoothing was employed for all the MMI variants with τ = 100.
To test the performance a simple 476-words zero-gram language model (LM) with

no OOV was used. The simple LM was used to boost sensitivity to the acoustic part
of the system. The zero-gram variant of the recognizer published in [23] was used and
Word Error Rate (WER) was evaluated.

5.2 Results

The proposed concept of the anti-models were compared to the ML baseline and the
MMI discriminative training. Both, MMI and anti-models, was initialized by the ML
baseline model. The results are shown in Figure 2. It is clear that MMI as well as the
anti-models outperform ML training. MMI produces very good models just after a sin-
gle iteration on this task. However, the stability is a problem and after a few additional
iterations WER increases. In contrast, the anti-models needs at least two iterations to
proper results, but it keeps the achieved level.

6 Conclusion

The alternative way to discriminative training, the concept of the anti-models, was intro-
duced in this paper. Advantages and disadvantages were discussed. The main advantage
is the stability and robustness that is brought by ML training. The main disadvantage is
a more complex final HMM that requires a higher computation power to evaluate. The
concept was tested on the ASR experiment. The results confirm equivalent WERs but
the better stability in comparison to MMI.
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Fig. 2. Results of the ASR experiment. WER was evaluated for ML, three variants of MMI, and
for the anti-models.
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